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Affine spheres with definite and indefinite Blaschke metric are
discretized in a purely geometric manner. The technique is
based on simple relations between affine spheres and their du-
als which possess natural discrete analogues. The geometry of
these duality relations is discussed in detail. Cauchy problems
are posed and shown to admit unique solutions. Particular dis-
crete definite affine spheres are shown to include regular poly-
hedra and some of their generalizations. Connections with inte-
grable partial difference equations and symmetric mappings are
recorded.

1. INTRODUCTION

The study of affine differential geometry has a long
history. According to [Nomizu and Sasaki 1994],
it was initiated by Tzitzeica in the first decade of
the twentieth century, with a remarkable paper [Tzi-
tzeica 1910] on a particular class of hyperbolic sur-
faces and its invariance under a Backlund—Moutard-
type transformation. Even though Tzitzeica’s anal-
ysis was undertaken in the language of standard
classical differential geometry, his class of surfaces
turns out to be of particular importance in affine
differential geometry. Indeed, the Tzitzeica prop-
erty proves to be invariant under (equi)affine trans-
formations, and his surfaces are now known as affine
spheres (Affinsphéren) [Blaschke 1923] because they
are analogues of spheres in affine differential geom-
etry. An elementary introduction to this topic and
a novel characterization of affine spheres is given in
Section 2.

The issue of canonical discretizations of geome-
tries in the context of integrable systems has re-
cently become a subject of extensive studies. In-
deed, one may propose various discrete problems
having the same continuum limit but rather different
properties. Thus, is there a distinct discretization
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which one should choose? The problem of finding a
proper discretization of a given geometric model be-
longs to experimental mathematics. Many concepts
in this area of research have been developed on use
of geometric and algebraic methods with an essen-
tial input of trial and error. The current problem of
discretizing affine spheres turns out to be very much
of this kind:

Early attempts to discretize particular coordinate
systems on surfaces go back to Sauer. An account
of his work and references may be found in [Sauer
1970], where he sets in correspondence differential
geometric objects and difference geometric models.
Such models include discrete conjugate and asymp-
totic nets. The latter were used in 1950 to de-
fine discrete models for surfaces of constant nega-
tive GauBian curvature [Sauer 1950]. Independently,
Wunderlich [1951] derived a discrete counterpart of
the classical Béacklund transformation for these dis-
crete pseudospherical surfaces. A discrete analogue
of the sine-Gordon equation which governs pseudo-
spherical surfaces was not discussed in his work.
Some tweny-five years later, an integrable discrete
sine-Gordon equation was set down by Hirota [1977]
and it was only recently that a connection between
that discretization and the discrete pseudospheri-
cal surfaces was established by Bobenko and Pinkall
[1996b]. Since then integrable discrete models of
surfaces of constant mean curvature [Bobenko and
Pinkall 1999] and isothermic surfaces [Bobenko and
Pinkall 1996a] have been constructed.

The geometry of higher-dimensional integrable lat-
tices has also been the subject of recent studies.
Thus, the conjugate nets of Sauer [1970] were gener-
alized to higher dimensions and investigated in con-
nection with integrability in [Bogdanov and Kono-
pelchenko 1995; Doliwa 1997; Doliwa and Santini
1997]. Multi-dimensional lattices which model cur-
vature (conjugate and orthogonal) coordinate lines
were defined in [Bobenko 1999] and their geomet-
ric and analytic integrability investigated in [Cie-
slinski et al. 1997; Doliwa et al. 1998]. Remarkably,
two-dimensional lattices (nets) of this type (cyclic
nets) have been used earlier in computer-aided sur-
face design [Martin et al. 1986; Nutbourne 1986].
Two- and three-dimensional cyclic lattices in Eu-
clidean spaces of arbitrary dimension were derived
via suitable eigenfunction constraints in [Konopel-

chenko and Schief 1998], where explicit parametri-
zations of lattices on the line, plane and in R® are
given.

In [Bobenko and Schief 1999] we solved in a purely
geometric manner the problem of discretizing affine
spheres with indefinite Blaschke metric in such a
way that integrability is preserved. We exploited
the fact that asymptotic lines on indefinite affine
spheres possess a property which we term ‘affine
Lorentz harmonicity’ for lack of a better expression.
Thus, by demanding that discrete indefinite affine
spheres constitute both discrete asymptotic and dis-
crete affine Lorentz harmonic nets, discrete indefi-
nite affine spheres have been constructed. Section 3
starts with a brief review of this construction. How-
ever, an analogous route is not available in the con-
vex case. We conclude Section 3 with an alternative
but equivalent definition of discrete indefinite affine
spheres in terms of simple duality relations involv-
ing a dual or conormal lattice. It is this description
which may be adopted in the definite case. We note
that the concept of dual surfaces may also be used
in the definition of discrete isothermic surfaces and
surfaces of constant mean curvature [Bobenko and
Pinkall 1999; Hertrich-Jeromin et al. 1999].

Section 4 is concerned with the definition and
properties of discrete definite affine spheres and their
duals. It turns out that the duality relations are
such that the discrete surfaces regarded as lattices
may be of any type, for instance triangular, quadri-
lateral or honeycomb. Examples of discrete definite
affine spheres include certain symmetric solids, in
particular the regular polyhedra. In the case of sur-
faces Z° — R?®, it is shown that the discrete du-
ality relations are self-consistent in the sense that
a Cauchy problem may be formulated and its well-
posedness proven. These discrete surfaces are dis-
cussed in detail in Section 5. The corresponding
discrete Gaufl equations are formulated and it is
shown that their compatibility conditions (discrete
Gaufl-Weingarten equations) lead to a discrete ellip-
tic version of the classical Tzitzeica equation which
admits a well-posed Cauchy problem. The paper
concludes with a particular class of discrete definite
affine spheres which is governed by a one-dimen-
sional integrable mapping well known in soliton the-
ory. This may be regarded as an indication of the
integrability in the generic case.
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2. CLASSICAL CASES

In this section, we present the well-known descrip-
tion of affine spheres with indefinite and definite
Blaschke metrics (for more details see, for exam-
ple, [Blaschke 1923; Simon and Wang 1993]). Here,
affine differential geometry is treated in its classi-
cal setup, that is as the geometry which investigates
properties of surfaces in R® that are invariant under
(equi)affine transformations

r+— Ar +a, with A€ SL(3,R), a € R®.

Thus, let
r: M — R
(z,y) = r(z,y)

be an immersion with a nondegenerate second fun-
damental form (Gaufliian curvature K # 0). Intro-
duce

L=|r,r,r.l,

M = |Ty7rza’rxy|7

N =[ry,7s, 7yl
where |-, ,-| denotes the standard determinant in
R3
Definition 2.1. The quadratic form
_ Ldz*>+2M dzdy+ N dy?
B |LN — M?2|1/4

is equiaffine invariant. It is called the Blaschke met-
ric of the immersion.

