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Abstract: We develop the theory of discrete time Lagrangian mechanics on Lie groups,
originated in the work of Veselov and Moser, and the theory of Lagrangian reduction
in the discrete time setting. The results thus obtained are applied to the investigation of
an integrable time discretization of a famous integrable system of classical mechanics
— the Lagrange top. We recall the derivation of the Euler—Poinsot equations of motion
both in the frame moving with the body and in the rest frame (the latter ones being
less widely known). We find a discrete time Lagrange function turning into the known
continuous time Lagrangian in the continuous limit, and elaborate both descriptions
of the resulting discrete time system, namely in the body frame and in the rest frame.
This system naturally inherits Poisson properties of the continuous time system, the
integrals of motion being deformed. The discrete time Lax representations are also
found. Kirchhoff’s kinetic analogy between elastic curves and motions of the Lagrange
top is also generalised to the discrete context.

1. Introduction

This paper is devoted to the time discretization of a famous integrable system of classical
mechanics — the Lagrange top. This is a special case of rotation of a rigid body around a
fixed point in a homogeneous gravitational field, characterized by the following condi-
tions: the rigid body is rotationally symmetric, i.e. two of its three principal moments of
inertia coincide, and the fixed point lies on the axis of rotational symmetry. We present a
discretization preserving the integrability property, and discuss its rich mechanical and
geometrical structure. Notice that until recently [B] only the integrable Euler case of the
rigid body motion was discretized preserving integrability [V,MV,BLS]. Consult also
[AL,H,DJM, QNCV] for some fundamental early papers on the subject of integrable dis-
cretizations, and [BP, S] for reviews of this topic reflecting the viewpoints of the present
authors and containing extensive bibliography.
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We found the standard presentation of the Lagrange top in mechanical textbooks
insufficient in several respects, and therefore chose to write this paper in a pedagogical
manner, giving a systematic account of the new results along with the well known ones
represented in aform suitable for our present purposes. The paper is organized as follows.

The introduction recalls the classical Euler—Poinsot equations for the motion of the
spinning top in the frame moving with the body. Further, we give less known Euler—
Poinsot equations describing the Lagrange top in the rest frame (they cannot be directly
generalized to a general top case). We finish the introduction by announcing a beautiful
time discretization of the latter equations.

In order to derive this discretization systematically, we need some formalism of dis-
crete time Lagrangian mechanics on Lie groups. The discrete time Lagrangian mechanics
were introduced by Veselov [V,MV], see also [WM], but the case of Lie groups have
certain specific features which, in our opinion, were not worked out sufficiently. In par-
ticular, there lacks a systematic account of the discrete time version of the Lagrangian
reduction (whichis fairly well understood in the continuous time setting, cf. [MS,HMRY]).
Also, we think that some technical details in [V,MV,WM] could be amended: in work-
ing with variational equations these authors systematically use Lagrange multipliers
instead of introducing proper notions such as Lie derivatives (specific for Lie groups as
opposed to general manifolds). Therefore we give a detailed exposition of the discrete
time Lagrangian mechanics on Lie groups in Sect. 3. In order to underline an absolute
parallelism of its structure with that of the continuous time Lagrangian mechanics, we
included in Sect. 2 also a presentation of (a fragment of) the latter, which is, of course,
by no means original.

Section 4 is devoted to a Lagrangian derivation of equations of motion of the Lagrange
top, both in the rest and in the body frames. Finally, in Sect. 5 we do the same work for
a discrete time Lagrange top.

It has to be mentioned that the actual motivation for the present development came
from differential geometry, more precisely, from the theory of elastic curves. A brief
account of the relations between spinning tops and elastic curves is given in Sect. 6.

We also give three appendices. Appendix A is for fixing the notations of Lie group
theory. In Appendix B we collect the main results of Sect. 2, 3 in the form of an easy—to—
use table. Finally, Appendix C contains some conventions and simple technical results
on a specific Lie group we work with, namely 8& (2). It should be remarked here that
our experience with various integrable discretizations convinced us that working with
this group has many advantages when compared to the §rO@g), more traditional
in this context.

A standard form of equations of motion describing rotation of a rigid body around a
fixed point in a homogeneous gravity field is the following:

M_MXSZ(M)—f—PxA, (1.1)
P =P xQM).

Here M = (M1, M2, M3)T e R3 is the vector of kinetic momentum of the bodly,
expressed in the so-called body frame. This frame is firmly attached to the body, its
origin is in the body’s fixed point, and its axes coincide with the principal inertia axes
of the body. The inertia tensor of the body in this frame is diagonal:

J1 00
J=10J/0]. (1.2)
0 0 J3
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For the vecto2 = Q (M) of the angular velocity we have:
Q=QWM) =J"M =M, I M, I3 M) € RE. (1.3)

The vectorP = (P1, P2, P3)T € R3 is the unit vector along the gravity field, with

respect to the body frame. Finall,= (A1, A2, A3)" e R3 s the vector pointing from

the fixed point to the center of mass of the body. It is a constant vector in the body frame.
Itis well known that the system (1.1) is Hamiltonian with respect to the Lie—Poisson

bracket of the Lie algebra(3) of the Lie groupE (3) of euclidean motions dR3, i.e.

with respect to the Poisson bracket

{Mj, Mj} = &;xMy, {M;, Pj}=¢ijxPr, {P;,Pj}=0, (1.4)

wheree;j is the sign of the permutatioijk) of (123). The Hamiltonian equations of
motion for an arbitrary Hamilton functioW = H (M, P) in the bracket (1.4) read:

M=MxVyH+PxVpH,

. (1.5)
P=PxVyH,
which coincides with (1.1) if
1
H(M, P)=§<M,Q(M))+(P,A>- (1.6)

(Here(., -) stands for the standard euclidean scalar produ&€)nThe Poisson bracket
(1.4) has two Casimir functions,

C=(M,P) and (P, P), .7

which are therefore integrals of motion for (1.1) in involution wHt{M, P) (and with
any other function on the phase space).

The Lagrange case of the rigid body motion (the Lagrange top, for brevity), is char-
acterized by the following dataf; = J», which means that the body is rotationally
symmetric with respect to the third coordinate axis), @nd= A, = 0, which means
that the fixed point lies on the symmetry axis. Choosing units properly, we may assume
that

Ji=J=1 J3=a, A=(0017. (1.8)
The system (1.1) has in this case an additional integral of motion,
Mz = (M, A), (1.9)

which is also in involution withH# (M, P), and assures therefore the complete integra-
bility of the flow (1.1). For an actual integration of this flow in terms of elliptic functions
see, e.g., [G,KS], and for a more modern account [RM,Au, CB].

Remarkable as it is, this result is, however, somewhat unsatisfying from the practical
point of view. Indeed, one is usually interested in describing the motion of the top in
the rest frame, which does not move in the physical space. It is less known that for the
Lagrange top the corresponding equations of motion are also very nice and, actually,
even somewhat simpler than (1.1):

i’h =pxa (1.10)

a=mxa.



150 A. |. Bobenko, Yu. B. Suris

Herem = (m1, m2, m3)T € R3isthe vector of kinetic momentum of the body, expressed
in the rest framep is the unit vector along the gravity field, also expressed in the rest
frame, so that it becomes constant:

p=1(001", (1.11)

anda = (a1, az, az)’ € R3is the vector pointing from the fixed point to the center of
mass, expressed in the rest frame. An exterior observer is mainly interested in the motion
of the symmetry axis of the top, which is described by the vactor

The system (1.10) has several remarkable features. First of all, it does not depend
explicitly on the anisotropy parameterof the inertia tensor. Second, it is Hamiltonian
with respect to the Lie—Poisson bracket(8):

{mi,m;} = —gijpmp, {mj,a;} = —eijrax, {ai,aj}=0. (1.12)

For an arbitrary Hamilton functioi/ (m, a), the Hamiltonian equations of motion in
this bracket read:

m=VyHxm+V,H X a,

a=VyH xa. (1.13)
These equations coincide with (1.10), if
Ho(n,a) = 2 (m,m) + (p, a). (1.14)
Of course, the functions
c={(m,a) and (a,a), (1.15)

are Casimirs of the bracket (1.12), and therefore are integrals of motion for (1.10) in
involution with Hy(m, a) (and with any other function on the phase space). An additional
integral of motion in involution withHy(m, a), assuring the complete integrability of
the system (1.10), is:

m3 = (m, p). (1.16)

In the main text we give a Lagrangian derivation of equations of motion (1.1) and
(1.10) and an explanation of their Hamiltonian nature and integrability. Then we present
a discrete Lagrangian function generating two maps approximating (1.1) and (1.10),
respectively. Most beautiful is the discretization of (1.10):

Mp4l — M = € p X ai,
(1.17)

Ut = Ak = 5 Mit1 X (ar + ag+1)-
It is easy to see that the second equation in (1.17) can be uniquely solved foso
that (1.17) defines a mapu, ay) — (mi4+1, ar+1), approximating, for small, the time
¢ shift along the trajectories of (1.10). This distinguishes the situation from the one in
[MV] where Lagrangian equations led to correspondences rather than to maps. We shall
demonstrate that the map (1.17) is Poisson with respect to the bracket (1.12), so that
the Casimirs (1.15) are integrals of motion. It is also obvious that (1.16) is an integral
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of motion. Most remarkably, this map has another integral of motion — an analog of the
Hamiltonian:

H.(m,a) = %(m, m) + {a, p) + %(a X m, p). (1.18)

The function (1.18) is in involution with (1.16), which renders the map (1.17) completely
integrable. A similar discretization for the equations of motion in the body frame (1.1)
is slightly less elegant.

2. Lagrangian Mechanics onT G (Continuous Time Case)

LetL(g,2) : TG — R be a smooth function on the tangent bundle of the Lie group
G, called theLagrange functionFor an arbitrary functiog(¢) : [0, t1] — G one can
consider theaction functional

n
S =/ L(g(), g())dt. (2.1)
10
A standard argument shows that the functigi9 yielding extrema of this functional
(in the class of variations preserviggr) andg (1)), satisfy with necessity thEuler—
Lagrange equationdn local coordinategg’} on G they read:

d (dL aL
— =) == (2.2)
dt \ ag' og!

