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Discrete Indefinite Affine Spheres

Alexander I. Bobenko and Wolfgang K. Schief

1 Introduction

Some sixty years before its rediscovery in a solitonic context, the partial differ-
ential equation

(Inh)yy =h—h2 (1.1)

was set down by Tzitzeica in a geometric context [23]. Tzitzeica’s classical pa-
pers are believed to have initiated a new area in mathematics, namely affine
differential geometry. Since then, the Tzitzeica equation (1.1) has been the sub-
ject of extensive study in both mathematics and physics [6, 7, 9, 10, 11, 13, 21].
However, only recently a discrete integrable analogue of the Tzitzeica equation
has been proposed in [19]. As a result, the natural question arises as to whether
the discrete Tzitzeica equation may be interpreted in a simple manner in terms
of discrete surfaces. Such a link between discrete integrable systems and par-
ticular classes of discrete surfaces has been well established. Examples in Eu-
clidean geometry comprise discrete pseudospherical surfaces (K-surfaces ) and
discrete surfaces of constant mean curvature (H-surfaces ) (see the contribution
of Bobenko and Pinkall [3] and [2, 14, 16]). Discrete isothermic surfaces repre-
senting M&bius geometries are also known [4]. Thus, in some instances, discrete
integrable systems suggest natural geometric properties. In fact, the theory of
integrable systems may provide us with methods of investigating such discrete
geometries.

The present paper extends the above-mentioned approach to affine differen-
tial geometry!. We present a natural geometric discretization of affine spheres
with indefinite Blaschke metric and show that the corresponding discrete Gauss—
Codazzi equations reduce to the integrable discrete Tzitzeica system/equation
set down in [19]. A connection with the Béicklund transformation for classical
affine spheres is recorded. Thus, the Tzitzeica transformation applied to clas-
sical affine spheres generates generalized discrete affine spheres. The Tzitzeica
transformation is used to construct a Biacklund transformation for (generalized)
discrete affine spheres in a purely algebraic manner.

LAt this point we would like to mention a recently found nice affine-geometrical interpreta-
tion [15] of the KdV equation.
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2 Classical affine spheres

In this section, we present the well-known description of affine spheres with indef-
inite Blaschke metric (for more details see e.g. [1, 22, 24]. Here, affine differential
geometry is treated in its classical setup, that is as the geometry which inves-
tigates properties of surfaces in R?® invariant under (equi)affine transformations

x— Ar+a, AcSL(3,R), acR. (2.1)

Let F : M — R? be an immersion. It is easily verified that equiaffine
transformations are conformal with respect to the second fundamental form.
This implies that asymptotic line parametrizations and the class of immersions
with negative Gaussian curvature (K < 0) are affine invariant. Thus, let us
consider an oriented immersion

r:M — R
(2.2)
(z,y) = 7(z,y)
given in terms of asymptotic coordinates (z,y), i.e.
rank(dr) =2, Tga,Tyy € dr(TM). (2.3)

By virtue of the orientation-preserving transformation (z,y) — (y, —z), one may
assume without loss of generality that

[Pz, Ty, Tay| >0 (2.4)
on M, where |-, | denotes the standard determinant in R3.

Definition. The indefinite metric

\/ |7, Ty, Tay| de dy (2.5)

is equiaffine invariant. It is called the Blaschke metric of the immersion.

The Blaschke metric is conformally equivalent to the second fundamental
form of the immersion. It is non-degenerate in the case X < 0 considered here.

Definition. A transversal vector field & on an oriented surface v(M) is called
affine normal if it satisfies

o d€ € dr(TM)
o [dr(:),dr(:),€&| is the volume form for the Blaschke metric, i.e. in our case,

|7'w>7'y7£| = |r$77'y77'wy|- (2.6)
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Definition. A non-degenerate surface in R® is called an affine sphere if all
affine normal directions meet at a point. If this point is not infinite it may be
chosen as the origin of R® so that

E=Hr, H:M—->R (2.7)
‘H is called the affine mean curvature.

One can prove that in the case of a non-degenerate Blaschke metric the
affine mean curvature of the affine sphere must be constant. In the following,
it is asssumed that H # 0. Consequently, H may be normalized to H = £1 by
using a scaling transformation of the ambient space R®. Furthermore, modulo
a change of the orientation of the surface corresponding to y — —y, one may
always set

H=1. (2.8)

Hence, on introducing the function
b= [r,ry €] (2.9)
and the cubic differentials a dz?, bdy?, where
a=rs,Tee,€l, b= —|ry,Tyy, €l (2.10)

one obtains
[Pe, Ty, Payl = h? (2.11)

and the following linear system for the immersion r (Gauss equations ):

hy a

Tre = Trz + Ery

Toy = hr (212)
h,, b

Tyy = Try + ETm'

By analogy with the Euclidean case, one may show [22] that {h dzdy, a dz®,bdy®}
constitutes a complete equiaffine invariant system for indefinite surfaces in R?
which determines a surface up to equiaffine transformations .