(2-1)

g

The Blaschke metric is conformally equivalent to the
second fundamental form of the immersion.

Definition 2.2. A transversal vector field £ on a sur-
face r(M) is called affine normal if it satisfies

S = _%Agra

where A, is the Laplace-Beltrami operator of the
Blaschke metric.

In contrast to Blaschke’s definition, we choose the
affine normal to point outwards a convex surface (see
Figure 1). The reason is that in the convex case we
prefer to ‘look’ at the surface from outside rather
than inside. The direction of the affine normal has
a simple geometrical meaning [Blaschke 1923]. In
the hyperbolic case, it can be described as follows.
Consider an infinitesimal quadrilateral composed of

FIGURE 1. The orientation of the triad {r,,r,,£}.

asymptotic lines. Build two planes, each being par-
allel to a pair of opposite edges of the quadrilateral.
The affine normal is parallel to the line of intersec-
tion of these two planes. If r, 7, and r{,r, are two
pairs of opposite vertices of the quadrilateral (see
Section 3 for notations), then the affine normal is
parallel to

E~riat+Tr—T— TS (2-2)

In the convex case, the description is different. Let
r(M) be a locally convex surface in R® and p € M.
For any small ¢ consider a plane 7; parallel to the
tangent plane my = dr(7,M). The plane 7; inter-
sects the surface in a plane curve II(¢) which is the
boundary of a planar domain D(¢):

aD(t) = II(t).

Let y(t) be the centre of gravity of D(¢). The tan-
gent vector 7/(0) to the curve v defines the affine
normal direction at the point r(p).

Regarding the normalization of &, we mention two
properties of the affine normal:

o d¢ cdr(TM);
e |dr(-),dr(-),&| is the volume form corresponding

to the Blaschke metric, that is,
|70y 7y, € = [LN — M?|V%, (2-3)

Definition 2.3. A non-degenerate surface in R® is
called an affine sphere if all affine normals inter-
sect at a point. If this point is not infinite it may
be chosen as the origin of R® so that

E=Hr, H:M-—-R.
H is called the affine mean curvature.

One can prove that in the case of a non-degenerate
Blaschke metric the affine mean curvature of the
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affine sphere is constant. In the following, we con-
sider proper affine spheres; that is, we assume that
H # 0. Consequently, H may be normalized to
H = =41 on use of a scaling transformation of the
ambient space R®. It is natural to distinguish be-
tween the cases of a definite Blaschke metric (convex
surfaces K > 0) and of an indefinite Blaschke met-
ric (hyperbolic surfaces X < 0). In the convex case,
H defined as above is positive and in the indefinite
case, it can be set positive by a change of the orien-
tation » — —7r. In the sequel, we assume that

H=1.

2A. Indefinite affine spheres

In the case of an indefinite Blaschke metric, it is nat-
ural to consider the asymptotic line parametrization
of surfaces

L=N=0,

which is affine invariant. Applying if necessary an
orientation-preserving transformation

(I,y) — (ya _$)7
one can always achieve M > 0.

For affine spheres we set & = r as indicated. On
introduction of the function

h=\ry,r,, 7| (2-4)
and the cubic differentials a dz®, bdy?, where
a = |Tz,rzzar|a b= —|’l°y,’l°yy,7‘|, (2-5)
one obtains
|Txa Ty; sz| - h2 (2—6)

and the following linear system for the immersion r
(Gauf equations):

h, a

Ty = Ir$ + Er?ﬁ

Ty = hr, (2-7)
hy b

Tyy = Fry + ETZ.

Using 74,7y, € span{r,,r,}, one can easily prove
the following fact:

Lemma 2.4. An asymptotically parametrized surface
(z,y) = r(z,y) is an affine sphere if and only if

Ty || 7.

The compatibility conditions for (2-7) yield

(logh)yy =h—abh™, a,=0, b,=0. (2-8)

The above system is invariant with respect to the
transformation

a—Xa, b—\"'b (2-9)

with arbitrary A € R. This gives rise to the following
result:

Theorem 2.5. FEvery indefinite affine sphere possesses
a one-parameter (A € R) family of deformations
preserving the Blaschke metric and the differential
abdx® dy®. These deformations are described by the
transformation (2-9). The system

T, h.h™' Xah™! 0 .
Ty, | = 0 0 h Ty |,
r /., 1 0 0 T
(2-10)
T, 0 0 h T,
r, | = XAt Ayt 0 Ty
T 0 1 0 T

Yy
determines the corresponding family of immersions.

In the terminology of modern soliton theory, the lin-
ear system (2-10) is the Lax representation for the
system (2-8). In fact, for a # 0 and b # 0, one may
re-parametrize the asymptotic coordinates accord-
ing to

r—z(w), y—yy)

in such a way that a« = 1,b = ¢ = 41 and the
orientation is preserved. Thus, we obtain

(logh)yy = h —eh™>. (2-11)

Finally, the parameter € may be absorbed if one al-
lows negative valued solutions h. Indeed, if h(x,y) is
a solution to the integrable Tzitzeica equation [Tzi-
tzeica 1910]

(log h)yy = h — h™>

and 7(z,y) is the corresponding immersion, then
h(z,y) = eh(x,ey) is a solution to (2-11) with as-
sociated immersion 7(z,y) = r(x,¢cy).

It is readily verified that the quantity

V=—T,XT, (2-12)

h

is a solution of the adjoint or dual system repre-
sented by A = —1. The geometric significance of
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v is as follows. By definition, the vector v is per-
pendicular to the tangent plane spanned by r,,r,.
Furthermore, the normalization (2-3) shows that

r-v=1.

Hence v is called a conormal. The conormal defines
discrete affine spheres which may be considered dual
to those given by 7. This is made precise in the
following

Theorem 2.6 (Duality relations for indefinite affine
spheres). Indefinite affine spheres and their duals
are equivalently described by the Lelieuvre formulae

Ty =V XV;, Vyz=7,;XT,

(2-13)

Ty =V, XV, V,=TXT,,

which imply that - v = 1.

One can directly verify that v as given by (2-12)
obeys the duality relations (2-13). Conversely, two
vector-valued functions 7 and v which satisfy the
duality relations define two affine spheres with co-
normals v and r respectively. For symmetry rea-
sons, it is sufficient to focus only on 7, say. Thus,
the Lelieuvre formulae yield

Tor LV, Ty Lv, 7, lv, 7, 1lv,

which implies that r forms an asymptotic net and
v is a corresponding normal. Secondly, the compat-
ibility condition v,, = v,, for (2-13), 4 reads

Toy XT =0 = 75|

which means that 7 is an affine sphere by virtue
of Lemma 2.4. Finally, if we insert v, as given by
(2-13)5 into (2-13);, we obtain r - v = 1.