The action functionakb is independent of the choice of local coordinates, and thus the
Euler-Lagrange equations are actually coordinate independent as well. For a coordinate—
free description in the language of differential geometry, see [A,MR].

Introducing the quantitie

=Vl e T;G, (2.3)
one defines theegendre transformation
(g,8) eTG— (g, TI) e T*G. (2.4)

If it is invertible, i.e. if ¢ can be expressed throug, 1), then the Legendre transfor-
mation of the Euler—Lagrange equations (2.2) yieldiganiltonian systeron 7*G with
respect to the standard symplectic structurd’éa and with the Hamilton function

(where, of courseg has to be expressed througf, IT)). Finally, we want to men-

tion the Noether construction for deriving the existence of integrals of motion of the
Euler-Lagrange equations from the symmetry groups of the Lagrange function. We
shall formulate the simplest form of Noether’s theorem, where Lagrangian functions are
invariant under the action of one-dimensional groups ¢Letg be a fixed element, and
consider a one-parameter subgroup

GO ={e% : ceR}CG. (2.6)

1 For the notations from the Lie groups theory used in this and subsequent sections see Appendix A.
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Proposition 1. a) Let the Lagrange function be invariant under the actioGé% on
T G induced byleft translations onG:
L(e“g, Loc,8) =L (g, &). 2.7

Then the following function is an integral of motion of the Euler—Lagrange equa-
tions:

(RX(V4L). £) = (RETL ). (2.8)

b) Letthe Lagrange function be invariant under the actioGé6f on 7'G induced by
right translations onG:

L(ge, Roec,8) =L (g, 8). (2.9)

Then the following function is an integral of motion of the Euler—Lagrange equa-
tions:

(LE(VeL). £) = (LETLZ). (2.10)

Proof. Differentiate (2.7) (or (2.9)) with respect tg9 setc = 0, and use the Euler—
Lagrange equationsmo

For a detailed proof of the general version of the Noether theorem see [A,MR].

In practice, itturns out to be more convenient to work not with the tangent ba@r@)e
but with its trivializationsG x g, which is achieved by translating the vecfoe T,G
into the group unit via left or right translations.

2.1. Left trivialization. Consider the trivialization map
(g, eCGxgr (g,8) TG, (2.11)
where
§=Lg2 & Q=L,18 (2.12)

The trivialization (2.11) of the tangent bundi&5 induces the following trivialization
of the cotangent bundi&*G:

(g.M)eGxg'— (g, 1) e T*G, (2.13)
where
N=L .M & M=LL (2.14)
Denote the pull-back of the Lagrange function through
LD (g, ) =L(g. &), (2.15)
so that

LD, Q) : Gx g R.
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We want to find differential equations satisfied by those functigis, 2(¢)) : [ro, 1]
— G x g delivering extrema of the action functional

15
S0 — / "LO(e(t), 2(0))d
1

0

and such that
Q) = Ly14),8(0).

Admissible variations ofg(¢), Q2(¢)) are those preserving the latter equality and the
valuesg (to), g(t1).

Proposition 2. The differential equations for extremals of the functiosi@&! read:

M=adQ -M+d)L®,

(2.16)
§ = Lg« 2,
where?
M =vVgol® e g*. (2.17)
If the Legendre transformation
g, DeCGxgr— (g, M)eGxg* (2.18)

isinvertible, itturng2.16)into a Hamiltonian form orG x g* with the Hamilton function
H(g, M) = (M, Q) - L, @), (2.19)

(where, of coursef2 has to be expressed through, M)); the underlying invariant
Poisson bracket oy x g* is the pull-back of the standard symplectic bracke7oi,
so that for two arbitrary functiongi 2(g, M) : G x g* — R we have:

{f1. f2y = —d g f1. Vu f2) + (d g f2. Vi f1) + (M, [Vu f1, Vu f2]). (2.20)

Proof. The equations of motion (2.16) may be derived by pulling back Egs. (2.2) under
the trivialization map (2.11), but it is somewhat simpler to derive them independently.
To this end, consider the admissible variationggf), 2 (¢)) in the form

g(t,€) = g(e"”, where n() : [to, 1] — g, 7o) = n(t1) =0,
and
Qt,€) = L1048t €) = Ade™ " Q1) + (1) + O(€)
=20 +¢(ii0) + 20, 10]) + 0D,

2 Recall (see Appendix A) that for an arbitrary smooth functjon G — R its right Lie derivatived ’ f
and left Lie derivativelf are functions fronG into g* defined via the formulas

, Vneg.

e=0

d € / d €
df(g).n) = T feMg) @d'f(g).n = — f(geM
€ de

e=0
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So, equating the variation of action to zero, we get:

ds®
0=
de

n
- / ((dg’L”), 7))+ (VoL@ 7 + adQ - n>) dr.
e=0 ‘o

Integrating the term with by parts and taking into accoumtzo) = n(¢1) = 0, we come
to:

11 d
/ (djLD +ad Q- vol® — E(VQL@), n)dt = 0.
I

0

Due to arbitrariness of(¢) the following equation holds:
d ) ) N0
E(VQL y=ad" Q- VgL —i—dgL .

It remains to notice that/ defined by (2.14), (2.3), i.eM = L3V;L, coincides
with (2.17), as it follows from (2.12).0

Remark 1.In the case wheh (g, g) is left G-invariant, i.eL ¥) (g, Q) does not actually

depend org, the first equation in the system (2.16) becomes the standard (left) Lie—

Poisson equatiod = ad* Q - M, see e.g. [MR].

Remark 2.Variations of the angular velocity of the forin+ [€2, n] used in the above
proof, are standard in the theory of Euler—Poincaré equations, cf. [MS,MRW,HMR].

We now observe what Noether’'s theorem (more exactly, its version in Proposition

2.1) yields under left trivialization.

Proposition 3. a) Let the Lagrange functioh ® (g, Q) be invariant under the action
of G onG x g induced byleft translations onG:

LOe“g, @) =LD(g, Q. (2.21)

Then the following function is an integral of motion of the Euler—Lagrange equations:

(Ad* g™t Vol ®, ) = (M, Ad g™t - ¢). (2.22)

b) Letthe Lagrange functiob® (g, Q) be invariant under the action @) onG x g
induced byright translations onG:

LO(get, Ade ¢ - Q) =LV (g, Q). (2.23)

Then the following functionis an integral of motion of the Euler-Lagrange equations:

(VoL D ¢y = (M, ¢). (2.24)
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We finish this subsection by discussing the reduction procedure relevant for later
applications. Let us assume that there holds a condition somewhat stronger than (2.21),
namely, that the functioh ©) is left invariant under the action of a subgroup somewhat
larger thanG¢). Fix an element e g, and consider the isotropy subgroG! of ¢
with respect to the adjoint action 6f, i.e.

Gll=(h: Adh-t =7} CG. (2.25)

Obviously, G0 ¢ G4, Suppose that the Lagrange functibf (g, Q) is invariant
under the action o611 on G x g induced byleft translations orG:

LOhg, ) =LD(g, @), hecll (2.26)

We want to reduce the Euler—Lagrange equations with respect to this action. As a section
(G x g)/G¥] we choose the sgj; x g, whereg;, is the orbit of¢ under the adjoint
action ofG:

g;=1{Adg-¢, g€ G} Cag. (2.27)
We define the reduced Lagrange functiof : gr xg— Ras
O, ) =LV Q), where P=Adg ! ¢. (2.28)
This definition is correct, because from
P:Adgl_l-g‘:Adg2_1~§
there follows Adgog; ™ - ¢ = ¢, SO thatgag; * € GI¢1, andL® (g1, Q) = L@ (go, Q).

Proposition 4. Consider the reductiotg, ) — (P, ). The reduced Euler-Lagrange
equations(2.16)read:

M=adQ -M+ad P -VpL®,

b _(p.ql (2.29)
where
M =vVorL® e g*. (2.30)
If the Legendre transformation
(P, eg; xgr> (P.M)eg; xg" (2.31)

is invertible, it turns(2.29)into a Hamiltonian system og; x g*, with the Hamilton
function

HP,M)= (M, Q) —LDP,Q), (2.32)

where2 has to be expressed through, M); the underlying invariant Poisson structure
ong; x g* is given by the following formula:

{(F1, F2} = —(VpF1, [P,V F2]) +(VpFo, [P, VyF1]) + (M, [Vy F1, Vy F2])
(2.33)
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for two arbitrary functionsF1 2(P, M) : g; x g* — R. (This formula indeed defines a
Poisson bracket on all o x g*).

In addition to the integral of motio(2.32) the equations of motio(2.29) always
have the following integral of motion:

C=(M,P). (2.34)
This function is a Casimir of the brackéz.33)
Proof. The proof is a consequence of the following formulas:
d;LO =ad P-VpL?, Vol D =vorL®,

which are easy to derive from the definitions, and similar formulas connecting the Lie
derivatives off1 2 with the gradients ofy 2. O

2.2. Right trivialization. All constructions in this subsection are absolutely parallel to
those of the previous one, therefore we restrict ourselves to the formulation and omit all
proofs.

Consider the trivialization map

(g, ) eGxgr (g,8) €TQG, (2.35)
where
§=Rpwo & o=R,;1,8. (2.36)

This trivialization of the tangent bundIBG induces the following trivialization of the
cotangent bundl&*G:

(g.m) e Gxg*r— (g, 1) € T*G, (2.37)
where
M= R;,lm & m=R;Il. (2.38)
The pull-back of the Lagrange function is denoted through

L (g, w) = L(g, 8). (2.39)

Proposition 5. The differential equations for the extremals of the functional

1
G / L0 (g0, o)t
1

0

read:

L . 0]
{m ad*w-m+d,L\", (2.40)

g= Rg*a),
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where
m=V,L" e g*. (2.41)
If the Legendre transformation
(g, w)eGxgr> (g.m)eGxg* (2.42)
isinvertible, it turng2.40)into a Hamiltonian form orG; x g* with the Hamilton function
H(g.m) = {m,») =L (g, w), (2.43)

wherew has to be expressed through, m); the underlying invariant Poisson bracket
onG x g* is the pull-back of the standard symplectic bracket’di@, so that for two
arbitrary functionsfi 2(g, m) : G x g* — R we have:

{1, fa} = —=(dg f1, Vin f2) + (dg f2, Vin 1) — (m, [Viu f1, Vi f2]). (2.44)

Remark 3.In the case wheh (g, ¢) is right G-invariant, i.eL ) (g, ») does not depend
on g, the first equation in the system (2.40) becomes the standard (right) Lie—Poisson
equationn = —ad* w - m.