Now, the compatibility conditions for (2.12) yield

(Inh)yy =h—abh™?, a, =0, b, =0. (2.13)
The above system is invariant with respect to the transformation
a—Aa, b—A"'D (2.14)

with arbitrary A € €. This fact gives rise to the following theorem.
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Theorem. FEvery indefinite affine sphere posseses a one-parameter family of
deformations preserving the Blaschke metric and the differential abdx>dy®. This
deformation is described by the transformation (2.14). The system

Ty heh™' Aah™' 0 Ty
Ty = 0 0 h Ty
T 1 0 0 T
‘ (2.15)
Ty 0 0 h Ty
ry | = | A7 Byt O Ty
T ’ 0 1 0 T

determines the corresponding family of immersions.

In the terminology of modern soliton theory, the linear system (2.15) is noth-
ing but the Laz representation for the system (2.13). In fact, for a # 0 and b # 0,
one may reparametrize the asymptotic coordinates according to

=), y—=>yy) (2.16)

in such a way that a =1, b = ¢ = £1 and the orientation is preserved. Thus, we
obtain
(Inh)yy = h—eh 2. (2.17)

Finally, the parameter ¢ may be absorbed if one allows negative-valued solu-
tions h. Indeed, if h(z,y) is a solution to the integrable Tzitzeica equation [23]

(Inh)yy =h—h2 (2.18)

and r(z,y) is the corresponding immersion, then }NL(:U, y) = eh(z, ey) is a solution
to (2.17) with associated immersion 7(x,y) = r(x, ey).

3 Discrete affine spheres

Here, we define discrete analogues of affine spheres (discrete Tzitzeica surfaces)
in a purely geometric manner. These constitute particular ‘discrete surfaces’
which are maps

22 = R, (ng,n2) — r(ng,ng). (3.1

In the following, we suppress the arguments of functions of n; and ny and denote

increments of the discrete variables by subscripts, for example,
11 = r(n1 + 2,”2)
ry = r(n1 + 1,n2),
r =r(ny,na), rig=r(ni+1,n2+1). (3.2)
T = r(nl,nz + 1),
T29 = r(nl,ng + 2)

Moreover, decrements are indicated by overbars, that is

r{ = 1"(’[11 — 1,712), Trs = r(”l:”? - 1) (33)
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and the following notation for difference operators is adopted:
Air=r;i—r, Apr=ri—r—ro+r. (34)

Definition (Discrete affine spheres). A two-dimensional lattice (net) in
three-dimensional FEuclidean space

r:7Z? - R3 (3.5)
is called a discrete affine sphere if it has the following properties:

(a) Any point r(n1,ns) and its neighbours r1,71,735,72 lie on a plane.

T2

r1

T3

(b) All affine normals € whose directions are defined by

E~Apr

meet at a point O.

T12

o

Remark. The properties (a) and (b) define two well-known types of net. In fact,
the definition of discrete affine spheres may be formulated as

(a) ris a discrete asymptotic net
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(b) 7 is a discrete affine Lorentz harmonic net.

Discrete asymptotic nets (discrete A-surfaces ) were first introduced by Sauer
in the 1930s in connection with models for asymptotic lines on smooth surfaces
(see [17] and references therein). Their significance is seen as follows. Since the
points r,r1,7r1,73,72 lie on a plane, one may associate with the point r a unit
normal IN being orthogonal to this plane and whence

AlN . AlT‘ = 0, AQN . AQT‘ = 0, (36)

where IN; and N, denote the unit normals corresponding to r; and 72 respec-
tively. It is evident that these relations constitute a natural discretization of
the classical definition of asymptotic coordinates. On the other hand, the prop-
erty (b) in the definition of discrete affine spheres implies that

T12 +T||’I"1 + 72 (37)

if one chooses O to be the origin of R3. Consequently, there exists a function p
such that
Alz’f‘ = p(’f‘12 +7ry+712+ ’l") (38)

which is the usual definition of discrete Lorentz harmonic nets. See for example
the contribution of Bobenko and Pinkall [3], where this property of the Gauss
map of discrete K-surfaces is discussed.

In analytical terms, condition (a) translates into

|ri —r,r2—r,7r—ri|=0, |r1—7r,r2—1r,r—7r35=0 (3.9)

so that the position vector of the discrete surfaces considered here obeys the
discrete ‘Gauss equations’

riy—ry =a(ry —r)+ B(rie —r1)
rio+r = H(ry +r) (3.10)
To2 — T2 :’)/(’I“Q—’f')‘f‘(S(’l“lz—T'g)

where «,3,7v,0, and H are as-yet unspecified functions of n;. However, the
compatibility conditions of the above yield

 H -1  Hy-1
“TmE-1) T HH-1
Bo(Hy — 1)H = B(H — 1)Hy, 8 (H, — 1)H = 6(H — 1)H, (3.11)
H(H -1)

Hy, = :
"> 7 H2(H, + H, — HH,) — H + 30HH,(H — 1)

Hence, on setting
A=pB(H-1), B=§6UH-1) (3.12)
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we obtain:

Theorem (The discrete Tzitzeica system). Discrete affine spheres are gov-
erned by the discrete Gauss equations

TiL—T —ﬁ(r -7)+ (rizg —ry)
11 1_H1(H—1) 1 7112 1
ris+1r = H(’l"l + 7‘2) (313)
Hy -1 B
T2 — T2 = m(ﬁ -r)+ H_ 1(7“12 —T3).
They are compatible modulo
H, H,
2 H ) 1 H
(3.14)
H(H -1)

His

~ H2(H, + H, — H H,) — H + ABH, H,

which is termed the discrete Tzitzeica system.

