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Bonnet surfaces and Painlevé equations

By Alexander Bobenko and Ulrich Eitner at Berlin*)

Introduction

Let # be a surface in Euclidean 3-space without umbilic points. This paper studies
the following

Problem. To classify non-trivial one-parameter families 7, , T € (—¢, ¢) of isometries
of # = %, preserving both principal curvatures.

Since the Gaussian curvature is preserved by isometries one can reformulate the
problem, replacing ““both principle curvatures” by ‘‘the mean curvature function”. Let us
specify what we mean by a non-trivial family. We consider families of surfaces which do
not differ by rigid motions. We assume also that the surfaces and isometries are suffi-
ciently smooth. The case of surfaces with constant mean curvature (CMC surfaces), which
all possess non-trivial isometries (the associated family) is also excluded from our con-
sideration. We suppose that the mean curvature is a non-constant function on Z

It turns out that the condition of possessing a one-parameter family .7, of isometries,
preserving H, implies restrictive conditions on % Moreover, it was shown by Cartan [C]
that all the family %, can be described (see section 2) as a reparametrization of % itself.
Thus the problem is reduced to the problem of classification of the surfaces Z. Since the
problem formulated at the beginning of this introduction was first studied by Bonnet, we
call these surfaces Bonnet surfaces.

The problem is classical and many mathematicians contributed to its solution. O.
Bonnet himself showed in [Bo] that besides the CMC surfaces there is a class of surfaces,
depending of finitely many parameters, which allow non-trivial H preserving isometries.
These results were developed further by L. Raffy, who proved that the Bonnet surfaces
are isothermic (i.e., allow conformal curvature-line parametrization) and isometric to sur-
faces of revolution. In 1899 J. N. Hazzidakis [H] showed that the mean curvature function
H satisfies an ordinary differential equation of the third order and was able to integrate

*) Partially supported by the Sonderforschungsbereich 288.



48 Bobenko and Eitner, Bonnet surfaces and Painleve equations

it once. Graustein [G] proved that all Bonnet surfaces are Weingarten surfaces, i.e. the
mean and the Gaussian curvature are related by d H A dK = 0. He also found a convenient
alternative description for the Bonnet surfaces. Namely, he showed that these surfaces can
be characterized as isothermic surfaces where for x and y conformal curvature-line coordi-
nates the function 1/Q with

1
0= 2 (F.,—F,,,N), F the immersion, N the normal vector field on F,

is harmonic, meaning
(Oxx +0,,)(1/ Q) = 0.
In modern notation Q is the Hopf differential, written in isothermic coordinates x, .

Later the problem was treated by E. Cartan in [C], where the most detailed results
concerning the Bonnet surfaces are presented. Cartan gave a modern definition of these
surfaces and classified them into 3 cases A, B and C. The mean curvature function H(¢)
satisfies the Hazzidakis equation

0 (5 ) - =10r(2-10).

where |Q|? is a fixed function which is different for each of the three cases A, B and C
(see section 2):

4
2 __
10,4l ~ sin?(21)°
4
2 C
1
Ichzzp.

Equation (1) is the Gauss equation of the Bonnet surfaces. After the result of Hazzidakis,
who reduced this equation to equations of the second order for all 3 cases A, B and C
there was no progress in investigation of (1). Cartan finished his paper by the phrase: “An
investigation of the singularities of the differential equation (1) seems to be difficult.” We
mention also a more recent paper by S.Chern [Ch], where it was shown in particular,
that the argument of the Hopf differential written in any conformal coordinates is harmonic.

It turns out that Cartan was right in his estimation of equation (1), (2). In this paper
we show that the Hazzidakis equation (1) with |Q|? given by (2) is isomorphic to the
Painlevé equations: namely to Painlevé VI equations in cases A and B and to a special
case of the Painlevé V equation, which can be reduced to a Painlevé III equation, in case
C. The isomorphism is given by explicit formulas (81), (79) in cases A and B and by (49),
(53) in case C.
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Although the formulas establishing the isomorphism can be checked directly, they
would hardly be found without using the theory of integrable systems. The starting point
of the present paper is an observation made in [B94] that the frame equation for the
Bonnet surfaces written via 2 X 2 matrices has the same structure as the Lax representation
of the Painlevé equations given in [J-M], [I-N]. Here we develop this observation and
describe the corresponding isomorphism explicitly.