A version of Noether’s theorem takes the following form:

Proposition 6. a) Let the Lagrange functioh (g, ) be invariant under the action
of G® on G x g induced byleft translations onG:

LW (e g, Ad e - w) = L (g, w). (2.45)

Then the following function is an integral of motion of the Euler-Lagrange equations:
(VoL ®,8) = (m, ). (2.46)
b) Letthe Lagrange functiob™ (g, ) be invariant under the action @) onG x g

induced byright translations onG:

L™ (ge, w) = L7 (g, w). (2.47)

Then the following functionis an integral of motion of the Euler-Lagrange equations:
(Ad* g - VoL ¢y = (m,Adg-¢). (2.48)

Turning to the reduction procedure, suppose that the Lagrange fuhétigg, w) is
invariant under the action @!¢1 on G x g induced byright translations orG:

L (gh, w) =L (g, w), he GY (2.49)
We define the reduced Lagrange functiof? : g, x g — R as

L7, w) =L (g, w), where a=Adg- <. (2.50)
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Proposition 7. Consider the reductiofg, w) — (a, w). The reduced Euler-Lagrange
equations(2.40)read:

m=—-ad"w-m—ad‘a-V,L",

i = [o.ql. (2.51)
where
m=V,L" e g*. (2.52)
If the Legendre transformation
(a,w) € gr x g+ (a,m) € gr x g* (2.53)

is invertible, it turns(2.51)into a Hamiltonian system og, x g*, with the Hamilton
function

H(a,m) = (m,w) — L (a, w), (2.54)

wherew has to be expressed throu@gh m); the underlying invariant Poisson structure
ong, x g* is given by the following formula:

{F1, F2} = (Vo F1, [a, Vi F2l) — (VaF2, [a, Vi F1]) — (m, [Viu F1, Vin F2])  (2.55)

for two arbitrary functionsFy >(a, m) : g x g* — R. (This formula indeed defines a
Poisson bracket on all of x g*.)

In addition to the integral of motio(2.54) the equations of motio(2.51) always
have the following integral of motion:

c={(m,a). (2.56)
This function is a Casimir of the brackg.55)
Notice that the brackets (2.33) and (2.55) essentially coincide (differ only by a sign).

Remark 4.For future reference notice that the elemeftso € g andM, m € g* are
related via the formulas

Q=Adg™! o, (2.57)
M =Ad*g - -m. (2.58)

3. Lagrangian Mechanics onG x G (Discrete Time Case)

We now turn to the discrete time analog of the previous constructions, introduced in [V,
MV]. Our presentation is an adaptation of the Moser—\Veselov construction for the case
when the basic manifold is a Lie group. We shall see that almost all constructions of the
previous section have their discrete time analogs. The only exception is the existence of
the “energy” integral (2.5).

LetL(g,g) : G x G be a smooth function, called the (discrete tirhe@grange
function For an arbitrary sequenég;, € G, k = ko, ko + 1, ... , k1} one can consider
theaction functional

k1—1

S= > L 8kt1)- (3.1)
k=ko
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Obviously, the sequencedg;} delivering extrema of this functional (in the class of
variations preservingy, andgy, ), satisfy with necessity thdiscrete Euler—Lagrange
equations

V1L (gk. 8k+1) + V2L(gk—1, gk) = 0. (3.2)

HereVilL(g, 2) (V2L(g, g)) denotes the gradient df(g, g) with respect to the first
argument (resp. the second arguméjt Recall (see Appendix A) that for an arbitrary
smooth functionf : G — R its gradient is defined a¥ f(g) = R;,l df(g) =
L* ,d’f(g). So, in our case, whe6 is a Lie group and not just a general smooth
manifold, Eq. (3.2) is written in a coordinate free form, using the intrinsic notions of the
Lie theory. An invariant formulation of the Euler—Lagrange equations in the continuous
time case is more sophisticated, see, e.g., [MR]. (Notice that (2.2) are written in local
coordinates.) This fact seems to underline the fundamental character of discrete Euler—
Lagrange equations.

Equation (3.2) is an implicit equation fgr.+1. In general, it has more than one
solution, and therefore defines a correspondence (multi-valued (pap), gx) —
(gr, gr+1)- To discuss symplectic properties of this correspondence, one defines:

My = Vall(gk-1, 8k) € T, G. (3.3)

Then (3.2) may be rewritten as the following system:

My = —Vil(gk, gk+1),

3.4
My11 = Vall(gk, gk+1)- (3-4)

This system defines a (multivalued) m@q, ;) — (gk+1, [x+1) of T*G into itself.
More precisely, the first equation in (3.4) is an implicit equationgdgpr1, while the
second one allows for the explicit and unique calculatiorilgf 1, knowing g; and
gk+1- As demonstrated in [V,MV], this map*G — T*G is symplectic with respect
to the standard symplectic structure BhG.

For discrete Euler-Lagrange equations there holds an analog of Noether’s theorem.
Again, we give only the simplest version thereof.

Proposition 8. a) Let the Lagrange function be invariant under the actiorGéf) on
G x G induced byeft translations onG:

L(e“g, e“2) = L(g, ). (3.5)

Then the following function is an integral of motion of the discrete Euler—Lagrange
equations:

(dolL(gk-1, 8k) ¢) = (R Tk, ¢). (3.6)
b) Let the Lagrange function be invariant under the actiorGéf on G x G induced
by right translations onG:

L(ge, ge®) =1L(g, ). (3.7)
Then the following function is an integral of motion of the Euler—Lagrange equations:

(—d1L(gk, gk+1), ¢) = (Lg, Tk, ¢). (3.8)
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Proof. Since both statements are proved similarly, we restrict ourselves to proof of the
firstone. To this end differentiate (3.5) with respect md set = 0. Writing (g«, gr+1)

for (g, ), we get:
(d1L(gk, 8k+1), ¢) + (d2L(gk, gk+1), &) = 0.
But the discrete Euler—Lagrange equations imply that
d1L(gk. gk+1) = —d2L(gk—1. 8k)-
Hence
(d2L(gk gr+1): ¢) = (d2LL(gk—1. k), ¢),
and the statement is provedi

Notice that the expressions of the Noether integrals in terng, dl) areexactlythe
same as in the continuous time case.

3.1. Left trivialization. Actually, the tangent bundlEG does not appear in the discrete
time context at all. We shall see that the analogs of the “angular velociies’ live
not in T, G but in G itself. On the contrary, the cotangent bundi&G still plays an
important role in the discrete time theory, and it is still convenient to trivialize it. This
subsection is devoted to the constructions related to the left trivialization.

Consider the map

(8k» Wk) € G x G+ (g, 8k+1) € G x G, (3.9)
where
g1 =aWe & Wi=g g1 (3.10)

The group elemen; is an analog of the left angular velocify from (2.12). In the
continuous limitW;, lies in a neighborhood of the group uniéy more precisely, it
approximateg<,

Consider also the left trivialization of the cotangent buritife;:

8k My) € G x g" — (g, ITx) € T*G, (3.11)
where

My =L"_ M, & M= sz ITg. (3.12)
8k
Denote the pull-back of the Lagrange function under (3.9) through

L (gk, Wi) = L(gk. gk+1)- (3.13)

We want to find difference equations satisfied by the sequdkigesWi) , k = ko, .. . ,
k1 — 1} delivering extrema of the action functional
ki—1

sO =" LO (g, W),
ko

and satisfyingVy = gk_lgk_;,_]_. Admissible variations of(gx, Wi)} are those preserving
the values ofy, andgy, = gr—1 Wi, —1.
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Proposition 9. The difference equations for extremals of the functigitalread:

Ad* Wt M1 = My + d [LO (i, W),

8k+1 = 8k Wk, (3.14)
where
My = dj LV (gr_1, Wi_1) € g*. (3.15)
If the “Legendre transformation”
(8k-1. Wi—1) € G x G — (gk, My) € G x g, (3.16)

whereg, = gr—1Wi_1, is invertible, then(3.14) defines a maggy, My) — (gr+1,
M;y.+1) which is symplectic with respect to the Poisson bra¢Ret0)on G x g*.

Proof. The simplest way to derive (3.14) is to pull back Egs. (3.2) under the map (3.9).
To do this, first rewrite (3.2) as

d1IL(gk, gk+1) + dyl(gr-1. gk) = 0. (3.17)

We have to express these Lie derivatives in term&ofV). The answer is this:
djL(gk-1, gr) = d iy L (g1, Wi—1). (3.18)
d {18k, ger1) = d JLO (g, Wio) — dwlL? (gk, Wi). (3.19)

Indeed, let us prove, for example, the (less obvious) (3.19). We have:
’ d €n d @) €n ,—€n
(d1L(gk, 8k+1), ) = —— L(gre"", gk+1) = — LV (gke, e "Wy)
de e=0 de e=0

= (d ;L (g, Wa), m) — (dwL® (g, Wi), m).
It remains to substitute (3.18), (3.19) into (3.17). Taking into account that
dwL® (g, W) = Ad* Wt d [LO (g, W)

we find (3.14). Finally, notice that the notation (3.15) is consistent with the defini-
tions (3.3), (3.12). Indeed, from these definitions it followf; = d;L(gx—1., gx), and
the reference to (3.18) finishes the proaf.

We now observe what the discrete time version of the Noether theorem from Propo-
sition 3.1 yields under left trivialization.