The justification of the term ‘discrete Tzitzeica system’ is seen as follows. If
one regards a discrete function f : 7Z? — R as an approximation of a smooth
function f: R? — R, that is

flni,n2) = f(z,y) (3.15)

(z,y)=(e1n1,e2n2)

for small €;, then, on dropping the tilde, the Taylor expansions
h=f+eafe+0(&), fo=f+ef,+0(&) (3.16)

apply. Now, the form of the discrete Gauss equations (3.13) suggests the natural
expansion

H=1+1icieh, A=1ela, B=1edb (3.17)
so that the discrete Tzitzeica system reduces to
(Inh)zy =h—abh %, a=a(z), b=>by) (3.18)

in the limit ¢; — 0. Similarly, the discrete Gauss equations (3.13) become the
continuous ones (2.12) in this limit.

Remark. In view of the above continuum limit, the relations

H-1 (H — 1)
Air, Asr, A =2c——*—
H ) | 17, Q2T, 12T| c H (319)

|’I",A1’I",A11’I‘| = CA, |’I",A2’I",A22’I‘| = —cB

|r, Ayr, Aor| = ¢
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may be regarded as the discrete analogues of the formulae (2.9)—(2.11) derived
in Section 2. Here, c is a constant of integration.

The linear equations (3.14); » for A and B imply the existence of a potential 7
defined according to

2 2

T T
T11 = C—l = A= C—1
TA TTI1
T1T2 T1T2
T2 =— = H=— (3.20)
TH TT12
2 2
~To ~ Ty
Tog =C—— = B=¢——
7B TToo

where ¢ and ¢ are arbitrary constants. This, inserted into the nonlinear equation
(3.14)3 for H, results in the discrete Tzitzeica equation
T 71 T
Ty Tz Tz |+ @ty =0. (3.21)
T22 T122 T1122

It is noted that the Tzitzeica equation

(Inh)yy =h—h~? (3.22)
may be brought into the form
T Tz Taz
Ty Try Trxy + %73 = (323)
Tyy Teyy Tzzyy
in terms of a 7-function defined via
h=-2(InT)gy. (3.24)
This underlines the analogy between the classical continuous case and the dis-
crete formalism presented here.
In conclusion, it is observed that the discrete Tzitzeica system is invariant

under A — AA, B — A~'B where A is an arbitrary constant. Thus, we have
the following theorem.

Theorem. Every solution of the discrete Tzitzeica system (3.14) corresponds to
a one-parameter family of discrete affine spheres governed by

H -1

T — T Zm(Tl—T)+AH_1(T12—T1)

ri2+r =H(ri+72) (3.25)
Hy, -1 1 B

To2 — T2 —m(?"Q—T)"‘KH_l(TlQ—TQ).
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4 Discrete surfaces generated by the Tzitzeica transforma-
tion
In the previous section, discrete analogues of the properties of affine spheres
led to a definition of discrete affine spheres. One of the basic ingredients in
this construction was the discrete asymptotic net. On the other hand, it is
known that discrete asymptotic nets may be generated by means of Bicklund
transformations applied to surfaces if the ‘tangency condition’ is satisfied, that is
the line segment which connects corresponding points on neighbouring surfaces
¥ and ¥ is tangential to both surfaces and the Bianchi diagram associated with
the Backlund transformation commutes. For instance, it has been shown that the
classical Béacklund transformation applied to pseudospherical surfaces generates
the discrete K-surfaces [25]. Thus, in this case, the direct discretization method
(similar to that applied in Section 3) and the Bécklund transformation yield the
same discrete surfaces. This section is devoted to the natural question as to
whether such a remarkable result also holds in the case of affine spheres.
As pointed out in Section 2, the Gauss equations for affine spheres read

hy A
r— T” + Ery
Ty = hr (41)

-1
[ -
Tyy = hTy"'

h

where h is a solution of the Tzitzeica equation. The following variant of the
classical Moutard transformation may be used to construct an infinite number
of affine spheres [23].