2B. Definite affine spheres

In the convex case, it is natural to consider the con-
formal Blaschke metric

g =2hdzdz, withh >0, z=2x+1y,
ie.,

L N

Z:Z:h2:i|rz,r5,rzg|, M=0

in (2-1). For affine spheres (§ = r), the relation
(2-3) implies that we have another representation
for A, namely

ith=|r,,r:r|

The cubic differentials a dz*®,bdz®, where
a:7‘|’rzvrzzalr|7 b:_Z|T27T227T|7

are complex conjugates. The Gaufl equations of def-
inite affine spheres read

h, a

T2 = Frz - ETz;

T.: = —hr, (2-14)
hs b

T = Frg — ETZ'

Using
Tyz — Tyys Toy € span{r,,r,},

one can easily prove the following fact:

Lemma 2.7. A convex immersion (z,Z) — r(z,Z2)
with conformal Blaschke metric (conformal second
fundamental form) is an affine sphere if and only if

T T
The compatibility conditions for (2-14) yield
(logh).z + h + |a|*h™* =0,

The above system is invariant with respect to the
transformation

ag == 0 (2—1 5)

1
a— Aa, a—> XEL (2-16)
with arbitrary A € C,|\| = 1. This fact gives rise
to the following Lax representation for the system

(2-15):

Theorem 2.8. Every definite affine sphere possesses
a one-parameter (|\| = 1) family of deformations
which preserve the Blaschke metric and the differ-
ential |a|? dz® dz3. These are described by the trans-
formation (2-16). The system

T, h.h=t —Xah™' 0 T,
rs: | = 0 0 —h rs |,
r /. 1 0 0 T
(2-17)
T, 0 0 —h T,
r- | = -X'tah™! h:h7! 0 T
r /. 0 1 0 T

determines the corresponding family of immersions.

For a # 0, by a conformal reparametrization z —
Z(z), one can normalize ¢ = 1 and obtain the Tzi-
tzeica equation for definite affine spheres

(logh).: + h+h 2 =0.
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It is easy to check that the conormal (v -r =1)

V= Z.7' Xr

- h z z
is descriptive of an affine sphere represented by the
system (2-17) with A = —1. We call this affine

sphere the dual of r. We conclude this section by a
complete analogue of Theorem 2.6.

Theorem 2.9 (Duality relations for definite affine spheres).
Definite affine spheres and their duals are equiva-
lently described by the symmetric (with respect to T
and v) Lelieuvre formulae

T,=1, XV, V,=1T,XT,

T: =1V X Vs, Vz=1IT XT3,

which imply that v - v = 1. In the real coordinates
x,y (with z = x + iy), the Lelieuvre formulae take
the form

Ty =V, XV, V,=7T,XT,

(2-18)

Ty =VXUV,, V,=TXT,.

3. A DISCRETIZATION OF INDEFINITE AFFINE
SPHERES

In [Bobenko and Schief 1999], affine spheres with
indefinite Blaschke metric have been discretized in
a purely geometric manner. The corresponding dis-
crete Gaufl and Gaufl—Codazzi equations have been
set down and used to derive a discrete analogue
of the classical Tzitzeica transformation for affine
spheres. An interpretation of the discrete Gauf
equations in terms of loop groups has also been
given. Here, we recall the elementary properties of
these discrete affine spheres and show that they may
be equivalently defined via simple duality relations
involving the conormal. Duality relations of similar
kind will prove key to the discretization of convex
affine spheres discussed in the following section.

In this section, discrete surfaces constitute two-
dimensional lattices in Euclidean space R®, that is
maps

r:7Z° > —R?

(n1,n2) = r(ny,ne).  (3-1)

It is convenient to suppress the arguments of func-
tions of n; and n. since we only deal with auton-
omous difference equations. Thus, increments of

discrete variables are denoted by subscripts, for in-
stance

r = r(ny,ny),

ry =r(ni+1,ns),
re = r(ng, na+1),
ri = r(ni+2,n2),
ri2 = r(ni+1,na+1),
Ta2 = 1T(ny,n2+2),

and decrements are indicated by overbars, that is,

T1 :T(nl—l,ng), 'I"QZT'(TLl,ng—].).

We also adopt the following notation of the usual
difference operators:

Ai’l":'l“i—’l", A12T:T12—7‘1—T2+T'.

3A. Definition and properties

Definition 3.1. A two-dimensional lattice (discrete
net) in three-dimensional Euclidean space

r:Z°>T > R3

is called a discrete indefinite affine sphere if it has
the following properties:

[A]l Any point r(ni,n2) and its neighbours ry, 7,
1, T3 lie on a plane.

T2

T1
T3

[H] All discrete affine normals €, whose directions
are defined by

£~ Aqor,

intersect at a point O.
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T2

T12

0
1
Nets possessing property [A] are called asymptotic.
They model asymptotic lines on smooth surfaces
[Sauer 1970]. In analytic terms, [A] translates into

|ri—r,ro—r,r—ri| =0, |ri—r,r3—7,7—75 =0.

Nets of type [H] may be termed affine Lorentz har-
monic, i.e., there exists a function p such that

Apr =p(rip+ri+r+7);

equivalently,
T+ 7T || T+ 7o

For these conditions to hold, O has to be chosen as
the origin of the ambient space R®. Remarkably, the
definition of the discrete affine normal coincides ex-
actly with the classical one (2-2) for hyperbolic sur-
faces if one regards the edges of elementary quadri-
laterals as infinitesimal asymptotic line segments on
a surface.

A straightforward analysis of the conditions [A]
and [H] now leads to the following theorem [Bobenko
and Schief 1999]:

Theorem 3.2 (The Gaul} equations for discrete indefinite
affine spheres). Discrete indefinite affine spheres are
governed by the discrete Gaufl equations

Ty —T1 = %(Tl_T)‘i‘%(Tlg—Tl),
ri+r = H(ri+rs), (3-2)
Tos —To = %(rg—ﬂ—i—Hle(ru—rg).
They are compatible modulo
A, = (H/Hi)A, B, = (H/Hs)B,
H\2H(H,+ Hy — HiHy + A12By»)

=Hpy+H-1. (3-3)

The discrete analogues of the formulae (2-4)—(2-6)
derived in the previous section read
|r, Ayr, Aor| =c(H — 1)/H,
|Ay7, Agr, Ayor| = 2¢(H — 1)%/H,
|r, Ay, Ar| = cAy,
|7, Aor, Agor| = —cBs.

(3-4)

Here ¢ is a constant of ‘integration’.

The discrete Gaufi—Codazzi equations (3-3) may be
visualized as follows: The affine Lorentz harmonic-
ity condition (3-2), suggests associating the func-
tion H with the elementary quadrilateral

(r,71,72,T12).

The functions A and B naturally ‘live’ on the vertex
r. Thus, the linear equation (3-3); may be regarded
as a relation for any quadrupel consisting of two H-
functions and two A-functions which enclose a ‘ver-
tical” edge [r, 5] of the lattice. Similarly, any ‘hor-
izontal’ edge [r, 7] is enclosed by two H-functions
and two B-functions. They are linked by (3-3)a.
The situation is illustrated in Figure 2.