Proposition 10. a) Let the Lagrange functioh® (g, W) be invariant under the action
of G® on G x g induced byleft translations onG:

LD g, W) =L (g, w). (3.20)
Then the following function is an integral of motion of the Euler—Lagrange equations:

(Ad* gt - d iy LD (gr—1, Wie1), ) = (M, Ad g - ). (3.21)
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b) Letthe Lagrange functioh” (g, W) be invariant under the action @®) onG x G
induced byright translations onG:

LO(get, e we) =LD (g, W). (3.22)
Then the following function is an integral of motion of the Euler—Lagrange equations:
(d L (gk-1. W—1). ¢) = (My. 7). (3.23)

We discuss now the reduction procedure. Assume that the furictiois invariant
under the action of;'¢) on G x G induced byleft translations orG:

LO g, w)y=LO(g, W), heG¥l. (3.24)
Define the reduced Lagrange functiaf) : g, x G > R as

ADP, W)y =L, W), where P=Adg™' ¢. (3.25)

Proposition 11. Consider the reductiorig, W) +— (P, W). The reduced Euler-La-
grange equationq3.14)read:

Ad* Wt M1 = My +ad* P - Ve AD (P, W),

Pi=AdW Py, (3:26)
where
My =d iy AV (P_1, Wi_1) € g*. (3.27)
If the “Legendre transformation”
(Pi-1. Wi—1) € 8¢ X G > (Pr, Mi) € g¢ x g7, (3.28)

where P, = Ad W,:_ll - Pr_1, is invertible, then(3.26) define a map(Py, My) +—
(Px+1, Mi41) of g x g* which is Poisson with respect to the Poisson bra¢Red3)
The equations of motiof8.26)always have the following integral of motion:

C = (My, Pr), (3.29)

which is a Casimir function of the brackét.33)
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3.2. Right trivialization. Consider the map
8k, wk) € G X G > (8k, 8k+1) € G x G, (3.30)
where
Shil= WGk © Wk = G118 - (3.31)
Consider also the right trivialization of the cotangent buridié;:
(gr,mip) € G x g* — (g, ) € T*G, (3.32)
where
Iy = Rzk_lmk & mp = R;‘k . (3.33)
Denote the pull-back of the Lagrange function under (3.30) through

LY (gk, wi) = L(gk, 8k+1)- (3.39)

Proposition 12. The difference equations for extremals of the functional

k1—1
SO =" L (gr. wr),
ko
read:
Ad* wy, - = L®
{ d* wy - myy1 = myp + do LY (gk, wy), (3.35)
8k+1 = Wk &k,
where
mi = dy L (gx—1, wi—1) € g*. (3.36)
If the “Legendre transformation”
(gk—1, wx—1) € G x G (gk,my) € G x g*, (3.37)

whereg, = wi_1gx—1, iS invertible, ther{3.35)define a magy, my) — (gr+1, Mirr1)
which is symplectic with respect to the Poisson bra¢Ret4)on G x g*.

Proof. This time the discrete Euler—Lagrange equations (3.2) are rewritten as

d1lL(gk, gk+1) + d2lL(gk—1, gk) = O, (3.38)
and the expressions for these Lie derivatives in term{g ofv) read:
d2L(gk—1. g) = dwL" (gr—1. wk—1), (3.39)
d1L(gk, gk+1) = dg L") (gk, wi) — d ) L (gk, wi)
= d L (gk, wi) — Ad* wy - di L (g, wi). (3.40)

The expression (3.36) is consistent with the definitions (3.3), (3.33), which imply that

my = dolL(gr—1, gx), and a reference to (3.39) finishes the prodaf.
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Proposition 13. a) Let the Lagrange functioh”) (g, w) be invariant under the action
of G® on G x G induced byleft translations onG:

LM (e g, eCwe™%) =L (g, w). (3.41)

Then the following function is an integral of motion of the Euler—Lagrange equations:
(dw L") (g1, wi-1), £) = (m, £). (3.42)
b) Letthe Lagrange functioh (g, w) be invariant under the action @ onG x g

induced byright translations onG:

L") (ge, w) =L (g, w). (3.43)

Then the following function is an integral of motion of the Euler-Lagrange equations:
(Ad* gi - dyy L") (gk—1, wik—1), ¢) = (my, Ad gk - ¢). (3.44)

Finally, we turn to the reduction procedure. Assume that the fun&titris invariant
under the action 06! on G x G induced byright translations orG:

LY (gh, w) =L" (g, w), he GY. (3.45)
Define the reduced Lagrange functia®” : g, x G — R as

A (a, w)y =L" (g, w), where a =Adg-¢. (3.46)

Proposition 14. Consider the reductior{g, w) — (a, w). The reduced Euler-La-
grange equationq3.35)read:

Ad* wi - myy1 = my — adt ag - Vo A (ax, wy),

ar+1 = Ad wy - ax, (3.47)
where
mi = dy A" (a1, wg—1) € g*. (3.48)
If the “Legendre transformation”
(ak—1, wi—-1) € §¢ X G > (ak, mg) € gr X @, (3.49)

wherea, = Adw_1 - ar—1, is invertible, then(3.47) define a map(ay, my) +—
(ar+1, me41) Of g x g* which is Poisson with respect to the brack265)
The equations of motiof8.47)always have the following integral of motion:

c={mg,ag), (3.50)
which is a Casimir of the brack¢2.55)

A table summarizing the unreduced and reduced Lagrangian equations of motion,
both in the continuous and discrete time formulations, is put in Appendix B.
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4. Lagrangian Formulation of the Lagrange Top

From now on we always work with the group = SU(2), so thatg = su(2), see
Appendix C for necessary background. In particular, we identify vectors Rémith
matrices fromg, and do not distinguish between the vector producRihand the
commutator ing. We write the adjoint group action as a matrix conjugation, and the
operatord g, R as leftand right matrix multiplication by~1, in accordance with (C.4)
and (C.10).

The following table summarizes the integrals of motion and the reductions following
from the symmetries of Lagrange functions, in the terminology of the rigid body motion.

Left symmetry Right symmetry
gr>ePg g > gefh
(rotation aboup , (rotation about ,

the gravity field axis)  the body symmetry axis

Left trivialization

(¢. M) (¢. M =g 1) | (M.P), P=g 1pg (M, A)
(body frame)
Right trivialization
(. T) > (g.m =Tig™ 1 (m. p) (m.a), a=gAg!
(rest frame)

4.1. Body frame formulationFor an arbitrary Lagrangian system @i, whose La-
grange function may be written as

L(g, &) =LY (P, @),
whereQ = ¢~15, P = ¢~ 1pg, the Euler-Lagrange equations of motion take the form

M =[M,Ql+[VpL®, P]

P—[P.Ql (4.1)

whereM = Vo £®. Such systems are characterized by the condition of invariance of
L (g, ¢) under the action of;?) on T G induced by left translations of, i.e.

L(ePg,ePg) =L(g, 8.

The geometrical meaning of this action is the rotation argurdhe symmetry axis of
the gravitation field. Consider the Lagrange function of the general top:

LOp, Q) = % (I, Q) — (P, A), (4.2)

whereJ : g — g is alinear operator, and € g is a constant vector. We calculate:

M=volD =y, VpL?h =_A,
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so that (4.1) takes the form

M =[M,Q]+[P, Al
P =[P, Q] (4.3)

where
M=JQ, (4.4)

which is identical with (1.1). According to Proposition 2.4, this system is Hamiltonian
with respect to the bracket (2.33), which in our case has the coordinate representa-
tion (1.4).

The Lagrange top is distinguished by the relations (1.8). They may be represented in
the following, slightly more invariant fashion:

M=JQ=Q—(1—a)Q, AA, (4.5)

i.e. J acts as multiplication bw in the direction of the vectoA, and as the identity
operator in the two orthogonal directions. This allows us to rewrite (4.2) as
l-«

L(g, &) =LDP, Q) = % Q, Q) — — (£, A)2 — (P, A). (4.6)

In this case the equations of motion (4.3) clearly imply that the following function is an
integral of motion:

C=(M,A).
This assures the complete integrability of the Lagrange top.

Remark 5.1t is easy to see that (4.5) impligd/, A) = «(2, A), which allows us to
invert (4.5) immediately:

1-—
Q=M+-—% (M, A)A. 4.7)
o
For futher reference, we rewrite this as
1 1-—
Q="M+ %A, 14, ML (4.8)
o

This, in turn, allows us to reconstruct the motion of the frag¥® through the motion
of the reduced variable¥ (), P(¢) (actually only throughV/ (¢)). To this end one has
to solve the linear differential equation

§=38K.

Remark 6.As almost all known integrable systems, the Lagrange top has a Lax repre-
sentation [RSTS,Au], the original references are [AM,R,RM]. It is straightforward to
check the following Lax representation for (4.3), (4.5) with the matrices from the loop
algebrasu(2)[A]:

LV =[LO), UM, (4.9)
where

L) =AA+2M+ P, UQR) =2rA+ 9. (4.10)
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4.2. Restframe formulationith the formula (4.6), we can clearly rewrite the Lagrange
function only in terms ofv = gg~1,a = gAg™*:
1 1-
L(g. &) =L@ 0) = 5 (@.0) = = @.a? = (p.a).  (411)

The possibility to represeht(g, ¢) throughw, a is equivalent to the invariance big, ¢)
under the action oY) on T'G induced by right translations a@:

L(ge, ge) =L(g, 8).

The geometrical meaning of this action is the rotation arairdthe symmetry axis of
the top. The Euler—Lagrange equations of motion for such Lagrange functions read:

. )
{71 [, m] + [a, VLD, 4.12)
a=|w,al,
wherem = V,,£"). We calculate for the Lagrange function (4.11):
m=VyL" =w—(1-a)w,a)a, (4.13)
Vo L") = —(1— a){w, a)w — p.
Putting this into (4.12), we find:
™= [p,a] (4.14)
a =[m,al]

which is identical with (1.10). According to Proposition 2.7, this system is Hamiltonian
with respectto the bracket (2.55), whose coordinate representation coincides with (1.12).