Theorem (The Tzitzeica transformation ). The Gauss equations (4.1) and
the Tzitzeica equation are invariant under

2 ¢l ¢,
rori=r— ——— [AZr, — A Hr,
' (A —Ap)h ( gt g (4.2)
h— hy =h=2(In¢'),,
where ¢' is a scalar solution of the Gauss equations with parameter A;.
Since 7, and r, are tangential to the surface ¥ = {r = r(z,y)}, it is clear
that the line segment Ar = r; — r is tangential to . In addition, it is readily

verified that Ar is also tangential to the new surface ¥; = {r1 = ri(z,y)}.
Hence, the Tzitzeica transformation obeys the tangency condition

Ar||S, Ar|T.. (4.3)

Now, in order to iterate the Tzitzeica transformation one needs a scalar solution
of the transformed Gauss equations. This solution is obtained by inserting an-



122 A. I Bobenko and W. K. Schief

other scalar solution ¢? of the Gauss equations (4.1) with parameter Ay # A4
into the transformation formula (4.2);. Thus, by construction, the quantity

2 M ¢
0= ¢ - =i ( f; % -0 ¢2> (4.4)

satisfies the Gauss equations associated with ¥;. On the other hand, ¢? may be
used to construct a surface X5 from ¥ given by

2 ngQ o
’I“z:’l“—m ( ¢27'y—A2¢2 ) (4:5)
with associated scalar solution
2
¢% = ¢1 - ﬁ ( ¢2 ¢y Ay ¢>z ¢z> - (4.6)

Hence, application of the Tzitzeica transformation to ¥; and X, produces two
surfaces Y12 and Y5; whose position vectors read

2 i iy
T2 ="T1— W A= ¢z - A2¢—%T1z

(4.7)
2 ¢’2x ¢2y
Tol =Ty — ————— Toy — A Tog | -
21 2 (A—AD)hs ( Pt 2y 1—3 1 2
It turns out that these two surfaces coincide, that is
T12 = T21 (48)

which implies closure of the corresponding Bianchi diagram [12].

The fact that the Bianchi diagram associated with the Tzitzeica transfor-
mation commutes is paramount to the analysis in the remainder of this paper.
Indeed, for fixed parameters = and y, iteration of the Tzitzeica transformation
generates a two-dimensional lattice in R® which we label by

r(ni,n2) = r(z,y;n1,n2) (4.9)

so that the Tzitzeica transforms 7,75 and r152 = r5; correspond to increments
of n; and ns in the sense of Section 3. This together with the tangency condition
(4.3) gives rise to the following theorem.

Theorem. The Tzitzeica transformation generates a two-parameter (z,y) family
of discrete asymptotic nets. The unit normals of these nets coincide with those
of the corresponding affine spheres.
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In order to obtain further properties of these discrete asymptotic nets, it is
observed that on use of the expressions for r; and 72 one may remove the tangent
vectors in the expression for r12 in favour of r1, 75, and 7, leading to

rin—r1 =a(ry—7r)+ B(rie —r1)
ri2 + cor = f[(clrl + 027“2) (410)
To2 — T2 :’Y(TZ—T)‘F(S(TlQ —’I"z),
where
Ay +A 2 -t
H=32—+ |1 (A261 ) — A1y e2) (4.11)

Az =N | (A2 = Ap)hglg?
and the coefficients ¢; are given by

A+ A, A+ A
TAh, cp = AN,
The linear triad (4.10) may be regarded as discrete Gauss equations for the

asymptotic nets generated by the Tzitzeica transformation. In fact, the compat-
ibility conditions of this triad results in the parametrization

Cop = C1C2, Cc1 = (412)

o1 (]
a=cy—=—, ==
? 10 7 1H20'
A=0oB—-1+¢, B=o0d—1+¢ (4.13)

c=14c¢co—(c1 +c2)H
and the nonlinear system

A2 - TlA, B1 - AZ
H H

where F' is a known function of the indicated arguments. Now, introduction of
the scaling

B, H, =F(H, Hy, H,, A, B) (4.14)

].-|—COH

A=(E-1)A, B=(3-1)B, ﬁZQ+@

(4.15)
leads to:
Theorem (Generalized discrete affine spheres). The Tzitzeica transforma-

tion generates generalized discrete affine spheres which are defined by the discrete
Gauss equations

B H -1 ( )+ A—-1 ( )
rin—T1 = Ciu Hl(H — 1) ry—r Cle Ti2 —T1
r12 + cor = cooH (c171 + c272) (4.16)
Hy -1 B-1
T2y — T2 = C22 2 (ro —7) +c21 (ri2 —7r2)

Hy(H - 1)
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where
. A+ A AN . _2A—A2 Ay
UTACA A A T TA DA AL A Ay + Ay @17
Cop = ———. .
A+ A A — Ay LA A P A Ay
REA MM P IA TN A
Every solution of the generalized Tzitzeica system
H H
Ay = #A, B, = ?23
(A1 — Ay)?(Hy2 — 1)(H —1)H
(4.18)

+ Hyp[4A Ay(H A — H)(HoB — H) — (A + A2)*(H, — 1)(Hy — 1)H?] =0

corresponds to a one-parameter family of generalized discrete affine spheres repre-
sented by the parameter A. Discrete affine spheres are obtained in the well-defined
limit Ay — oo, Ay — 0 with the substitutions A — —AAN1/2 and B — —B/(2Az).