As

FIGURE 2. The A- and B-equations.

The remaining equation (3-3); relates a product
of A- and B-functions which is defined on a vertex
to the four adjacent H-functions; see Figure 3.

H, Hy

FIGURE 3. The H-equation.
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In the natural continuum limit one regards a dis-
crete function f : Z* — R as an approximation of a
smooth function f : R?* — R, that is

f(n17n2) = f(l’ay)‘(z,y):(

for small ¢;. Then, on dropping the tilde, the Taylor
expansions

€1m1,62n2)

fl = f+51fz +O(5%)7
f2 = f +52fy + O<5§)

apply. Now, the form of the discrete Gaufl equations
(3-2) suggests the natural expansion

H =1+ ieie2h, A=iela, B = iedb,

so that the discrete Gaufi—-Codazzi equations reduce
to

(logh)yy = h — abh™2, b="b(y)

in the limit ¢; — 0. Similarly, the discrete Gaufl
equations become the continuous ones (2-7) in this
limit. It is therefore justified to term (3-3) a discrete
Tzitzeica system.

The linear equations (3-3); 2 for A and B may be
solved identically by introducing a potential 7 which
parametrizes A, B and H according to

a = a(x),

T2 T1T2 7'2

A=e'—) H=D2 p-¢’_

)
TiT1 TT12 T3T2

where ¢ and ¢ are arbitrary constants. This, inserted
into the nonlinear equation (3-3); for H, results in
the discrete Tzitzeica equation

T22 Ti22 Ti122

D) T12 T112 = 567—132.
T T1 T11
Note that the Tzitzeica equation
(logh)yy =h —h?

may be brought into the form

Tyy  Tayy Tazyy s
Ty Tey Towy | = 57T

in terms of a 7-function defined via
h = —2(log 7)4y-

This underlines the analogy between the classical
continuous case and the discrete formalism presen-
ted here.

A well-posed Cauchy problem for the 7-equation
(3-5) is associated with the Cauchy data

7(n,i—n), fori=0,...,3, (3-6)

that is, 7 is prescribed arbitrarily on four adjacent
diagonal chains of lattice points (Figure 4). (In
fact, 7 may be prescribed on an arbitrary stairway-
shaped strip.)

N
A\

AV
722 T122 T1122
T2 T12 T112
T T1 T11

FIGURE 4. A well-posed Cauchy problem for the
T-equation (3-5).

Now, if one chooses the Cauchy data in such a way
that the determinant 775 — 7,72 does not vanish,
then the 7-equation may be solved for 71122, Simi-
larly, all other values of 7 on the diagonal (n,4 —n)
may be calculated provided the relevant determi-
nants are non-zero. This process may be iterated
ad infinitum so that 7 is known on the upper-right
half-plane. Alternatively, the T-equation may be re-
garded as an equation for the unknown values of 7
on the lower-left half-plane. Thus, the Cauchy data
(3-6) determine 7 uniquely.

3B. The conormal and duality relations

It is evident that the discrete Tzitzeica system is
invariant under A — \A, B — \"'B, where ) is
an arbitrary constant. This observation may be ex-
ploited to inject a parameter into the discrete Gaufl
equations:

Theorem 3.3 (A Lax representation for the discrete Tzi-
tzeica system). FEuvery solution of the discrete Tzi-
tzeica system (3-3) corresponds to a one-parameter
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family of discrete indefinite affine spheres governed
by

H{-1 A
Ti—T1 = m(Tl—r)-i—)\H_ll(Tu—Tl);
rio+r = H(T1+T2), (3—7)
Hy—1 1 B
Too—Ty = m(rz—r)-i-xff—_zl(rlz—rz)-

For A = 1, we recover the discrete Gaufl equations
(3-2). Moreover, it is readily verified that the quan-
tity

1 H

- 3-8
v 5 1 (3-8)

(ri—7r)x(re—7)
is a solution of the adjoint or dual system repre-
sented by A = —1. The geometric significance of v
is as follows. Since r constitutes an asymptotic net,
the lattice points 7,71, 75,77 and 75 lie on a plane.
By definition, the vector v is perpendicular to this
plane. Furthermore, the first integral (3-4); shows
that we may normalize r in such a way that

r-v=1.

In analogy with the continuous case, we call v a co-
normal and conclude that the conormal defines dis-
crete indefinite affine spheres which may be consid-
ered dual to those given by r. This is made precise
in the following statement:

Theorem 3.4 (Duality relations for discrete indefinite af-
fine spheres). Discrete indefinite affine spheres and
their duals are equivalently described by the discrete
Lelieuvre formulae

rn —Tr =V XUV, Vi —V =71 X7r,

To —T =Vy XU, Vg — UV =T XTy,

which imply that - v = 1.

One can directly verify that v as given by (3-8)
obeys the duality relations (3-9). Conversely, two
vector-valued functions r : Z? — R® and v : Z* —
R? which satisfy the duality relations define two dis-
crete indefinite affine spheres with conormals v and
r respectively. For symmetry reasons, it is sufficient
to focus only on 7, say. Thus, the discrete Lelieuvre
formulae yield

Ar Ly, Ayrlvyv, Air Llv, Asrlvu,

which implies that r forms a discrete asymptotic
net and v is a corresponding normal. Secondly, the
compatibility condition vy = vg; for (3-9), 4 reads

(rio+7r)x(r1+7r2)=0 = 7rt+r|ri+r

and hence r is affine Lorentz harmonic. Finally, if
we insert v, as given by (3-9), into (3-9)1, we obtain

Ayr = (r-v)Arr,

which implies that - ¥ = 1 in the generic case.

It is interesting to note that a well-posed Cauchy
problem may also be formulated at the surface level
using the duality relations. Thus, consider the ad-
missible data

r(n, —n), v(n,1-n), v(0,0) (3-10)
subject to the constraints
v(n, 1-n)-r(n, —n) =1,
v(n,1-n)-r(n—1,1-n) =1, 3-11)
v(0,0)-7r(0,0) =1,
as displayed in Figure 5.
t o —et
[ R A
m ol el D
[N A4 | [hd] |
2 UL T
#—£ — o
4 Vi L”;Ii 77”1 1/1\
fot

FIGURE 5. A well-posed Cauchy problem for discrete
indefinite affine spheres and their duals.

Since v,v, and r are known, the vertex r, may
be calculated by means of the duality relations (3-9)
which, in turn, enables us to determine vi,. This
process may be iterated so that r» and v are uniquely
determined on the diagonals (n, —n) and (n,1—n).
Note that all duality relations are satisfied due to
the constraints (3—11) on the Cauchy data.