Modern achievements in the global asymptotic analysis of the Painlevé equations
make it possible to evaluate in closed form (in terms of elementary functions and their
quadratures) asymptotic connection formulae for the corresponding solution manifolds.
This is a characteristic analytical property of the special functions. In other words, the
current status of the Painlevé transcendents should be considered to be the same as that
of the hypergeometric functions and their degenerations. If a problem can be solved in
terms of the Painlevé transcendents, the solution should be treated as an explicit one. In
more details, this point of view is presented in the review papers [192], [194]. Therefore
we solve the Bonnet problem mentioned at the beginning of this introduction explicitly.

In Appendix A a special case is discussed, when the Bonnet surfaces can be described
in hypergeometric functions. Appendix B deals with the asymptotes of the families of type
A. In particular we show that they are helicoidal surfaces and give a geometrical meaning
of Hazzidaki’s integral of (1) in this case.

After a preprint version [ B-E-94] of the present paper has appeared further progress
in investigation of the Bonnet surfaces has been achieved. In particular, the Bonnet surfaces
in space forms were studied in [CL]. They are dual to natural classes of surfaces with
harmonic inverse mean curvature. This aspect was investigated in [ B-E-K]. The Schlesinger
transformation for the Bonnet surfaces is constructed in [Eit96]. Possible umbilics on the
Bonnet surfaces are discussed in [ Rou]. Finally, let us mention also a recent paper [ K-P-P]
where the Bonnet pairs (i.e. pairs of isometric surfaces with coinciding mean curvature
functions) are described in terms of isothermic surfaces.

Acknowledgements. We wish to thank A. Its, A. Kitaev, V. Novokshenov and K.
Voss for valuable discussions.

1. Quaternionic description of surfaces in Euclidean 3-space

To study surfaces in R* by analytical methods it is convenient to describe them in
terms of 2 X 2 matrices (for more details see [B94]). In section 2 and 3 this description
allows us to identify the equations for the moving frame of the Bonnet surfaces with the
Lax representation of the Painlevé equations.

Let F: # — R? be a conformal parametrization of an orientable surface:

(F,

z

E) =) =0, (F

z

1
,Fz-)=§e"-

Here # is a Riemann surface with the induced complex structure,
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(v,w) =v,w +v,w, + 3wy,

z is a complex coordinate and F, and F; are the partial derivatives

0o\ o _t1fa .o
ox 0y)’ 9z 2\ox ay)’

The vectors F,, F, and N define a moving frame on the surface. The fundamental forms are

3) (dF,dF) = e'dzdz,
—(dF,dN) = Qdz*+ He"dzdz + Qdz?,
where Q = (F,,, N) is the Hopf differential and H the mean curvature function on F.

The compatibility conditions (the Gauss-Codazzi equations) of the moving frame
equations are

2

H _
U+ —e"—200e "= 0 (Gauss equation),
4) 2

- H . .
0.="¢, Q. = 72 ¢" (Codazzi equations).

Let us denote the algebra of quaternions by H and the standard basis by {1,1, j, k}
(5 k =ij= —ji, i=jk=—-kj, j=ki=—ik.

We will use the standard matrix representation of H:

(0 =i\ . [0 —t —i 0 10
w)l:<—i 0>”:<1 0>’k:<0 i)’ﬂ:<01>'

We identify the 3-dimensional Euclidean space with the space of imaginary quaternions

ImH = su(2) = span(i, j, k)
by

(7) X=(x,x5x3) =xi+x,j+x;kesu(2).
The scalar product of vectors in terms of matrices is then

(X,Y):—%tr(XY).

Let us take @ € SU(2) which transforms the basis i, j, k into the orthonormal frame
e "?F, e "?F, N:
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) e"PE =07 ®, ¢ "?F,=0"'jd, N=0® 'k®.
Deriving (8) with respect to x and y, respectively, using the moving frame equations
for F,, F, and N, and the condition that F,, = F, we find for the complex coordinate

z=x+41iy, z=x—iy that

—4Qe 42 u; —2He”/2>

1 u 1 —
-1 _ - z - —1=_
©) @07 = 4 <2He“/2 —u, >’ ®:® 4 <4Q€u/2 Uz

For a more detailed discussion of this see [ B94].