Remark 7.1t follows from (4.13) that(m, a) = «(w, a), so that (4.13) can be easily
inverted:
l-«o
o

w=m+ (m,a)a. (4.15)

Recall thatc = (m, a) is a Casimir function of the underlying invariant Poisson bracket
(1.12). Now the latter formula allows us to reconstruct the frame evolution from the
evolution of the reduced variablés, a) viaintegration of the linear differential equation

g =wg.

Remark 8.t turns out to be possible to derive from (4.14) a closed second order differ-
ential equation for. Indeed, take the vector product of the second equation in (1.10) in
order to obtain

m=axa+ca. (4.16)
Substituting this into the first equation in (1.10), we find:

axd+ca=pxa. (4.17)
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Remark 9.The Lax representations for (4.14) is, of course, gauge equivalent to the one
for the body frame formulation, but is slightly simpler than the latter [R,RSTS]. It reads:

) = [E), u)], (4.18)
with the matrices
() =A2a+rm+p, u(h) = Aa. (4.19)

In Sect. 6 we indicate how this Lax representation can be derived from the zero curvature
representation of the so-called Heisenberg magnetic.

5. Discrete Time Lagrange Top

We now give (in arad hocmanner) the discrete Lagrange function which is claimed to
lead to a suitable discretization of the Lagrange top. The motivation for the choice of
this function comes from the geometry of curves and will be given in the next section.
Unlike the continuous time case, we start with the rest frame formulation.

5.1. Rest frame formulationConsider

L(gk, ge+1) = A (ax, wr)

4o 21— )
=——logtr(wy) — ———=
3 &

log (1 + {ag, wkakwk_l>> —&(p, ak),
(5.1)
wherea, wy are defined as in Sect. 3.2y = git18; 1, ax = grAg; . Notice that

{ak, wkakwk_l) in (5.1) is nothing butag, ax+1). To see that the function (5.1) indeed
gives a proper discretization of (4.11), we shall need the following simple lemma.

Lemmal. Letw(e) = 1+ sw + O(c?) € SU(2) be a smooth curvey € su(2). Then
2

tr(w(e)) = 2 — ‘% (@, ) + O(3). (5.2)
For an arbitarya € su(2):
2
(a, w(e)aw () = (a.a) — E((CI, a)(w, ) — {a, w>2) + 0(£3). (5.3)
Proof. Letw = 1+ cw + £%v + 0(¢3). Then fromww* = 1 we get:
1
v+ f oot =0 = vziwz—i—vl, v1 € su(2). (5.4)

Hence
() = 2tr(@?) = — > (@, )
V) = 5 w”) = i w, W),
which proves (5.2). Similarly, we derive from (5.4):
2
waw* = a + elw, al + % [0, [w, al] 4 €2[v1, al + O(€),

which implies (5.3). O
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With the help of this lemma we immediately see thatyi= 1 + sw + O(2), then,
up to an additive constant,

AP (a, w) = LD (a, w) + O(c?),
where£") (a, w) is the Lagrange function (4.11) of the Lagrange top.

Theorem 1. The Euler-Lagrange equations of motion for the Lagrange fun¢tah)
are equivalent to the following system:

mis+1 = my + e[p, arl,

e (5.5)
Ak+1 = ag + > [mi+1, ak + ar+1l.
The second equation of motion can be uniquely solved;for:
ar+1 = (L+ emyyDag(L+ emyyn)h (5.6)

The mapmy, ay) — (mr41, ax+1) is Poisson with respect to the brack&t12)and has
two integrals in involution assuring its complete integrabilityz, p) and

1
Hy(m. a) = = (m,m) + (a. p) + gqa,m],p). (5.7)

Proof. According to Proposition 3.7, the Euler-Lagrange equations of motion have the
form:

wlc_lmk+lwk = my + [ak, Va A" (ak, wi)],

_ -1 (5.8)
p+1 = Wragwy, -,
where

mis1 = dy A7 (ag, wy). (5.9)

To calculate the derivatives &, we use the following formulas:

1 ~ -1

dytr(wg) = ~3 S(wi),  dwlak, wragwy ™) = [ags1, akl. (5.10)
Valay, wkakwk_l) = a1+ wk_lakwk. (5.11)

Indeed, the first one of these expressions follows from:

d 1
(dwtr(wi), n) = atf(ee"wk) = Wlwe) = w0Iwi)) = —(S(wi), ).

e=0

To prove the second one, proceed similarly:

(dular, wrarwi Yy, n) = — (ak, eMwagw te™M)
de =0

= (ak, [1, axs1]) = (lak+1, akl, n).
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Finally, as for the third expression, we have:

_ d _
(Valak, wrarwy, g = a(ak +en, wrlax + en)w, Y

e=0
= (aj+1 + wk_lakwk, n-
With the help of (5.10), (5.11) we find the following expressions:

——— 20 S(wp) 21 —0)  [agq1, al
+ e tr(wg) e 1+ (ak, ag+1)’

(5.12)

and

w tmpprwe — lag, Va A (@, wi)] =

_ 20 S(wp)  2(A—0)  [ags1, ak]

Pl = ,rl. (513
e tr(wy) P 1+ (ak, axt1) + elag, pl =my41 + elak, pl. ( )

Comparing the latter formula with the first equation of motion in (5.8), we find that it
can be rewritten as

miy1 + elag, pl = my,

which is equivalent to the first equation of motion in (5.5).
To derive the second one, rewrite the second equation in (5.8) as

0 = agyawk — wrag = R(we) (ar+1 — ax) + a1 (wy) — S(wr)ag

1 1
= Etr(wk)(akJrl —ay) + E[ak+l + ag, S(wg)]

(we used Lemma C.3 and the equality,+1, I(wy)) = {(ax , S(wg)) which follows
from the same equatiom, 1wry = wrax We started with). So, the second equation
in (5.8) is equivalent to

S(wg)

ajy1 — ax = [m s agr1+ ak] . (5.14)

On the other hand, for any two unit vectess ay+1 With axy1 + ax # 0 we have:

[aks1, ar]

—— a +ai|. 5.15
14+ (ax, agy1) e k} (-13)

Q41 — A = — [
Comparing (5.14), (5.15) with (5.12), we find the second equation of motion in (5.5).
Next, we want to show how the second equation of motion in (5.5) can be solved for
ax+1. This equation implie$ay11, mg+1) = {ar, mr+1), SO that, according to Lemma
C.3, it can be rewritten as

ak+1 + €ap41Mi+1 = ag + emgy1di,

which is clearly equivalent to (5.6).
The Poisson properties of the map (5.5) are assured by Proposition 3.7.
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It remains to demonstrate that the function (5.7) is indeed an integral of motion. This
is done by the following derivation:

&

He(myy1, ap+1) = (M1, miy1) + (ag+1 + > laxy1, meyal, p)

&
(mpg1, meg1) + (ag — > lak, miyal, p)

(mpy1, mey1 — elp, al) + {a, p)

NIFENIFRPNIFPN -

(my + elp, arl, mg) + {ar, p) = He(mg, ax).

The theorem is provedO

Remark 10.The equations of motion (5.5), being written entirely in terms of elements
of the Lie algebrau(2), are clearly equivalent to the equations of motion (1.17), which
are written in terms of vectors fro®. The situation with (5.6) is slightly different.
Indeed, it corresponds to the following formulaid:

1+ Emk+1/2 a
I—emg/2°
where the orthogonal matri®;+1 € SO(3) is constructed out of the skew—symmetric

matrix mg4+1 € so(3) which corresponds to the vecter;1 € RR3 according to the
following rule:

a1 = Or11ak =

0 —m3 mo
m = (m1, mo, mg)T eR® & m= m3 0 —my | €s0(3).
—-mp mp O

Just as in the continuous time case, it is possible to derive a closed second order
difference equation for the motion of the body axjs

Proposition 15. The sequence af, satisfies the following equation:
< 2ay41 2ar-1 )
ar X +
1+ {ak, ak+1) 1+ (ax-1, ax)
e < ak+1 + ai ak + ag—1 ) —2pxay (5.16)

1+ {ax, ag1) 1+ (a1, ax)
wherec = (my, a) is an integral of motion.

Proof. Take a vector product of the second equation of motion in (1.17a).by + ax.
Taking into account thaing.1, ax+1) = (mg+1, ax) = ¢, we find:

2a; % ary1 = emp1(L+ (ak, ary1)) — ecary1 + ar),
or
2 ap Xapq ax4+1 + ax
mg4+1 = —
& 1+ {a, ar+1) 1+ (ak, ary1)

Plugging this into the first equation of motion in (1.17), we arrive at (5.16).

. (5.17)



172 A. |. Bobenko, Yu. B. Suris

Further, we demonstrate how to reconstruct the “angular velogity(and therefore
the motion of the framg;) from the evolution of the reduced variables, my).

Proposition 16. The discrete time evolution of the fragyecan be determined from the
linear difference equation

8k+1 = Wk &k, (5.18)
wherewy are given by
tr(w
wi = (2")(1+egk), (5.19)
where
= m +cl—04 ag+1 + ax 2 ap X ags1 C  Qpy1+ag
k= Mi4+1 = - — ;
" 1+ (ak, ak+1) & 1+ (ak, ak+1) @ 1+ {ax, ak+1)
(5.20)

and

1

_ | +<ak,ak+1>. (5.21)
c 1+ e2¢2 /402

1+Z(Eka§k>

tr(wg) =

},

Proof. We combine (5.12) with (5.17) in order to derive the formula

S(wp)
tr(we)

2333

with the expressions fag; given in (5.20). Now the reference to Lemma C.2 finishes
the proof. O

Finally, we give a Lax representation for the map (5.5).
Theorem 2. The map5.5) has the following Lax representation:
Gp1 () = u WG Wur (), (5.22)

with the matrices
2

& I
Lr(A) = A2 (ak + > lax, mi] + 7 p) + Amg + p, up(A) =14 ehag. (5.23)

Proof. A direct verification. O

In the next section we present a derivation of this Lax representation from the one
for the so-called lattice Heisenberg magnetic.
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5.2. Moving frame formulationNote that the discrete Lagrange function (5.1) may be
also expressed in terms &f = gk’lpgk, Wi = g,jlng:

L(gk, gk+1) = AV (Pe, W)

- % log tr(Wy) — @ log (1+ (A, W,;lAWk)) —e(P, A).