It is evident that the existence of the discrete
affine sphere and its dual now depends on the solu-
tion to the following problem: Suppose the pairs of
vectors (r1,v1), (re,v2) and (7, v) (which live on the
vertices of an elementary quadrilateral) satisfy the
corresponding duality relations (3-9). Is it possible
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to construct (uniquely) vectors ri; and v, which
obey the duality relations

Tig — T2 =Vy X Vi, Vig—Va=T12 XT3

Ti2 —T1 =Vi2 XVy, Vig—Vi=T1 XT12
(3-12)
(Figure 5)7 The following constructive proof gives
a positive answer to this question.
Elimination of 715 and v from the left-hand sides

of (3-12) results in

r1— 7Ty = (V1 +V2) X V1o

(3-13)
V) —Vy =712 X (71 +72).
Similarly, the duality relations (3-9) yield
rL—Ty=v X (V] +Vs)
vi—vVy=(ri+mr) XT

which implies that —(7,v) is a particular solution
of (3-13) if regarded as linear inhomogeneous equa-
tions for (ria2,v12). Thus, the latter take the form
ri2 = -7+ a(r; + ra)
vip = v + (v + v2),

where «, 8 are as yet unknown. However, the nec-
essary conditions

(3-14)

Ti Vg =Ti2 Vy =1
imply that
(3-15)

The fact that o = 3 is hardly surprising since both
r and v satisfy the affine Lorentz harmonicity con-
dition (3-7), with the same coefficient H. In fact,
the preceding analysis delivers the expressions

2 2

H: =
1+T1'I/2 1+'I‘2'I/1

if one takes into account that r; - vy = 79 - vq. It
is now readily verified that ry» and v, as given by
(3-14), (3-15) indeed satisfy the relations (3-12).
This proves that discrete indefinite affine spheres
and their duals are uniquely determined by the Cau-
chy data (3-10)—(3-11).

4. DISCRETE DEFINITE AFFINE SPHERES

4A. Duality relations

In the previous section, it has been shown that dis-
crete indefinite affine spheres and their conormals

can be defined by the discrete Lelieuvre formulae
(3-9). This observation suggests defining discrete
definite affine spheres by means of a canonical dis-
cretization of the Lelieuvre formulae (2-18). Thus,
in the discrete case, the partial derivatives 0, and
0, should correspond to differences defined on ‘hor-
izontal’ and ‘vertical’ edges of a lattice respectively.
Since the Lelieuvre formulae (2-18) mix these deriv-
atives, it is necessary to distinguish between the lat-
tices r and v. We therefore denote by I'* the lat-
tice dual to T' C Z?. We may think of the field
v:T* - R® as defined on the faces of a discrete
surface 7 : T' — R® (see Figure 11). The following
discrete Lelieuvre relations (for notations see Fig-
ure 11) constitute a natural geometric discretization
of the Lelieuvre formulae (2-18):

TL—T=VXV;3, V—Vi=TyXT,

(4-1)

To—T=ViXV, V—VUs=7TXTr.

They constitute relations on edges. If we denote the
four fields attached to an edge by up, down, left,
right as in Figure 6, the duality relations take a
symmetric form.

Definition 4.1. A discrete definite affine sphere r» and
its dual (discrete definite affine sphere) v are maps
r: I — R® and v : T* — R® satisfying the discrete

Lelieuvre relations
r,—7r =V, XUVyg, V,—V; =T, X Ty,
(4-2)

Ty —Tq=V| XV,, Vy,—Vg=T7T XT,.

Tu Vy
O
v avs T &¥—e T,
O
rq Vq

FIGURE 6. The duality relations for discrete definite
affine spheres.

Since Definition 4.1 is symmetric with respect to r
and v, it is sufficient to investigate the geometrical
properties of r, say.

Theorem 4.2. Discrete definite affine spheres have the
following geometrical properties:

(i) All elementary quadrilaterals (r,r1,712,72) are
planar.
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(ii) v is the conormal of T, i.e.,
V' T=V Ty =V -Ty=V T3 =1.
(iii) For each vertex and its 4 neighbours

riFritre s T (4-3)

Nets with this property may be termed discrete
affine harmonic.

(iv) For r,v defined by (4-1), we have

(ri—7)-(v—v3) = (ra—r) - (v—ri) =0, @
(ri—r) (v—vi) =(re—r) (r—vws).
Properties (i), (ii), (iv) follow immediately from the
discrete Lelieuvre formulae. The latter are readily
shown to be invariant under volume preserving equi-
affine transformations. We have chosen Definition
4.1 in such a way that the normalization r - v =
const = 1 holds. Any other choice of this constant
would result in a slightly different but equivalent
(modulo appropriate scaling of r and v) definition.
In order to derive (4-3), one should consider four
neighbouring faces in Figure 11 and substitute (4-1)
into the trivial identity

(v —v3) + (V1 —v)+ (viz —vi) + (V2 —vi2) = 0.

Remark 4.3. In [Sauer 1970], a net (or a discrete
surface) © : Z* — R® is called discrete conjugate
if all its elementary quadrilaterals are planar. Re-
cently, discrete conjugate nets and their specializa-
tions have become a focus of interest in the theory of
integrable systems (see Introduction). Property (i)
of the theorem implies that discrete definite affine
spheres are conjugate nets. This property is natural
since the Blaschke metric (which is proportional to
the second fundamental form) is conformal.

Remark 4.4. The affine harmonicity condition admits
a simple geometric interpretation. We define a dis-
crete affine normal € at the vertex r as a vector
which passes through the barycenter of the vertices
T, Ti, T2, T3, and 7, that is,

E~ri+ri+7re+ 713 —Ar,

and require that all affine normals meet at a point O,
say. If we identify this point with the origin of the
ambient space R® then the discrete affine normal
is parallel to the position vector r and hence the
condition (4-3) is retrieved. Note the resemblance

T2

T12

r
i T
T1
r3
—¢ pd

1 V]
7(ritrit+ratrs)

FIGURE 7. A planar quadrilateral and the discrete
affine normal.

between the definitions of the affine normal in the
discrete and continuous cases.

Remark 4.5. Property (iv) is a discrete analogue of
the conformality of the second fundamental form

Ty Vy=17, -V, =0, Ty -

where v is any normal field on the surface.

4B. A Cauchy problem

A canonical Cauchy problem for discrete definite
affine spheres is obtained by prescribing r on a ver-
tical chain of lattice points and the conormal v on
adjoining quadrilaterals, that is

r(0,n), v(0,n),
subject to the normalization conditions
r(0,n)-v(0,n) =1,
r(0,n)-v(0,n—1)=1.
This is schematically indicated in Figure 8. Here,
bullets and boxes represent the Cauchy data r(0,n)
and v(0,n) respectively.
Now, comparison with the duality relations en-
coded in Figure 6 shows that both r(1,n) (circles)
and v(—1,n) (dashed boxes) may be calculated from

the Cauchy data. We stress that all duality relations
are satisfied by virtue of the constraints (4-5). It is

(4-5)
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N
A\

i O
a
\'Z)

H O
a
=

{3 O

N
A\

FIGURE 8. A well-posed Cauchy problem for discrete
definite affine spheres.

evident that iterative application of this procedure
uniquely determines the discrete affine sphere and
its dual.