Remark. The asymptotic nets generated by the Tzitzeica transformation depend
on the parameters A; and A,. In principle, these parameters may be functions
of ny and ny respectively. In this case, the linear triad (4.10)—(4.12) is still valid
even though the compatibility conditions are more complicated. It turns out,
however, that in a natural continuum limit, the dependence of A; on n; corre-
sponds to the usual ambiguity in the definition of asymptotic parameters on gen-
eralized affine spheres. A generalized affine sphere is defined by the requirement
that the logarithm of the affine distance between the surface and a fixed point
in R?® be a harmonic function. This will be discussed in a forthcoming paper [20].

In conclusion, we point out that, once again, the parametrization

2 2
T, LT, .
A=—1 H='2 pB=_2 (4.19)
TT11 TT12 TT22
yields a single discrete equation, viz
T 71 Ti1 A A 71 Ti1 Ti12
142
T2 Ti2 Tz |=4—————= |2 T2 T22 |- (4.20)
(A1 — A2)?

T22 T122 T1122 T12 T112 T122

This generalized discrete Tzitzeica equation has been recently identified as a
symmetry reduction of a four-dimensional discrete equation which, in a natu-
ral continuum limit, may be regarded as another form of Plebanski’s heavenly
equation governing self-dual Einstein spaces [19, 18].
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5 The Backlund transformation

It is evident that the Tzitzeica transformation provides an invariance of the Gauss
equations for both classical affine spheres and generalized discrete affine spheres.
This is due to the fact that the Bianchi diagram associated with the Tzitzeica
transformation commutes. Thus, if we apply another Tzitzeica transformation
to our Béacklund lattice of affine spheres r(ni,n2), we obtain a second lattice
[r(n1,n2)] of affine spheres. The closed Bianchi diagram now guarantees that
these affine spheres are again Bicklund transforms of each other. This may be
symbolized by [r(n1,n2)]" = r'(n1,n2). The explicit construction of ' is given
below.

Let r; and 72 be the Tzitzeica transforms of r as given by (4.2); and (4.5)
and 1 be another solution of the Gauss equations (4.1) with parameter p. Then,
the Tzitzeica transformation generated by ¥ reads

2 @
r—r=r— = (A%ry - M%M) (5.1)

and the action of the first two Tzitzeica transformations on ¢ is given by

2 o3 o3
1/)1 = 1/) — m <ME’T‘y — A1 E'f‘az)

2 o2 @2
(= o)k <“W” B AZ?”) '

These relations and the expressions for r; and 7rs may be used to eliminate
derivatives of r and ¢ in (5.1). One obtains

(52)
Y2 =1 —

;L H
r_r_—(A—,u)(H—l) (5.3)
x |(A - Aﬂﬁﬁzdm —(A- AgHAfAQr

on use of the formulae (4.11) and (4.15)3 for H. Moreover, it is directly verified
that this transformation formula is not only valid for generalized discrete affine
spheres generated by the Tzitzeica transformation but also in the generic case.

Theorem. The Gauss equations for generalized discrete affine spheres and the
generalized discrete Tzitzeica system are invariant under

,_ S ;4
r—)r—w, A_)A_W/JHA 5
P11 3
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where u
S = '(/)'f' — m(l‘&lAg'{/}AlT — I‘LZAl’l/JAQT)
| N (5.5)
—(A—A)2TH e S (A= AT H
K1 = (A Al)AQ _Al, Ko (A Az)A2 — A1

and ¥ is a scalar solution of the Gauss equations (4.16) with parameter p. The
new T-function is given by
=1 (5.6)

without loss of generality.

As pointed out earlier, the Gauss equations (3.25) for discrete affine spheres
are obtained from those for generalized discrete affine spheres in the limit A; —
00, Ay — 0. Thus, on application of this limiting procedure one obtains a dis-
crete analogue of the Tzitzeica transformation.

Theorem (The discrete Tzitzeica transformation ). The Gauss equations
associated with discrete affine spheres and the discrete Tzitzeica system are in-
variant under

r—>r':§ A— A = %A
Y’ (XTI (5.7)
Hom=Y"p pp_ Y p |
Yipry PYiPas
where
_A-p or— ——H (AA A — AL (5.8)
" Ato (A=) (H —1) HFoer T AP '

and ¥ is a scalar solution of the Gauss equations (3.25) with parameter u. The
skew-symmetric bilinear quantity S is normalized in such a way that it obeys the
identities

ALS =9ri —iir,  AsS = thor —¢r,. (5.9)

These relations constitute the counterparts of those associated with the classical
Tzitzeica transformation.

6 Loop group description

Affine spheres allow a description in terms of loop groups. Here, it is shown that
a natural discretization of this description leads to the same definition of discrete
affine spheres. Whether the loop group discretization method may be applied to
convex affine spheres is under current investigation. Technically, the latter case
should be more difficult than the case of the indefinite Blaschke metric 2.