2. Differential equations of Bonnet surfaces
Definition 1. If a surface & posesses a 1-parameter family of isometries %,
Fo=%, 1€(—¢8), >0,
preserving the mean curvature function, & is called a Bonnet surface.
Let F.: # — R? be a conformal parametrization of %, and
z:VeZ->UcC
be a local parameter. Locally in terms of z e U we get a map

F: (—ge)xUcsC - R3,
(t,2,2) — F(tr,2,2).

We suppose also that F is umbilic-free and analytic.

Remark 1. The property that F be umbilic-free is necessary since we are dealing
with conformal curvature line coordinates which exist only away from umbilics. Requiring
the surfaces to be analytic ensures that the set of those exceptional points is discrete.

Remark 2. Since isometries preserve the Gauss curvature, both principal curvatures
are preserved.

General cylinders and surfaces of revolution are examples of Bonnet surfaces. They
are generated by a rigid motion acting in a plane curve. The plane curve as well as the
curve given by the rigid motion action are curvature lines on these surfaces. The action
is an isometry and because it preserves the curvature lines it preserves the mean curvature.

For CMC (constant mean curvature) surfaces it is well-known that there is an iso-
metric 1-parameter family of CMC surfaces with the same mean curvature value — the
so-called associated family. Thus these are also examples for Bonnet surfaces.
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We restrict our discussion to non-constant mean curvature surfaces not generated
by a rigid motion.

Let us denote the Hopf differential of F(z,z,2) by Q.(z,Z). The Gauss equation (4)
implies that | Q,(z, Z)| is invariant under the deformation, so

0,(z.2) = €759 ¢, (2,5),

where ¢, (z, z) is real-valued. The Codazzi equations in (4) yield

(Q: — Qo) = {(e'7"59 — ™29 g (z,2)}: = 0,

which gives

(10) 0, — Q= (e59 — 022 g (2,2) = f(,2).
Thus we find
0 ~ ) 0 _
A_ Q‘E(Z’Z) = lQr(ZaZ)_ (p(T,Z,Z) = g(TaZ)
01 0t

is holomorphic for all z. Solving this for Q, we find

a -1
(11) 0.(z,2) = —ig(T,Z)<E ¢(1,2,2)> ;

which is a product of the real-valued function (the derivative of the argument function ¢
with respect to 1) and a holomorphic function —ig(z, z) (the —i multiple of the derivative
of f(z, z) with respect to 7).

It is not hard to see that (F,,, N) = —2Im(Q) for a conformal immersion F and its
normal vector field N. So the vanishing of the imaginary part of Q is equivalent to the
fact that the conformal coordinates x and y are curvature line parameters as well.

The following lemma shows that the form (11) for the Hopf differential means that
the surface 1s isothermic, 1.e., admits conformal curvature line coordinates.

Lemma 1. Let Q(z,2) = f(2)q4(z,2) be the Hopf differential of an immersion with
f(z) holomorphic and q,(z,z) a real-valued function. Then with respect to the conformal
coordinate

w= f f(2)dz
the corresponding Hopf differential is O (w, W) = q,(z(w), Z(W)).
The next theorem shows that 1/Q is harmonic.

Theorem 1 (Graustein [G]). Any umbilic-free analytic Bonnet surface is isothermic.
With respect to isothermic coordinates, 1/Q is harmonic:
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1

(12) 0(z,2) = m,

where h(z) is holomorphic.

Proof. Let us consider a conformal curvature line parametrization of # = %,. Then
Q,(z,2) is real. On the other hand our previous observations imply

(13) 0.0.=05, 0.=0,+/(r,2),

with f(z, z) holomorphic as above. Solving (13) one gets for all t

_ff _
QO - f—f—f’ Qr fQO
We identify
1 .
(14) h(z) = — @ +iT (1)
and find
1—iTh 1
15 0.(2) =0p(z2) = <1+;Th> (HE), TeRU {400}

for the deformation family in terms of a new deformation parameter 7= T'(1).