(5.24)
SinceWy = 14 £Q + 0(¢?), we can apply Lemma 5.1 to see that
AD P, W) = LD (P, Q) + 0(e?),

where£® (P, Q) is the Lagrange function (4.6) of the continuous time Lagrange top.
Now, one can derive all results concerning the discrete time Lagrange top in the body
frame from the ones in the rest frame by performing the change of frames so that

My = gk_lmkgk, P, = gk_lpgk, A= gk_lakgk-

Theorem 3. The Euler-Lagrange equations for the Lagrange funct®@4)are equiv-
alent to the following system:

-1
{Mk+l =W, (Mk + el Py, A])Wk’ (5.25)

Peir = W Py,

where the “angular velocity"W; is determined by the “angular momentumf;_ via
the following formula and Lemma C.2:

2l—a) A QoM T AQ+ M) |

IWy) e
== M1+
r(We) e o 1+<A, (1+8Mk+1)—1A(1+€Mk+1)>
1 l1-«
=¢ (; M1+ Y [A, [A, Mk+1]]> + 0(e?). (5.26)

The map(5.25), (5.26)s Poisson with respect to the Poisson bradidet) and has two
integrals in involution assuring its complete integrabilityZ, A) and

He(M, P) = %<M, M)+ (P, A)+ S (M. P1, A). (5.27)

Remark 11.1t might be preferable to expre$8, through(My, Px) rather than through
M1 (in particular, this is necessary in order to demonstrate that the(MgpPy) —
(My41, Pr+1) is well defined). The corresponding expression reads:

IW, 2(1— A, WeAW, L
22 _ £ gy oy, ap - 222 A WA T
1+ (A, WeAW, Y

A (5.28)

WiAW = (L+ eMy + e[ P, AD) A (L + e My + e[ P, AD L. (5.29)
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We see that the resulting formula is similar to (5.26), but its right-hand side depends not
only onM; but also onP; (though this latter dependence appears onl9 {s2) terms).
According to Lemma C.2, both versions allow for the reconstruction of the evolution of
the frameg; from the evolution of the reduced variablgdy, P;), anyway.

We close this section with a Lax representation for the map (5.25), (5.26).

Theorem 4. The map5.25), (5.26has the following Lax representation:
Liya(®) = U 00 Le(W Uk (), (5.30)

with the matrices

2
€ €
Li(A) = 22 (A + > [A, Mi]+ 7 Pk) +AMi + P, Ur(L) = (14 erA)W.

(5.31)

Proof. A direct verification. O

6. Motivation: Lagrange Top and Elastic Curves

The Lagrange function (5.1) was found using an analogy between the Lagrange top and
the elastic curves as a heuristic tool. The present section is devoted to an exposition of
the corresponding interrelations.

Lety : [0,{] — R3 be a smooth curve parametrized by the arclength [0, /].
Defining the tangent vectdr : [0, /] — R3asT (x) = y'(x), the characteristic property
of the arclength parametrization may be expressed as

IT(x)| =1, (6.1)
where| - | stands for the euclidean norm. Tbhervatureof the curvey is defined as

k(x) = T"(0)l. (6.2)

Definition 1 ([L,LS]). A classical elastic curvéBernoulli's elastica) is a curve deliv-
ering an extremum to the functional

I
/ k?(x)dx, (6.3)
0
the admissible variations of the curve are those preseryiiyandy (/), more precisely,
those preserving (1) — y(0) = fé T (x)dx.

Introducing the Lagrange multiplieys € R® corresponding to this constraint, we come
to the functional

[
/o <|T/(x)|2 —2(p, T(x)))dx. (6.4)

Identifying the arclength parametewith the timer, this functional becomes (twice) the
action functional for thespherical pendulunSo, classical elasticae are in a one-to—one
correspondence with the motions of the spherical pendulum.
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A generalization of these notions ¢dastic rods(which physically means that they
can be twisted) requires the curves to be framed, i.e. to carry an orthonormal frame
®(x) = (T (x), N(x), B(x)) in each point. In other words,feamed curves a mapd :
[0, 1 — {frameg. The curve itself is then defined by integratignix) = fg‘ T (y)dy.
The following quantities are attributes of a framed curve:gbedesic curvature

ki(x) = (T'(x), N (x)), (6.5)
thenormal curvature

ka(x) = (T'(x), B(x)), (6.6)
and thetorsion

T(x) = (N'(x), B(x)). (6.7)

Obviously, one hase?(x) = k2(x) + k3(x).

Definition 2 ([L,LS]). Anelastic rod (Kirchhoff’s elastica) is a framed curve deliv-
ering an extremum to the functional

1
/ (kz(x)—i—cxrz(x))dx (6.8)
0

with somex # 0. The admissible variations of the curve presewé), ®(/), and

y() — y(©) = [y T(x)dx.

The first term in (6.8) corresponds to the bending energy, the second one corresponds to
the twist energy.

We shall identifyR3 with s« (2), as described in Appendix C, and the frames with
elements ofb € SU(2), according to the following prescription:

T=0dtes0, N=0legd, B=oled. (6.9)
Then, denoting
Q=—00l w=-019, (6.10)
we find:

ki =(w, B) = (R, &) =Q2, k2=—(w,N)=—(Q,e1) =—€, (6.11)

T =(w,T) = (Q,e3) = Qa. (6.12)

So, the variational problem for elastic rods may be formulated as follows:dfind
[0, 1] — SU (2) delivering an extremum of the functional

1
/0 (szi(x) + Q2(x) + aZ(x) — 2(p. T(x)))dx, (6.13)

wherep is an (-independent) Lagrange multiplier coming from the condition of fixed
y() —y(0) = fé T (x)dx. ldentifying the arclength parameterwith the timez,
®(x) = g71(1), so thatQ(x) = —@'(x)d 1(x) = g 1 ()g(r) = Q@t), andT (x) =
d1(x)e3® (x) = g(r)ezg1(r) = a(r), we see that the functional (6.13) coincides with
(twice) the action functional for the Lagrange top. This proves the
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Proposition 17 (Kirchhoff’s kinetic analogy, [L]. The frames of arclength parametr-
ized elastic rods are in a one-to-one correspondence with the motions of the Lagrange
top.

Actually, we use another characterization of the elastic rods. From the Euler—Lagrange
equations it follows:

Proposition 18. The torsionr along the extremals of the function@l.13)is constant,
and the tangent vectdF (x) satisfies the following second—order differential equation:

TxT'4+cT'=pxT, (6.14)

wherec = at. Conversely, each solutich(x) of (6.14)corresponds to a curve(x),
which, being equipped with a frame with constant torsiomelivers an extremum to
the functionak6.13)witha = ¢/t.

Equation (6.14) is (4.17) in new notations. The latter differential equation allows the
following interpretation. Consider the so-callefisenberg flowlt is defined by the
differential equation

i =TxT", (6.15)

and describes the evolution of a curve in the binormal direction with the velocity equal to
the curvature. Here the “timé"has nothing in common with the timeof the Lagrange

top, which is, remember, identified with It is easy to see that the flow on curves
defined by the vector fieldl, = T’ (a reparametrization of a curve) commutes with the
Heisenberg flow (6.15). Using this fact, we can integrate (6.15) once in order to find

n=y xy"=TxT. (6.16)

(The reparametrization flow, once integrated, takes the farm= ' = T). Now we
can formulate the following fundamental statement.

Theorem 5 (Ha,LS]). Let® : [0,!] — SU(2) be the frame of an elastic rod, and
y : [0, 1] — su(2) the corresponding curve with the tangent vecfoe ' : [0, [] —
su(2). Then the evolution gf under the Heisenberg flog@8.16)is a rigid screw—motion,
and the evolution of' under the Heisenberg flo(®.15)is a rigid rotation. Conversely,
if the evolution off is a rigid rotation, thenT" can be lifted to a frame of an elastic
rod.

The first statement of the theorem follows from (6.14). The left—hand side of (6.14)
can be interpreted as the vector field on curves, corresponding to a linear combination
of the Heisenberg flow and the reparametrization:

Tt +cTy =pxT.
Integrated once, this equation yields a rigid screw motion for the qurve
nteyx=pxy—+aq,

whereg € su(2) is a fixed vector. The converse statement follows from Proposition 6.4.

By the way, this theorem allows to find a Lax representation for the equation (6.14),
and therefore for the Lagrange top, starting from the well-known Lax representation for
the Heisenberg flow.
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Proposition 19. Equation(6.14)is equivalent to the Lax equation
(A =[€), u(r)] (6.17)
with the matrices
) = T +MT x Ty +cT) + p, u(r) =AT. (6.18)

Proof. Indeed, the Heisenberg flow (6.15) is equivalent to the following matrix equation
(“zero curvature representation”, [FT]):

ur — vy + [v,u] =0,
whereu, v € su(2)[1] are the following matrices:
u=2AT, v=AT +AT x T,.
Now it is easy to derive that Eq. (6.14), rewritten as
Ti +cT, =[p,T],
is equivalentto (6.17) with = v+ cu + p. O

Remembering that in the Kirchhoff’s kinetic analogyis identified withz, T is
identified witha, and recalling the formula (4.16), we recover the Lax representation of
the Lagrange top in the rest frame given in (4.18), (4.19).

Theorem 6.5 is also a departure point for discretizing elastic curves and, therefore, the
Lagrange top [B]. Adiscrete arc—length parametrized curgea sequencg : Z — R3
with the property|Tx| = 1, whereT; = yx — yx—1. Correspondinglydiscrete framed
curvesare the sequences of orthonormal frandgs such thatf;, = <I>,:1e3<1>k 3. As
before, we identifyR® with su(2), and the space of orthonormal frames wstti (2).