?Discrete definite as well as indefinite affine spheres are defined in our recent paper [5] in
terms of duality relations involving a dual or co-normal lattice.
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The frame equations for the family of immersions (2.15) are gauge equivalent
to the matrix system

R, =UR, R,=VR (6.1)
where
%20 Ty hT’”/\aEla:)O b(o)og
R=[020])|r, |, U=s[0 -2 x|, V=22 00| (62
001/ \r A0 0 0 20

and A = A3, The structure of the above linear system allows a natural algebraic
interpretation®. Thus, introduce the loop group

Gl = {¢: R = SL(3,R) : Q(¢\)Q ™" = ¢(),
T(p(=A)'T = ¢(N)}

010 q 00 '
T=(100), Q=(0¢0]|, q=e>/3. (6.4)
001 001

The first reduction in (6.3) should be understood in terms of the Laurent series
P(A) = ez Ok A" € G[A] with coefficients of the form

(6.3)

where

* 00 0x0 00 %
Qﬁgn: 0*0 y ¢3n+1: 00* y ¢3n+2: *00 . (65)
00 % *00 0x0

The Lie algebra of this group is
9N = {€: R = sl(3,R) : QE(gNQ™" =), TE(-NTT = —¢(N)} (6.6)

with the same Laurent series formulation.
The following natural subgroups of G[\] are essential for the construction of

discrete affine spheres:
0
a1
0

GO = G*A\ NG\ = {(

0
0
1

GT[\ =< ¢eGA => ¢k,\’“} (6.7)

o o R

k>0

G-\ = 6 €G] =D A

k<0

3The reductions (6.3) of the zero curvature representation for the Tzitzeica equation were
first introduced in [13].
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The corresponding sub-algebras of g[\] are

A 0O
g’ = 0-A0 |, AeR
0 0 O
g = {Eegl: g =D & (6.8)

k>0

g\ =SEegl:E) =) &t

k<0

It is seen that U,V € g[\], which implies that R(x,y) € G[)] for all (z,y) € R?
if the same holds for some point (zo,y0) € R?. Conversely, the matrices U,V
in (6.2) turn out to be the simplest matrices in the corresponding sub-algebras

Uegt\,Veg A, UV &g

Theorem (Loop group description of classical affine spheres). Let ¢ :
U — G[)\] be a smooth map on a domain U C R? satisfying

0 ' =AA+B, ¢, ' = %C + D, (6.9)

where A,B,C,D : U — sl(3,R) with A3 #0,C13 # 0 and (z,y) are standard
coordinates in R?. Then, the G°-gauge equivalent matrix

Asz 0 0
R=0¢, o=| 0 A;50 (6.10)
0 0 1

satisfies (6.1) with ay = b, =0 and h = C1 34 3.

This statement follows directly from AA+B, 1C+D € g[)] and the compatibility
conditions for the system (6.9).

A natural integrable discretization of the system (6.1) is obtained as follows.
With each point (n;,n2) on a Z?lattice one associates ®(ny,ny) € G[\]. The
matrices ®(n1,n2) corresponding to two neighbouring vertices are related by

o =UD, B, =V3, (6.11)

where the usual notation has been used, that is ® = ®(ny,ns), ®1 = ®(n1+1, n9)
and ®2 = ®(ny,n2 + 1). The matrices U = U(n1,n2),V = V(n1,n2) € G[A] are
associated with the edges connecting neighbouring lattice points and satisfy the
compatibility condition

ViU =UsV. (6.12)
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Now, the Gauss equations (3.25) of the discrete affine spheres may be trans-
formed into the matrix system

Ry =UR, R,=VR (6.13)

by means of the gauge transformation

% 0 0 Al’l“
R=v2| 0 Ay 0 | | Aor |, (6.14)
0 0 1 T
where A = A3 and
% + AN 20 A 2)24
_ H-1)H Hy(H—1 Hy(H—1
U= A? (Z(H1 ) 1)1 (}}1*1)) A (}}1*1))
A 0 1
. (6.15)
-1
H %( H ) %(H -1
_ HH. H»> H.
V= %B(Hq)(ffrzq) % LSBH(( ; =B 21
0 i 1

Conversely, the matrices (6.15) turn out to be the simplest matrices obeying
UeGH\,VeGT\, UV ¢GqG°.

Lemma. The general form of cubic elements of G[A] is

{A= ZAM € G\} = G5 UGS,

k=0
3
{B=Y B\ € GI\} = G{_3) UG, (6.16)
k=0
G‘(]3) = {A’ :a,b,c € R},

G/ = (B dfgery, 0D
(,3) ta, J,9 ’

where
L4 IX%c Ae N%be
Al = 3X%ab®* a  Aab
Ab 0 1

(6.17)

BI

Il
|'_I >l
QU
~
== O
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and their inverses

a —Ac 0
Al = [ Lazapr L 1xp2e -
—Aab A2be 1
(6.18)
f s=fo® —xfyg
B = | —td L1-iLdg Ldg
0 —%g 1

Remark. The linear and quadratic cases, which correspond to b = ¢ = 0 and
¢ = d = 0 respectively in the formulae above, are trivial. In these cases, the
dependence on A may be gauged away and one obtains equations in G°.