Finally we show, that /(z) can be made 7-independent by a proper choice of T'(7).
Since Q, = 1/(h(z) + k(2)) is t-independent, /(z) as well as 1/f(z, z) must be sums of a 1-
independent holomorphic function and a purely imaginary function depending only on 7.
Using this fact we can assume that /(z) in (14) is t-independent.

Remark 3. The dependence of T on 7 might be rather complicated. We consider T
as a new deformation parameter that can take any value in R P!. Formula (15) shows that
the dependence of the family on 7' is smooth.

In our argument we do not prefer any special Bonnet surface of a Bonnet family.
Therefore the above holds for any Bonnet surface of a Bonnet family but with different
functions 4 and different curvature line coordinates z and Z. For any such surface the
compatibility conditions (4) are as follows:

1

16 5 ~
(16) 0(z,2) W)+ hG)’

H.\ H. B2 H?h .
1 zZz _ _Z — 2 z - _ Z_ t
17) < H. >2 . G+ Hoht 7 (Gauss equation),
(18) h,H_=h.H. (Codazzi equation),

, 2h, . .

(19) @) = — "2 (Codazzi equation) .

(h+ W H.
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Remark 4. The isothermic coordinate z in Theorem 1 is unique up to z — az + f,
where o is a non zero real or purely imaginary number and f € C arbitrary.

Lemma 2. The transformation of the surface  — a7, o.€ R\{0} transforms
h(z) = 1/ah(z).

Proof. A scaling of the surface by a changes the coefficients of the fundamental
forms in the following way:

1
(20) e s a’et, H->-H, Q- aQ.
o

Applying these rules to (16) shows that /(z) must change in the described manner. Then
(17), (18) and (19) are satisfied when the metric and the mean curvature behaves in the
way stated in (20).

We will not distinguish Bonnet surfaces which differ by a scaling transformation.

Theorem 2. Let # = %, be a Bonnet surface with isothermic coordinates z, z. Then

1

(21) w=w(z)=jh @ dz,

is also a conformal coordinate, and the mean curvature function H, the metric u and the
modulus of the Hopf differential | Q| are functions of

(22) t=w+w
only.

Proof. By the chain rule we get H, = h_ H, and H, = h; H, which implies by (18)
that H(w,w) is a function of ¢ only. Since Q(z,2)dz* = O (w, w) dw? we get

~ h?
23) 00w ) = (W(2)?0(z.7) = W(%() .

We rename O by Q. This should not cause ambiguities since now everything is thought to
be expressed in terms of the coordinates w, w. A simple calculation shows

101 = —0y=-0,,

which implies that the metric function satisfies

(24) =" T2
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where H' is the derivative of H with respect to ¢ defined in (22). If we reformulate the
Gauss equation (see (17)) in terms of the mean curvature function H we get the following
equation:

(25) <%>/—H’=|Q|2<2—%>.

Here | Q| should be independent of w — #w because otherwise (H''/H')' — H' and 2 — H*/ H’'
must vanish identically. But this implies H' > 0 in contradiction to (24). Finally the metric
too, depends only on ¢.

Remark 5. An interesting interpretation of the corollary above is that all Bonnet
surfaces are Weingarten surfaces [ G]. This should be clear since the dependence of H and
u on only one real variable implies the same property for the Gaussian curvature K, and
so VH and VK are parallel.

With respect to w the coefficient functions of the fundamental forms of the deformation
family are

. (1—iTh() h2(z) o) 2|h,|*
(26) Qv 7) = <1+iTh(z)> <h(z)+ﬁ(f)>’ R (TENR 15 T O

and H(w,w) = H(?) is a solution of the ordinary differential equation (25). In particular
for T=0 we get for the Hopf differential just Q as in (23).

Let us now fix a particular surface in a deformation family of Bonnet surfaces and
call this F,. The corresponding coefficients of the fundamental forms are as in (26) with
T=0.

Theorem 3. The holomorphic function h = h(z) satisfies the differential equation

(27) h,(h+h)y—hZ=h_(h+h)—hZ.