A particular class of discrete affine spheres is ob-
tained if the Cauchy data 7(0,n) and v(0,n) gen-
erate two regular polygons of order N. For given
N, the affine spheres admit the discrete symmetry
Zy and possess one degree of freedom. However,
the additional assumption of a reflection symmetry
with respect to the polygon {7(0,n)} removes this
ambiguity. In this case, it is not difficult to show
that for N = 4 the discrete affine sphere is com-
pact as shown in Figure 9. We conjecture that for
N # 4 the discrete affine spheres do not close in the
sense that the ‘discrete meridians’ do not intersect
at vertices.

FIGURE 9. Discrete affine spheres ‘of revolution’, for
N = 16,4. For clarity, only part of the sphere cor-
responding to N = 16 is shown.

4C. General nets

Since the duality relations are defined on edges one
can naturally generalize Definition 4.1 to discrete
surfaces with arbitrary topology different from Z?.

The faces may be planar polygons of any type which
may meet at vertices in any number. Each internal
edge must belong to exactly two faces. In this sec-
tion, we are concerned with this generalized notion
of the discrete definite affine spheres: I' and I'* in
Definition 4.1 are two arbitrary mutually dual lat-
tices which form discrete surfaces.

Figure 9 is reminiscent of a famous result in affine
differential geometry due to Blaschke [1923]:

Theorem 4.6. All compact affine spheres are ellipsoids
(the round sphere and its affine transforms).

In the discrete case, it is natural to pose the same
question:

Problem 4.7. Classify compact discrete affine spheres.

We do not have a complete solution of this problem.
In the simplest cases, however, the solution is re-
markably close to the above mentioned theorem of
Blaschke. First of all, note that all tetrahedra are
affine equivalent and the regular one is obviously a
discrete affine sphere. The normalization r-v =1
implies that a tetrahedron affine sphere and its dual
have the same volume. In our normalization, the
8

volume of the tetrahedron affine sphere is 3.

Theorem 4.8. All discrete affine spheres with the
topology of a cube are parallelopipeds (the reqular
cube and its affine transforms).

To prove this theorem, denote by v, vq, vi, v, vy,
v, the conormals of the up, down, left, right, front
and back faces of a discrete surface with the cube
topology (all faces are planar quadrilaterals, three
faces meet at a vertex). It is not difficult to show
that the sum of all conormals

A=v,+vi+v +v,.+vi+u,

must vanish. Indeed, consider A X v,. Since the
conormals are discrete affine harmonic we have A x
v, = V4 XV, which implies that A = v ;+av, with
some «. For symmetry reasons o = 1. Considering
all pairs of opposite faces, we obtain

A=v,+v,=v,+Vv, =V;+ U,

The sum of these three formulae (34 = A) implies
that A =0 and

Vg=—Vy, V=V, Vf§=—Vs.
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The opposite faces of the surface are parallel. This
observation completes the proof.

In our normalization, the volume of this affine
cube is 4.

Corollary 4.9. All discrete affine spheres with the
topology of an octahedron are affine transforms of
the reqular octahedron.

This statement follows from the previous one by du-
ality. The volume of the octahedron is %. Further-
more, the following theorem is evident:

Theorem 4.10. Regular solids and their affine trans-
forms are discrete affine spheres.

4

4

]

OZLZ

L
FIGURE 10. The truncated cube, shown here for

o= §(VIT-3) = 1/(2L?).

We should mention that the regular solids do not
exhaust the list of discrete compact affine spheres.
In particular, the truncated hexahedron as shown
in Figure 10 and its dual are discrete affine spheres;
they are not Archimedean solids since there are two
types of edges. Another simple example is the trun-
cated tetrahedron (also non-Archimedean) and its
dual. See section on Electronic Availability below.

5. THE DISCRETE GAUSS EQUATIONS AND A
DISCRETE TZITZEICA SYSTEM

The aim of this section is to derive explicitly a dis-
crete elliptic Tzitzeica system which governs discrete
definite affine spheres in the case of Z>-lattices. As
in the continuous case, the discrete Tzitzeica sys-
tem may be regarded as associated discrete Gaufl—-
Codazzi equations. They arise as the compatibility

condition of the discrete Gaufl equations which are,
in turn, a consequence of the defining relations (4-1)
for discrete definite affine spheres and their duals.
It is also recorded that the discrete Gaufl equations
admit an elementary interpretation in terms of the
volumes

V:|T7T17T2|7 Vl:|’l",’l“2,7‘i|

(5-1)
V' =|r,rs,ri|, V" =|r,ri,rsl.
(Compare Figure 11.)
Vi v
v | v
2\ () (r
D, ) D,
V/// V//
Vi3 V3

FIGURE 11. The Z? lattice, its conormals and corre-
sponding volumes.

5A. The discrete Gaul® equations
The defining relations (4-1) readily imply the fol-

lowing result:

Theorem 5.1 (The discrete GauB equations). The dis-
crete Gaufl equations associated with discrete defi-
nite affine spheres take the form

rio—r=P(ri—r)+Q(ra— 1),

ri+ri+ret+rys=(4—-H)r, (5-2)
Ty —7i—Ty+713=Ar, + Bry, +Cr,
with constraints
A+ B _
A+Bro="FPy  s_A-B
A-B 2H
(5-3)
2& — é 252 _ B,
S Q’ S P’
The conormal v is given by
v=>_S(r,—7r)x(ry—7). (5-4)
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The condition (5-2); expresses the fact that the el-
ementary quadrilaterals are planar (compare Figure
7). Secondly the condition (4-3) implies that there
exists a function H such that (5-2), holds. The re-
maining relation (5-2)s is trivial if one assumes that
the vectors r, 7y, ry are linearly independent. The
additional constraints are obtained by satisfying the
conditions (4-1) identically. To this end, it turns out
convenient to bring the discrete Gaufl equations into
canonical form, by writing the vectors r1;, 72 and
712 as linear combinations of 7y, r, and . This is
achieved by incrementing the sum and the difference
of (5-2)2 3, namely

2']"1+2T‘Q = A'I"1+BT'2+(4—H+C)T‘, (5 5)
2r1+2ry = —Ar,— Bro+(4—H—C)r, -

with respect to n; and ny. We deduce that
Ayryy = (4—H,—Cy)ry—2r— (24 By)1)12,
T =T+P(ri—7)+Q(r,—7),
Borgy = —(4—Hy+Co)ra+2r+(2— As)712,

which is of the required form if one substitutes for
T12.

Now, the first step in the procedure is to find an
explicit expression for the conormal v. Thus, since
the dual lattice is also discrete affine harmonic, there
exists a function H* such that

vi+vitrvy+vs;=(4—H).

If we increment n; and ms in (4-1),4 respectively,
we obtain

Vi —UV =172 X7,
(5-6)
Vy —V =T2 X Ti,

which combined with (4-1), 4 yields
—-Hv=@w,—v)+Wwi—v)+W2—v)+(vz3—v)
= (1‘12—"") X (T‘l—’f'g).
Hence, by virtue of the conjugacy condition (5-2);,
the conormal is given by
v=S(ri—r)x(ro—r),

P+Q

H*
which reflects the fact that v is indeed orthogonal
to the elementary quadrilateral (r, 71,73, 712).