Consider a map ® : Z? — G[\] with cubic ®;® ! and ®,® . We call
it superdiscrete if the image of the map ®;®~! : Z? — G[\] does not lie
completely in G{;) or completely in G, i.e. matrices of both forms A’, A
appear in ®(n; + 1,n2)®(ny,ny) "t for some ny,ny, or the image of the map
®,® ! : Z2 — G[)\] does not lie completely in G{73) or completely in G{£3).

Since AT = (ATH)~1, BT = (B!1)~! it is clear that in the non-superdiscrete
case it is sufficient to consider, for example,

0,07 27 5 Gy, 00727 - Gy,

All three other cases may be obtained by the change of variables n; — —n; or
ng — —ng or (ny,ny) = —(ny,ne).

Theorem (Loop group description of discrete affine spheres). Let @ :
Z? — G[\] be a non-superdiscrete map with

3 3
207 =) AN, Bt =D Bah (6.19)
k=0 k=0

and A3 Z0, B3 Z0. Then, up to a change of the orientation of the axes repre-
sented by ny — —ny or ny — —ny or both,* the system (6.19) is gauge equivalent
to (6.13)~(6.15).

41 — 1 or 2 — 2 or both in our short notation
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In order to prove the theorem, choose the directions of n; and ns in such a
way that & &~ ! = A and &, = B!L. The transformation

b 0 0
R=0¢® o=[|0b"10], (6.20)
001

where b is the coefficient in A!, gives rise to the admissible normalization b = 1.
The analysis of the compatibility conditions then provides us with the identifi-

cations I = I
-1 -1
o= H-DH (6.21)

= H — 2= =
f ’ g H ’ (Hl_]_)

Finally, introduction of

(H—1)(Hy — 1)

22

produces (6.13)—(6.15).

Remark. One of the possible descriptions of Bécklund (Darboux) transforma-
tions is the so called ‘dressing up’ procedure [8]. In this approach, the transfor-
mation of the surface (or the frame of the surface) ¥ is described by

U0 =QU, (6.23)

where ¥ and @ lie in some loop group GG. Commutativity of two dressing trans-
formations represented by QQ2Q1 ¥ = Q1 Q2 ¥ implies the compatibility condition

Q2Q1 = Q1Q (6.24)

in G which may be interpreted as an equation of a discretized surface.

Let us denote by R.G[A] the loop group defined in the same way as G[A]
but with the target space R,SL(3,R) instead of SL(3,R). In this context,
the Tzitzeica transformation (4.2) was described in [8] by a cubic polynomial
Q = Ei:o QrA* € R.G[)\], where the leading term @3 is non-degenerate, i.e.
det @3 # 0. Consequently, the compatibility condition (6.24) implies the defini-
tion (4.16)—(4.18) of generalized discrete affine spheres.

7 Particular discrete affine spheres

Here, we briefly sketch how the discrete Tzitzeica transformation (5.7)—(5.8) may
be used to construct explicitly a particular class of discrete affine spheres. To
this end, it is observed that

H = const, A =const, B = const (7.1)
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constitutes a solution of the discrete Tzitzeica system (3.14) if and only if the
constraint

(H+1)(H —1)* = ABH? (7.2)
is satisfied. In this case, the discrete Gauss equations (3.13) reduce to a system
of linear equations with constant coefficients, and hence it is sufficient to seek
particular scalar solutions of the form

¢ =a"b" (7.3)
where the constants a and b obey the algebraic system
(a+b)H=ab+1
ala+1)A = (a—H)(a—1)(a— H™) (7.4)
b(b+1)B= (b—H)(b—1)(b— H™1).

It is readily shown that the constraint (7.2) is a consequence of (7.4). Thus, for
fixed A, B, and H, the cubic polynomial (7.4)2 possesses at least one real root «
with the corresponding real root 8 of (7.4)s given by (7.4);. We may use these
roots to parametrize A, B, and H according to

:a6+1 4o Bla+1)(a—1)3 B a(B+1)(B—-1)3
a+p’ ala + B)(ap +1)’ Bla+ B)(aB +1)

so that the constraint (7.2) is identically satisfied. The remaining roots are then
obtained by solving quadratic equations. In this way, we obtain three linearly
independent scalar solutions of the discrete Gauss equations (3.13) from which
we can construct the position vector r of the seed discrete affine sphere.

In order to apply the discrete Tzitzeica transformation, one needs a scalar
solution of the deformed discrete Gauss equations (3.25) with parameter u. It
turns out (as in the continuous case) that the choice u = io with real o yields
interesting discrete surfaces. Thus, the ansatz

Y =p"q™ (7.6)

(7.5)

produces the algebraic system
(p+q)H =pg+1
iop(p+1)A= (p-H)(p—-1)(p—H") (7.7)
—iog(g+1)B = (¢—-H)(¢-1)(¢—H™).