Proof. Since |Q;|=10,| (Qy = Q in (23)) depends only on ¢ = w + w we have
< h,(2) |7 > :< |h.(2) |2 >
h(2)+h@ ), \h@+h?@ )y

Theorem 4. Up to normalization by transformations described by Remark 4 and
Lemma 2 any solution of (27) is of one of the following five forms:

which implies (27).

hi(z) =z,
hy(z) = —iz*,
(28) hy(z) = e,

h,(z) = 2cosh(z),
hs(z) = 2sinh(z) .
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Proof. First we reformulate equation (27):

Since the left hand side is harmonic the same must hold for the right hand side which
leads to the condition

. h
(29) = T = g e R fixed.

z z

Here /i1(z) cannot be a constant because this would mean that H is a constant too. So
there are two different cases to consider, ¢ =0 and ¢ # 0. The general solution of (29) is

h(z) = A,z + Ayz+ Ay foro=0,

(30)
h(z) = Bycosh()/0z) + B,sinh (]/0z) for o +0.
After resetting this in the equation (27) we get some conditions for the coefficients. To
normalize the remaining freedoms we use Remark 4 and Lemma 2. In this way we get /4,
and &, from the polynomial solutions (¢ =0) and the other three functions from the
hyperbolic solutions (¢ = 0), which completes the proof.

By use of (21) and (26) we find for these five cases and 7= 0:

_ 1 _ 1
Q(l)(WaW)ZMs |Q(1)(W’W)|2=Z—2’

O3nm) =2 ZEEEI 1) 1930l = b
G Qr ) == QM=
o) = =2 Zﬁﬁgg sinh(2(1w+ ) |QolmmIT= ﬁ(zz)’
Qo) = = Ziﬁ g:; sin (2(3114— ) sin24(2 0’

The following theorem classifies umbilic free Bonnet surfaces.

Theorem 5 (Cartan [C]). There are three different types of umbilic free Bonnet
families classified by whether they contain one, two or four surfaces:

Type A:  |Q4(w,w)|* = W containing four surfaces in each family namely
sin

Fr_ 1 with Q3 and Qg, Fr_o with Q3 and Fr_, with Q5(w +n/4,Ww + n/4) from (31).
The surfaces Fr_ L1 are helicoids.
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Type B:  |QF(w,W)|? =
family.

T@t) containing only one quasi-periodic surface in each
sin

1
Type C: |QS(w, w)|* = 2 containing two surfaces in each family, namely Fy_, with

Qb and Fy_ , with Q3 from (31). The surface Fy_, is a cylinder or a surface of revolution.

These surfaces represent all the corresponding one-parameter families of isometries,
which are described by the translations on the surfaces

(32) wow+iT(T), w—ow—iT(T), where T(T) a function of T only.

Remark 6. By the notation F;, T= o0, 0, +% we mean the surfaces one gets by
integrating the moving frame equation with the coefficient functions H(¢), ¢“® and the
Hopf differential Q,(w,w) in (26) for T — 00,0, +£1, respectively, and with the function
h(z) from (28).

Before we start with the proof we should illustrate our strategy. The main idea is,
to show that the coefficient of the fundamental forms, H, ¢ and the Hopf differential are
the same up to the shift (32) for all Te RP!. Actually this is true for the mean curvature
function H and the metric ¢" from our assumption that they are the same for all surfaces
of the family. Therefore the only thing to show is, that for any /(z) in (28) the corresponding
QO (w,w) given by (26) satisfies

(33) Or(w,w) = Q7 (W+iT(T),w—iT(T)), T,eRP!fixed,

for all Te RP' — with the possible exception of some special values. We call these values
the exceptional values and the corresponding surfaces the exceptional value surfaces or
just asymptotes. Twice the number of these exceptional values is the maximal number of
distinct surfaces in each family. More precisely: The shift (32) preserves the mean curvature
function H as well as the metric ¢ and is therefore an isometry we are looking for. On
the other hand it is a reparametrization that according to (33) also preserves the Hopf
differential. Thus the Bonnet-theorem yields that the surfaces can differ only by a rigid
motion, which means, that they are the same — in the sense of Euclidean differential
geometry.