The expression for v may now be inserted into
(5-6);. Its component in r5-direction is identically

(5-7)
S =

satisfied. The component in 7;-direction produces
the constraint (5-3); while (5-6); - r yields

A
A+B+C’+H:§.

Similarly, evaluation of (5—6)s results in the con-
straint (5-3)4 and the relation

A+B+C—H=g.

Thus, the relations (5-3); » are retrieved. Finally, it
is readily verified that r -v = ry - vy = 75 - V5 which
implies that » may by chosen in such a way that
r-v = 1 and hence the defining relations (4-1); 3
are also satisfied.

To summarize, discrete definite affine spheres are
governed by the discrete Gaul equations given in
Theorem 5.1. The corresponding dual discrete def-
inite affine spheres represented by the conormal v
take the form (5-4).

5B. Geometric properties of the discrete GauB equations

It has been pointed out that the first two discrete
Gaufl equations reflect conjugacy and affine har-
monicity of the lattice. The third equation encodes
the fact that, in the continuous case, the second fun-
damental form is not only diagonal but conformal.
Furthermore, it is possible to interpret the coeffi-
cients in the discrete Gaufl equations in terms of
the volumes V, V', V" V"' Thus, consider the triple
product [(5-5), X r] - 71, which yields

2(rg x 7)1y =B(ry X 1) -7y,
By virtue of the definitions (5-1) this becomes

V//
B=-2".
%
Similarly, the triple product [(5-5), x ] - 72 results
in
V/
A=2—.
%
Moreover, since r - v = 1, the expression (5-7) for

the conormal v yields

1
S=—,
Vv
so that the constraints (5-3)3 4 may be written as
PV W

Vv v
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Hence, we conclude that the coefficients A, B and
P, Q) are essentially ratios of certain volumes associ-
ated with the lattice.

The above relations may now be used to rewrite
the two expressions (5-3); and (5-7) for S. Indeed,
it is readily verified that

H=V'+V",

H =V +V]. (5-8)

It is evident that for symmetry reasons the condi-
tions

H=V+V" H=V+V}J (59

must also hold. In fact, it is shown in the following
subsection that these relations are a consequence of
the compatibility conditions for the discrete Gaufl
equations. In this connection, it turns out conve-
nient to introduce the quantities

1 P Q
3257 nga nga

so that
s=V, p=V, ¢=V.

If we complete these identities by
b=V,
the expressions (5-8)—(5-9) assume the form

H =ps+q=s+tis,
H =p+q=s+t.

(5-10)

These relations may be memorized in the following
way:

O O O
p t
H*
a1 s q
O O, O
12 D3
O O O

FIGURE 12. The geometric interpretation of H and H*.

We associate the quantities H and H* with the
vertex r and the quadrilateral represented by v re-
spectively. In view of the connection with the vol-
umes V, V', V" V" the functions p, ¢, s and ¢ may
be regarded as ‘living’ on the quadrilaterals between
H and H* as indicated in Figure 12. The relations
(5-10) then express the fact that the sum of any di-
agonally related pair of these functions equals the
function they enclose, that is H or H*. It is empha-
sized that there is a complete symmetry between the
lattice r and its dual v. This is reflected in

lv,vi, v =V, vy, vz, v| =V’

lvs,v,viz| =V", v, vi| =V

5C. The discrete Gaull-Codazzi equations

Even though we have satisfied the defining relations
(4-1) identically, there exist further constraints on
the coefficients of the discrete Gaufl equations due
to compatibility. Thus, the consistency conditions
T121 = T112 and 7129 = T99; lead to two equations of
the form

E’r + E'r, + E*r, =0,

where the functions E? depend on the coefficients
A, B,P,Q and H. If we assume that the vectors
1,72 and r are linearly independent, the conditions
E* = 0 consist of the linear system

Hsy=p+q, H =s+t
and the nonlinear system
Hy;—p—s; Hiy—t—q
_|_
DS2 1qo
H*—t— Hy—s9—
+ p+ 2 2 Q2+1_0,
Dt S22
Hi—q—s1 Hipa—t—p;
+
qs1 ip1
H*—t— Hf—s;—
+ @ 2 75n7P g (5-11)
qt S1P1

The former system represents the additional rela-
tions (5-9) alluded to in the previous subsection.
Furthermore, (5-10) may be regarded as a linear
system for the functions p,q and s,t. It may be
solved explicitly in terms of two potentials o and 7

according to
p:U+T27 q:0-1+7—7

s=o0+T, t =01+ T2,
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so that
H=0+4+03+71+ 11,

H' =040, +7+ 7.

Insertion of these expressions into (5-11) produces
a coupled system of equations for ¢ and 7 which is
encapsulated in the following statement:

Theorem 5.2 (A discrete Tzitzeica system). The discrete
Gaufl—Codazzi equations associated with the discrete
Gaufl equations for discrete definite affine spheres
may be cast into the form

(Ti2+0)(7'2+0)+
(140)(ri+0)

(re+o0)(T+0) )
(1140)(Ti2+0)

=1,

(c+7)(01+7T)

T—T
(o147)(012+7)
T—T;3 T—T1
+ (0134+7)(03+7)  (03+7)(0+7)
They constitute a discretized elliptic version of the

classical Tzitzeica equation. On use of the repara-
metrization

=1 (5-12)

Kk = Kk(my,ma),
— U(n17n2)7

k(ng4ny, ng—ny—1) = 7(ny, noy),

K(ne+n1, no—ny)

the system (5-12) may be combined to the single
equation

KR—K12 KR—K13
(het£)(F1tk)  (k1+k)(K3+Ek)
KR—Ki3 KR—Ki2
=1. (5-13
- (kztk)(ki+K)  (k1+k)(R2+k) 5-13)

The potentials ¢ and 7 may be associated with the
vertical and horizontal edges of the lattice respec-
tively. For instance, Figure 12 shows that s is en-
closed by a vertical edge and a horizontal edge. On
the other hand, s = o + 7. Hence, it is natural
to label the vertical edge by ¢ and the horizontal
edge by 7. Accordingly, the ‘o-equation’ (5-12),
represents a relation between o and its eight near-
est neighbours as indicated in Figure 13. It is com-
pletely symmetric in the sense that each of the four
terms consists of o, a nearest o-function and two
adjoining 7-functions. The ‘T-equation’ (5-12), has
a similar interpretation as depicted in Figure 14.

i
WH%HE
afﬁg D

}

FIGURE 13. The o-equation.

.

%H} %}nﬂ

012

bl

FIGURE 14. The 7-equation.

An alternative ‘diagonal’ labelling of the edges is
displayed in Figure 15 and is associated with the
‘k-equation’ (5-13).