The curvey can be reconstructed by applying the summation operation to the sequence
T.

A discretization of the Heisenberg flow is well known [SkI,FT], see also [DS] for

geometric interpretation of discrete flow. It reads:

2T X Tps1 2Ti_1 x Ty

Tt = - . 6.19
T = 0 T T+ (w10 (6.19)

A commuting flow approximating@, = 7' is given by:

T T; Ti— T;
Ty = K Pt Tt Tk (6.20)
14+ Tk, Ter1) 1+ (Ti—1, Ti)
Once “integrated”, this gives the flows og:
Tk + Tra1 2T, x T 1

x = e (e e (6.21)

1+ (Tx, Tey1) LTy, Tign)

Now we accept the following discrete version of Theorem 6.5 as a definition of
discrete elastic rods.

3 Note that the frame®y, as well as the tangent vectdfs, are attached to the edggg_1, yx] of the
discrete curve
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Definition 3. Adiscrete elastic roi a framed curve for which the evolutionygfunder
a linear combination of flow$yx)t + c(yx)x with somec is a rigid screw—motion, so
that the evolution of; under the flow(7y): + c(Ty), is a rigid rotation.

In other words, the sequenggsatisfies the following second order difference equation:
2T, 2Ty —
Ti x ( el k-1 )
1+ (Tk, Tiv1) 1+ (Ti—1, Tk)

C( Tiv1+ Ty _ T + Ti—1
1+ (T, Tevr) 1+ (Tp—1, Ti)

) =p x Tx. (6.22)
(This is Eq. (5.16) withe = 1 in new notations). We can immediately find the Lax
representation for the difference equation (6.22).

Proposition 20. Equation(6.22)is equivalent to the Lax equation
i1 () = w T OV W ug (3) (6.23)
with the matrices

A2+ ch T + Tr—1 2% — C)»Z/Z Tp—1 x Ty

G = : :
YN =102 T (1 Ty T 1 a%4 1 (T, o)

+p, (6.24)

up(A) = 1+ ATy (6.25)

Proof. It is well known (see [FT]) that the flows (6.19), (6.20) allow the following
“discrete zero curvature representations”:

1 1 0 0
(uph = ukvéﬁl - v,ﬁ g, (up)y = ukv,({ﬁl - v,ﬁ g,

respectively, with the matriceg as in (6.25) and

U(l) _ 22 ' T + Tr—1 2\ . Ti—1 x Ty,
KT 14 a2/4 14 (Te, Tee1) 1+ A2/4 1+ (Ty, Tr—1)’

0O _ A N+ T 22/2 - T x T
KT 142/4 14 (Ti, Ticr)  1+22/4 14 (T, Tie1)

Now it is easy to see that Eq. (6.22), rewritten as
(Tt + c(Ti)x = [p., Txl,
is equivalent tai £;11 = Lrug with

Ly = vl({l) + cv,io) + p,

which coincides with (6.24).0
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To establish a link with the discrete time Lagrange top, recall that the formula (5.17)
in our new notations reads:

Ti—1 % Tk . T + Ti—1
1+ (Ty, Tr—1) 1+ (Ti, Te-1)’

myg =

which implies also

_ L+ Tar ¢ TaxTy
1+ (T, Te—1) 2 1+ (Ty, Te—1)

1
Ti + = T x my
2
Hence we can write:
2 2 1 1
(1+22/4) £, = A (Tk+§Tk xmk+2p)+/\mk+p,

which coincides with (5.23) up to a nonessential constant factor.

It remains to find a variational problem generating the equations of motion (6.22).
But the calculations of Sect. 5 show that this task is solved by the functional (5.1). This
gives the following alternative definition of discrete elastic rods.

Definition 4. Adiscrete elastic roi a discrete framed curve given by a finite sequence
®1,..., 0N € su(2) delivering an extremum to the functional

N-1 N
Z ( — 4o log tr(®; *®ps1) — 2(1 — @) log(1 + (T, Tk+1))) - Z(p, Ty) (6.26)
k=1 )

withsomex # 0. The admissible variations of the curve presebie® y, andyy —yo =
Y iy @, Lesdy.

The equivalence of Definitions 6.7 and 6.9 is the basic new result of this section. It
is a geometric counterpart and a motivation for the considerations of Sect. 5.

We want to close this section by giving discretizations of geometrical notions like
curvature and torsion. Notice that the functional (6.26) naturally splits into two parts,
one independent am and one proportional te. Accordingly, we declare

1
-2 Xk: log(1 + (T, Tiq1)) = 2 Xk: log (1 + Zk,f) + const (6.27)
as a discretization of the “bending energ@fé k2(x)dx, and

1
> ( — 4log tr( @y 1P, ) + 2log(L + (T, Tk+1))> =2 log <1 + Zr,f) + const
% X

(6.28)

as a discretization of the “twist energg'fé 72(x)dx. Here we define the “discrete
curvaturek; at the vertexy by

1 2
1+ k= — = ki = 2ta 2),
+ 2%k 1+ (v, Teo) <~ ki Nk /2)
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wheregy is the angle between the vectdisand T, 1. Notice that thek;, depends not
on the whole frame, but on the tangent vectfironly, so that it makes sense also for
non—framed curves. The “discrete torsian’at the vertex is defined by

20+ (T Tivr) [ 3@ ® )
(tr(Dp 1P )2 tr( D1 ®p D)

The last formula will be commented on immediately. Let us demonstrate that, in a
complete analogy with the continuous case, the discrete torsion is constant along the
extremals of the functional (6.26). Denoting for a moment

12
2’ =

i1 @7t = (_“,; ’ ) e SUQ).
we find:
L+ (Tk, Tip1) = 1= 2tr(Dp 1 @) "e304 D, 1 03) = 2Jal?,
and also

1 1 _ 1 _
(@) = S @e1® ), (@) = r(@pra®; e = —5 (N(Pra1® ), €3),

so that

‘L’k=2

ha) _ <S(d>k+1<1>,:1) > _ <?s(<1>,:1<1>k+1>

~ = , €)= , Tier).  (6.29)
J(a) tr(Qpr1®; Y tr(®; *dpr1) +>

Comparing this with (5.12) (remember, we set 1 and identifiedsy;, with 7, andwy
with @, 1 @), we see that

T = c/a,

wherec = (myy1, Tr+1) is an integral of motion of the Euler-Lagrange equations (a
Casimir function of thee(3) Lie—Poisson bracket). This corresponds literally to the
continuous case.

Remark 12.The caser = 0 corresponds tdiscrete elastic curveg : Z — R3. The
tangent vector§ : Z — S2, Tr = v — y_1, define a trajectory of thdiscrete time
spherical pendulumits Lagrange function is obtained, as in the continuous time case,
from the bending energy (6.27), upon introducing the Lagrange multiplidotice that

the Lagrange function of the discrete time spherical pendulum is defin§d ans?,

7. Visualisation

After the theory has been developed, it is tempting to look at the spinning of the discrete
time Lagrange top. Fortunately, in the computer era, a discrete time top is even simpler
to simulate than a classical one. Indeed, as it is shown in Theorem 5.2, the Poisson map
(my, a) — (miy1, art1) is well defined and can be easily iterated. The vecigrs
having been computed, Proposition 5.4 provides us with the evolution of the frame
which describes the rotation of the top completely. So, giwe#) ap), the rotation of the

top is determined uniquely. Due to (5.17) one can take two consecutive positions)
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Fig. 1. Evolution of the axis of the discrete spinning top

of the axis as the initial conditions as well. Figure 1 demonstrates a typical discrete time
precession of the axis. Compare this with the classical continuous time pictures in [KS,
Al.

The motion of the discrete time Lagrange top can be viewed using a web-browser.
The Java-applet has been written by Ulrich Heller and can be found on the web page

http://www-sfb288.math.tu-berlin.de/"bobenko

The applet presents an animated spinning top described by the formulas of the present
paper.

8. Conclusion

We took an opportunity of elaborating an integrable discretization of the Lagrange top to
study in a considerable detail the general theory of discrete time Lagrangian mechanics
on Lie groups. We consider this theory as an important source of symplectic and, more
general, Poisson maps. Moreover, from some points of view the variational (Lagrangian)
structure is even more fundamental and important than the Poisson (Hamiltonian) one
(cf. [HMR,MPS], where a similar viewpoint is represented). In particular, discrete La-
grangians orG x G may serve as models for general (not necessarily integrable) cases
of the rigid body motion (cf. [WM]).

Itis somewhat astonishing that this construction is able to prodtegrablediscrete
time systems, since integrability is not built inaitpriori. Nevertheless, we extend the
Moser—Veselov list [V,MV] of integrable discrete time Lagrangian systems with a new
item, namely, an integrable discrete time Lagrange top. It seems that this list may be
further continued.

Infinding this new discrete time mechanical system an analogy with some differential-
geometric notions was very instructive. Also these interrelations between integrable
differential geometry and integrable mechanics, both continuous and discrete, deserve
to be studied further.

Let us mention also some more concrete problems connected with this work. First of
all, the discrete time Lax representations found here call for being understood both from
ther-matrix point of view [RSTS, S] and from the point of view of matrix factorizations
[MV] (unfortunately, these two schemes, being in principle closely related, still could
not be merged into a unified one). Futher, the discrete time dynamics should be integrated
in terms of elliptic functions. The methods of the finite—gap theory will be useful here
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[RM]. Finally, it would be important to elaborate a variational interpretation of different
integrable discretizations of the Euler top found in [BLS].

Note added in prooSome of the problems mentioned in the Conclusion are now solved.
Ther-matrix interpretation of the Lax matrig, (1) in (5.23) is as follows: the matrices

A(a + g[a, m])

2~Len) 1 m N
1+ e222/4 1+ e202/4

1+ e222/4

p+

form an orbit of the linear-matrix bracket in the loop algebra(2)[, A2~1] corre-
sponding to the following standa®i-operator:

R(u(/\)) = strictly positive part ofu(l) — nonpositive part ofu(i).