Actually we will show that the families of surfaces generated by

* h,(z) coincide with those generated by /5(z) and vice versa. There are two excep-
tional values, 7= +1. The Hopf differentials at these exceptional values are different.
Moreover the Hopf differential for Te (—1/2,1/2) is different from that for 7> 1/2 and
T < —1/2. But the Hopf differentials on both intervals are the same. Therefore each family
of this type contains four different surfaces (case A).

* h,(2) have no exceptional value surfaces. Thus each family of this type contains
only one surface (case B).
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* h,(z) coincide with the exceptional value surfaces for /s5(z) and vice versa. The
exceptional values are 7'= + oo. The corresponding Hopf differential at these exceptional

values are the same. Therefore the family contains two distinct surfaces (case C).

Proof. We start with the case C. Here we have from (26) and (28)

00 = 03 (= 17+ £ ). Q40nm) = 030,
Q(l)(W,VT/)=QSO(W,W), Q;(W—{—IT,W—ZT):Qi(W,W),

which shows that the first and the third cases of (31) are the same. Moreover we have
1
(34) |Q;(W,W)|2=|Q%(W,W)|2=t—2, for all Te RP'.

We see that there are only two different surfaces (up to translation (32) of the conformal
coordinates), one with O (w, w) and the other with Q3 (w,w) as the Hopf differential.

The surface corresponding to Q¢ (w, w) is either a cylinder or a surface of revolution,
since Qp(w, w) is real, w is a conformal curvature line coordinate on this surface, which
means that the isometry preserves the curvature lines. Any cylinder or surface of revolution
is a Bonnet surface. We shall not consider them.

2w
Surfaces of type B: Here with /(z) = 2cosh(z) and e = — 82‘4/71 we get
2V _
_ 2 1—2iTcosh(2) sinh (2w)
35)  Qr(w, W) = — = - : .
sinh (2(w + w)) \ 1+ 2iTcosh(z) / \ sinh (2w)
. 1—-2iT :
2w —2w
- 2 ¢ (1 + 2iT> ¢
~ sinh(2(w + W) 1=2iTY\ ,., ..
1+2i7)¢ ~ ¢

=Qtw+iT,w—iT)

NP 1—2iT\ 1 T=20T\ oy 77 s uni |
where = — — 10 = —ar . car 1S uniguec on u
2%\ 12 ) T2\ Y1 xaiT y d y up

to an addition of kn/2, k€ Z. In particular
_ To_ i
0% (w,w) = Q3<w+(2k+1)iz,w—(2k+ 1)i1>, kez,
which shows the g-periodicity of Q8. Thus any family of this type contains only one

surface. This is totally described by one period of 7 and a fixed motion in R>. In other
words the surfaces of this type are quasi-periodic because the mean curvature function
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and the metric are periodic in the direction generated by Re(w) = const and the Hopf

differential has a E—perlodlclty in the same direction.

Finally from (31) we find that the modulus of the Hopf differential is just what is
stated in the Theorem.

Surfaces of type A. First we recognize

1—iTh, 1
2 — :h/z 2 _
Qr(w, W) = hy U+ iTh, hy+ I,

A~ A A 1
=Q0; T, w—iT ith T=— =1 /2T
QO(W+1 » W l ) Wil 2 Og( )a

(36)
— Q2(w, ) with T= 1 (1_2T>-

1—iTh 1
>(w, W) = h? > _
Qr(w.w) = hs 1+ iThg hs + hs 2\1+2T
This shows that both cases coincide. So we can focus only on Q3 to describe the whole

family. By doing so we get:

Q3 (w+T(T),w—T(T)) if Te(3.—3).
0500 9) OS(w+n/4+T(T),w+n/4—T(T)) if TeR\[L, —17,
w, W) =
! Q2 (w, ) if T=1,
Q5 (w, W) if T=-—1,
with
“ [ 1-2T
T(T)=_§1°g< 1+2T>‘
Furthermore we find directly
4
512 _ 152 —
03 =103 = 5o

The two surfaces corresponding to the exceptional values T = 43 are helicoids. This will
be shown in Appendix B.

Table 1 presents the fundamental functions and the ordinary differential equation to
be solved.