The edges of the conormal lattice have been in-
cluded in order to demonstrate the complete sym-
metry between the discrete affine spheres and their
duals. As a consequence, the functions o,7 and k
may also be associated with the edges of the dual
lattice.

The natural Cauchy data associated with the k-
equation are given by

k(m,m—1), k(m,m), k(m,m+1), K(m,m+2)

which make up four adjacent vertical chains of data,
as depicted in Figure 16.

The x-equation may then be used to calculate the
values of x on the adjoining vertical edges on the
right and the horizontal edges on the left. Iteration
of this procedure covers the entire lattice so that x
is indeed uniquely determined.

In order to perform a continuum limit on the dis-
crete system (5-12), we need to introduce an arbi-
trary lattice step size €. Inspection of the discrete
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FIGURE 16. A well-posed Cauchy problem for the
Kk-equation.

Gauf} equations reveals that the potentials ¢ and 7
scale as

2
o, T ~E".

It is therefore natural to set

p=otT A

22 0 ¥ 2e2

We regard the discrete variables ny,no as discretiza-
tions of some continuous variables x, y, say, that is

T =€ny, Y =¢ENg

and assume once again that any discrete function
constitutes an approximation of a smooth function
which admits a Taylor expansion, for instance

hi=h+¢eh, + 1eh,, + O(?),
hi = h —ch, + 1%h,, + O(£%).

In this interpretation, the discrete system (5-12) re-

duces to the elliptic Tzitzeica system

(Vo)?
e = 0, Ap=0

in the limit ¢ — 0. Here, V and A are the usual

gradient and Laplace operator respectively. Suffice

it to say that the discrete Gaufl equations coincide

with the continuous ones discussed in Section 2 if

one applies the same limit.

A(log h) + 4h +

5D. A class of discrete affine spheres governed by elliptic
functions

Here, we consider a class of discrete affine spheres
which is associated with a one-dimensional reduc-
tion of the discrete Tzitzeica system (5-12). It turns
out that this reduction leads to a particular member
of a class of integrable mappings which is well-known
in soliton theory. In order to be as general as possi-
ble, it is observed that the discrete Tzitzeica system
only depends on the quantities

Ai(o+71),

We assume that these depend on n; 4+ n» only. Note
that the special case 0 = o(ny +n2), 7 = 7(n1 +n2)
reduces the number of arbitrary constants of inte-
gration by one. In terms of the variables a,b and h
defined by

Ai(o— 7).

o+,

oc=h+y,
T:h—%

Al(P:a

(5-14)
AQ(,O = b,

the symmetry reduction considered here reads

h = h(n]_ + ng), b= b(n1 + TLQ).

a = a(ny + na),

The compatibility condition Asa = A;b gives rise
to the first integral

b=a+2u, 1 = const.
Another first integral is given by
T+ —2
with the change of dependent variable
h=z+ g (5-15)

so that

a=clx+z,—2)—p, b=clz+z1—2)+u, (5-16)
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where c is another constant of integration. The dis-
crete Tzitzeica system then reduces to the second-
order difference equation

O EIAC)
f(z) — z1f*(z)

where the functions f? are defined by
fl=4(1-c)z* +8(3c* —1)2® + ((* = 1) > —48¢%) 2

+4((1=)p?+8c%)z+4c*y*
f?=4(*-1)z*—16¢*z?

+ (WP (1=c*)+16¢*)z + 2(*—1)p°
fP=41-A2*+8(1+c*)x+(*—1)p?.

It has been shown in [Quispel et al. 1988; 1989]
that second-order difference equations of the form
(5-17) admit a first integral if the vectors

(5-17)

(5-18)

fl $2
f=(r) e={«
r 1

obey the condition

f =(Az) x (Bzx), (5-19)

where the constant matrices A and B are symmet-
ric but otherwise arbitrary. In this case, the first
integral is biquadratic and symmetric in = and ;.
It may be parametrized in terms of elliptic func-
tions with the module being the remaining constant
of integration. Proto-typical examples for integrable
(differential)-difference equations which admit sym-
metry reductions to these integrable mappings in-
clude the (modified) Korteweg—de Vries, the nonlin-
ear Schrodinger and the Heisenberg spin equations.

It turns out that there exist matrices A, B such
that the functions f’ given by (5-18) indeed satisfy
the condition (5-19). As a consequence:

Theorem 5.3. If the coefficients of the discrete Gaufs
equations for discrete definite affine spheres depend
only on ni + ng, the associated Gaufi—Codazzi equa-
tions reduce to the integrable symmetric mapping

K +4zz,)(z+3,—-2) = P (x+x,—-2)* — (v+31)3,
(5-20)
where K is an arbitrary constant of integration. The

potentials o and T may be retrieved on use of the
change of variables (5-14), (5-15)—(5-16).

6. PERSPECTIVES

Apart from the important geometric problem of clas-
sifying compact discrete affine spheres which may
lead to an analogue of Blaschke’s classical result
(see Theorem 4.6), there are open questions concern-
ing the integrability of the discrete definite affine
spheres investigated in the previous section. It has
been pointed out that in the case of discrete indef-
inite affine spheres a Lax representation of the dis-
crete Tzitzeica system is available which may be in-
terpreted in terms of loop groups. Furthermore, the
Bécklund transformation set down in [Bobenko and
Schief 1999] obeys the usual ‘tangency condition’,
that is the conormal v and its Backlund transform
V' are parallel. In other words, the ‘tangent planes’
defined by the vertices r, r1, 7o, 71, r3 and r’, v, v},
T%, 5 coincide. In the continuous case, the tangency
condition is satisfied for definite and indefinite affine
spheres. However, in the case of discrete definite
affine spheres, the conormals are associated with the
planar quadrilaterals and not the vertices so that it
is not immediately clear how tangent planes and an
associated Béacklund transformation should be de-
fined.

Alternatively, one could try to inject a ‘spectral’
parameter into the Gaufl equations for discrete defi-
nite affine spheres and find a corresponding interpre-
tation in terms of loop groups. A Béacklund transfor-
mation may then be derived by means of a Darboux
matrix. A first step in this direction has already
been taken. Thus, it turns out that in the one-
dimensional case the difference equation (5-20) ad-
mits a simple Lie point symmetry which gives rise to
an arbitrary parameter in the Gaufl equations (5-1).
Remarkably, this parameter coincides with the one
introduced in (2-17) in the continuum limit. How-
ever, an analogous symmetry in the generic case is
yet to be found.

Finally, we hope that future application of re-
cently developed tests for integrability, such as the
singularity confinement test of [Grammaticos et al.
1991], will inform us further about the integrable
nature of the discrete Tzitzeica equation (5-13).
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ELECTRONIC AVAILABILITY

Examples of compact discrete affine spheres in Java
and VRML formats, including the non- Archimedean
polyhedra mentioned at the end of Section 4C, can
be found at http://www-sfb288.math.tu-berlin.de/
~bobenko/.
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