It is observed that if (p,q) is a solution of the above system then (1/p,1/7) is
another solution, where the overbar denotes complex conjugation. Hence, there
are three pairs of roots

Py, Pe) = 1/pa), pe) =1/ps) (78)

qy, 9 = 1/qq),  q@) = 1/4s)
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related by (7.7);. This implies that the linear combination
v = VB + R T) v = const (7.9
is admissible as a solution of (3.25) or, equivalently,
¥ = cosh(y) exp(id)
(7.10)
Y =cng + eng 3, 0 = cqny + G5y + G,

where the real constants ¢; may be read off (7.9). A new real solution of the
discrete Tzitzeica system is therefore given by
cosh(y + ¢1) cosh(y + ¢2)
H
cosh(y) cosh(y + ¢1 + ¢2)

cosh(y + ¢1)?
cosh(vy) cosh(y + 2¢;)

H =

Al = (7.11)

_ cosh(y + e2)?
~ cosh(v) cosh(7y + 2¢2)

and the corresponding discrete affine sphere may be obtained by means of the
transformation formula (5.7); in a purely algebraic manner. By virtue of the
representation

. sinh(c; ) sinh(cz)

~ cosh(y) cosh(y + ¢; + ¢z)

it is seen that H' constitutes a simple discretization of the usual sech?-shaped
one-soliton solution.

The procedure sketched above is now illustrated by way of the simplest ex-
ample

H' —

(7.12)

a=04>1, o=1 (7.13)
In this case, the roots of the system (7.4) turn out to be

ala+1) £i(a—1)/ala®+a+1)
ala? +1) (7.14)

a: o ar=
b: o, by=ax.

Thus, decomposition of either a4 or a_ into

U]

(7.15)

ax =€

leads to three linearly independent real solutions of the discrete Gauss equations
associated with the constant solution (7.5) given by

T = 712 cos[E(ng — na)]
y =72 6in[=(ng — no)) (7.16)

= qmtn2 ,
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where

1/2 — /2 a+l

=a” 2) = : . 7.17
T=a cos(E) pep (7.17)
Consequently, the position vector of the corresponding discrete affine sphere
reads

x
r=D|ly], (7.18)

z

where D is an arbitrary but non-singular constant matrix.
The roots of the algebraic equations (7.7),—1 reduce to

2t da+1
a+1i(a—1),/%

a+1l+i(a—1)
b+ =—"7 ———

da (7.19)
_ 1-ia o .
b)) = a—1i’ d+ =P+, 4@3) = P3)-
Hence, on using the parametrization
p+ = exp(k +ix), (7.20)
where
_atl ~
cosh(k) = Sz V@ +1 .
COS()_O‘i'H Sin()_o‘i_l (720
X \/§ O{2+1’ X \/5/—052—{—1’
we may choose
¥ = cosh[k(ny + na)]explix(n1 — n2)] (7.22)

as a particular scalar solution of the deformed discrete Gauss equations with
parameter g = i. Finally, insertion of the seed position vector (7.18) and
into the discrete Tzitzeica transformation (5.7)a=1 produces the following three
particular solutions of the discrete Gauss equations:

, rutne [ V2a cosh[k(ny +ny + 1)]- =
= -1 =\ =
- — n T coshln(n ¥ )] cos[Z(n; — ny)]
. rutne [ V2a  cosh[k(ny + ny + 1)]- <= 7.23
- -1 =y = n: (723
y — + T coshln(n + )] sin[Z(n; — ny)]
. aqmtne | 5 cosh[k(ny + n2 +1)]
e ala+1) - V2va? +1 cosh[r(n )
I 1+ n2)]
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Thus, the position vector of the new discrete affine sphere takes the form

.’If,

r=D"[4y" |, detD #0. (7.24)

ZI

The discrete affine spheres represented by r and 7' may be regarded as ‘dis-
crete surfaces of revolution’ if D = D' = 1 and

™
=—, NEecZ. 2
N’ € (7.25)

(1]

More precisely, if this condition is satisfied then the discrete surfaces possess
a Z rotational symmetry. Furthermore, if we apply the translational symmetry

n; — n; + %E, ng — Ny + %E, Y = const (7.26)

to the formulae (7.23), we may choose ¥ in such a way that there exists ann € Z
for which

a?+1
tanh[k(n + X)] = e————=, €= =%1. 7.27
= ) a?+4a+1 (7.27)

It is readily shown that this choice leads to

=0, i=1,2, (7.28)

=0 or A,‘Z’|

ni+nz=n

ni+nz=n

depending on the sign in (7.27), that is if e = —sgn(k) or € = sgn(k) respectively.
In geometric terms, the former case corresponds to a local degeneration of the
discrete surface to a vertex while the latter implies the existence of a closed
planar coordinate polygon.

Seed discrete affine spheres () together with their Tzitzeica transforms (r')
are displayed in Fig. 1 for various values of V. The first surface on the right-hand
side (N = 4) contains a square coordinate polygon parallel to the (x,y)-plane.
The second surface on the right-hand side (N = 6) possesses a vertex. The ele-
mentary quadrilaterals which belong to both the upper part and the lower part
of the surface are degenerate. In the remaining case (N = 20), the choice of X
becomes insignificant since x is sufficiently small. It is noted that for large IV the
discrete affine spheres resemble their continuous counterparts as depicted in [21].
Indeed, it turns out that the latter are obtained in the limit N — oo.
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Fia. 1. Discrete affine spheres for N = 4,6, 20
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