Notice that bye — 0 it turns into another orbit, consisting of the Lax matrices of the
continuous time Lagrange top (4.19),

A7) =2"tp +m + Aa.

The Lax representation (5.22) of the discrete time Lagrange top may be cast also in the
form

(1+ erak+1) (l +er" p + e(mps1 — 80k+11)))
- (1 tertp +e(mp — sakp)> 1+ erap),

which is typical for the approach of [MV]. However, unlike the situation in [MV], the
corresponding matrix factorization problem in the loop gréGf2)[1, 211, connected
with the aboveR-operator, has a unique solution, which explains why our discrete top
is described by a genuine map and not by a correspondence.

A. Notations

We fix here some notations and definitions used throughout the paper.

Let G be a Lie group with the Lie algebgg and letg* be a dual vector space tp
We identify g andg* with the tangent space and the cotangent spacgitothe group
unity, respectively:

g=1.G, ¢g"=T;G.

The pairing between the cotangent and the tangent sggegsndT, G in an arbitrary
pointg € G is denoted by-, -). The left and right translations in the group are the maps
Ly, Ry : G — G defined by

Loh=gh, Rsh=hg YheG,
andLg. , Ry, stand for the differentials of these maps:
Lgi : ThG > TG, Rgs @ ThG > TjeG.
We denote by
Adg = LgiRy-1, 19> g
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the adjoint action of the Lie grou@ on its Lie algebray = 7,G. The linear operators
Ly TG~ TfG, R} :T;,G— TG
are conjugated td . , R, , respectively, via the pairing, -):

(nga 77) = <‘;§, Lg*n) for E € g*hG b n € ThG,
(R;s’ 77) = <§s Rg*”)) fOI‘ s S Th*gG ) T] S ThG

The coadjoint action of the group
Ad* g = LZ,‘RZ,l gt g
is conjugated to Ag via the pairing(-, -):
(Ad*g-&,n) = (§,Adg-n) for Eeg”, neg.

The differentials of Adz and of Ad‘ ¢ with respect tog in the group unitye are the
operators

adnp :gr—~g¢g and adn : g*— g%,
respectively, also conjugated via the pairing):
(ad'n-§,¢)=(,adn-¢) VEeg", teg
The action of ad is given by applying the Lie brackegin
adn-¢=1[n.¢l, V¢ eg.

Finally, we shall need the notion of gradients of functions on vector spaces and on
manifolds. IfX" is a vector space, anfl: X — Ris a smooth function, then the gradient
Vf: X — X*is defined via the formula

d
(Vf(X),y>=£f(x+€y) , VyedX.

e=0

Similarly, for a functionf : G — R on a smooth manifold; its gradientVf : G —
T*G is defined in the following way: for an arbitragye T,G let g(¢) be a curve inG
throughg (0) = g with the tangent vectog(0) = ¢. Then

d
(Vf(g) 8= R AIC
€

e=0

If G is a Lie group, then two convenient ways to define a curg throughg with the
tangent vectop are the following:

gle) =eg, n=Ry1,¢,
and

gle) =ge", n=1Lg1,8,
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which allows to establish the connection of the gradi€rft with the (somewhat more
convenient) notions of the left and the right Lie derivatives of a funcfianG — R:

Vf(®) =Ry 1df(9) =Ly 1d f(g).

Heredf : G+ g*andd’f : G — g* are defined via the formulas

d
(df(g).,n) = T fe| ., Vneg,
€ e=0
d
d'f(g),n = " fge| . Vneg.
€ e=0
B. Lagrangian Equations of Motion
Continuous time Discrete time

General Lagrangian systems

L(g & L(gk, gk+1)
M= Vgl My = —V1L(gk. k+1)
I1=V,L Miy1 = V2L(gk, k+1)

Left trivialization: M = L;l‘[

L. &) =LDg @ L(gk, gk+1) = L (gk, W)

Q=L,1,8 Wi =g ‘er1

M=L;T=vVol® My =L}, T = dj, LO (g1, Wi_1)

[ M=adQ M+dLO [ Ad* Wt Miyq = My + dJLO (g1 W)
§ = LgsQ2 8k+1 = 8k Wi

Left trivialization, left symmetry reduction:M = L3IT, P = Ad g t¢

Lg.&) =LD(P, Q) L(gx. gk+1) = AD (P, W)
Q=1L, 1,8 P=Adg ¢ Wi =g tgesr. Pe=Adgt-c
M= L3l =vVoL® My =Ly Ty = d iy AD(Pe_1, Wi_1)

[ M=adQ -M+ad P.-vpL® lAd* Wb Myq = Mg +ad P - Vp AD (P, W)

P =[P, Q] Pryi=AdW 1. P

Right trivialization: m = Ry T

L(g, &) =LD (g, ») L(gk, gk+1) = L0 (gx, wy)
. -1
w=R,-1,8 Wi = 8k+18
m=RiM=V,L" my = Ry Ty = dy L) (g5 1, wi—1)

( = —ad*w-m+dgL ") l Ad* wy - my1 = my +dg L0 (g, wy)

& = Rgxo 8k+1 = Wk 8k
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Continuous time Discrete time

Right trivialization, right symmetry reductionm = RgI1, a=Adg-¢

L(g. &) =L, o) L(gk. 8k+1) = A (g, wp)

w=Ry1,8, a=Adg-¢ wi = gr418; L. ax =Adgy ¢

m = RiT =V, L") my = Ry Ty = dy A©) (a1, wi—1)
m=—ad*w-m—ada- VL0 Ad* wy - myy 1 = my —adtay - Va AP (ag, wy)
a = lw,al ax4+1 = Ad wy - ag

The relation between the continuous time and the discrete time equations is established,
if we set

g =8 Sr1=g+eg+0@", L(gk ger1) =¢L(g.8) + O@%);
Pe=P, Wi=1+eQ+ 0(?), AOP, W) =eLP(P, Q)+ 0(e?);
ar =a, wp =1+ ew+ 02, A (ar, wp) = L7 (a, 0) + O(£?).

C. On SU(2) and su(2)
The Lie groupG = SU (2) consists of complex 2 matricesg satisfying the condition

g¢™ = g*g = 1, wherel is the group unit, i.e. the 2 unit matrix, and* denotes the
Hermitian conjugation, i.eg* = g”. In components:

= (56) = (LAR), ©
where
a=a-+ib, B=c+ideC,
and
a2+ 18P =a® +b?+ 2 +d? = 1. (C.2)

The tangent spacg SU (2) is the Lie algebray = su(2) consisting of complex % 2
matricesy such that) + n* = 0. In components,

B ib  c+id
’7—<—c+id —ib ) (C.3)

The Lie bracket inu(2) is the usual matrix commutator.
Let us introduce the following notations: for an arbitrary magriaf the form (C.1),
not necessary belonging 8/ (2), set

0 N b id
= (22), 5= (2,05,

so thathi(g) is a scalar real matrix, antl(g) € su(2).
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As it is always the case for matrix groups, we haveda SU (2), n € su(2):

Lgin=gn, Rgm=ng, Adg-n=gng ™t (C.9)
If we write (C.3) as
1( —ing —m2—im
- = ; , , C.5
=73 <n2 —in1 N3 (€5

and put this matrix in a correspondence with the vector

n = (n,n2 )" €R3,

then it is easy to verify that this correspondence is an isomorphism betwé&nand
the Lie algebra<R3, x), where x stands for the vector product. This allows not to

distinguish between vectors froR? and matrices fromu(2). In other words, we use
the following basis of the linear spage(2):

10—\ _1 _1f0-1)\_1
=o -0 )= ®=3\10)=3%

1/-i0 1
93—§<0i>—2—i(73, (C.6)

whereo; are the Pauli matrices.

We supplysu(2) with the scalar produdt, -) induced fromR3. It is easy to see that
in the matrix form it may be represented as

(n,¢) ==2tr(ng) = 2tr(ng™). (C.7)

This scalar product allows us to identify the dual spac@)* with su(2) itself, so that
the coadjoint action of the algebra becomes the usual Lie bracket with minus:

ad'n-& =& n]=—ady-&. (C.8)

We use a formula similar to (C.7) to define a scalar product of two arbitrary complex
2 x 2 matrices:

(81, 82) = 21r(g183). (C.9)

(In particular, the square of the norm of every maigixe SU(2) is equal to 4). The
formula (C.9) gives us aleft—and right—invariant scalar productin all tangent sfaGes
Indeed, to see, for instance, the left invariancegigtgs € T,SU(2) (hereg € SU(2),
n, ¢ € su(2). Then

(gn, 8¢) = 2tr(gnt™g™) = 2tr(n¢™) = (n, ¢).

This scalar product allows to identify the cotangent spdges with the tangent spaces
T,G. It follows easily that:

Lig =g Rig=tg', Ad*g-£=gtg (C.10)

(in these formulag € SU(2), so thatg~! = g*).
Let us now formulate several simple propertiesSéf(2) andsu(2) which will be
used later on.
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Lemma 2. For an arbitrary g € SU (2):
g=cog0)1+sin@)¢ with ¢ esu(?2), (¢, ¢)=4 (C.11)

The adjoint action oSU (2) onsu(2) has in these notations the following geometrical
interpretation:gng 1 is a rotation of the vecton around the vectot by the angle2s.

This interpretation makeSU (2) very convenient for describing rotationsit? (in
some respects more convenient than the standard us€ @) in this context). Since
by rotations only the vectors on the rotation axis remain fixed, we see that for the case
G=SU®2

Gl — g,
In a different way, the previous lemma may be formulated as follows.

Lemma 3. For g € SU(2), if

S8 _
tr(g)

£, (C.12)

then

tr(g)

§=—-(1+8)., (= (C.13)

2
VIFHEE/A

We have also the following simple connection between the matrix multiplication and
the commutator inu(2) .

Lemma 4. For n, ¢ € su(2) their matrix product has the forifC.1), and

1 1
== 1+ = . C.14
ng 4(77,4“) +2[n,§] (C.14)
In particular, the following corollary is important:

n.8)=0 = n¢=—¢n. (C.15)
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