Type 0 H solves e
in(2w 1
A | Q3= 200 :
sin(2w) sin(2(w 4+ w)) H"\ ” sin?(21) _, H? 3
cos (2) 1 H' 4 7w sin?(21)H'
A, 03 (w,w)=2 - —
cos(2w) sin(2(w + w))
_ sinh (2w) 1 H"Y sinh?(21¢) H? 8
B | Q0w iw)=—22 . . e P
sinh(2w) sinh 2 (w + w)) H’ 4 H’ sinh*(2¢)H'
c 030w ) w1 HY N, H? 2
W, W) = — — - — S P -
0 ww+w H’ H' t2H’

Table 1. Table of fundamental functions
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Remark 7. Even though we started with a local description of Bonnet surfaces,
Theorem 5 shows that our ansatz can be considered to be global.

Remark 8. The amazing result of Theorem 5 is that beyond the associated families
of CMC (constant mean curvature) surfaces there are no real smooth 1-parameter families
of distinct isometric surfaces which have the same principle curvatures.

3. Bonnet surfaces of type C and Painleve V (I1I) equations

Let us return to the description of the moving frame as in (9). In the variables

37) f=whWw, A= —
w4+ w

this system reads as

1
0 _
) -1 _fa®)  e() a2 A
D, (A1) P (/l,z)_z<q)(t) _a(t)>+e @/ ) . ,
-1
(38)
a(t)
- —¢@
) _1 L (a@®)  e() 2
@, (4, 1) P (i,t)-i(q)(t) _a(t)>+ o
2
with the functions a(?), ¢(¢) and e *®/2 given by
() _ 1 _ H"(1)
alt) = 2t 2H'(1)
(39) @(1) = o —ZZH/(t) e" V2,
AT {0}

Remark 9. The equation A'(¢) + [A(¢), B(t)] = 0 with some B(¢) implies that the
eigenvalues of A4 are constant.

Using this remark one can easily see, that the compatibility conditions imply also,
that the determinant of the matrix

(a0 90
A(’)_<<p<z> —a(z)>

is independent of ¢. Here we come to a result, first obtained by Hazzidakis in [H].
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Lemma 3. Equation (25) in the case C has the first integral u, given by

(40) a(t) + 9 (1)* = (g)

with a(t) and @ (t) as in (39).

We have a system of matrix dimension 2 X 2 with the following dependence on A

o, 9! tA(t)—i—lA (t)+ 1 A (1),

(41)
01 = A1)+ C(1).

Here specialists in the theory of the Painlevé equations immediately recognize the Lax
representation for the Painlevé V equation (see for example [I-N]). In the rest of this
section we carry out in detail this identification, showing as a result how the Bonnet
surfaces of C-type can be described in terms of the Painlevé transcendents.

Theorem 6 (Jimbo-Miwa [J-M]). Let us consider the system (41) such that A(t) has
two different eigenvalues. Then the compatibility conditions for this system are equivalent to
the Painlevé V equation

S S B WO G B G s p
@ r0=(55+ =)0 (04 56)

yy(@) oy (y(0)+1)
t y()—1

which implies that the coefficients of the matrices A(t), Ay(1), A,(t) as well as of the matrix
C(t) can be expressed in terms of this function, and the constants o, f, y and & depend on
the eigenvalues of the matrices A(t), A, (t) and A,(t) only.

Proof. Firstlet us normalize the matrices in the first equation of (41) to be traceless by
(43) B > W= e T2 ()2

with © = tr(A4(?)), 1, = tr(4,(¢)) and t, = tr(4,(¢)). The transformed A-matrix has two
non vanishing eigenvalues and we can bring it by another gauge transformation to a
diagonal form. So we may assume that the system (41) is of the form

¢ 1
Yfﬂ/’l—%kJr Ao () + 57— 4,0,
(44)
Ai
‘I’,W”:%kJrC(t)

with = 0. We set A, (1) = (a};(1)) and det(4,(t)) = —0}/4 for v=0,1 and
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0, =—2(ai, (1) +ai, (1) .

It is easy to check that these fs are constants. Now define

(45) Z(t):a?1(l)—%, y()=— a2, (1) <1+M>‘

as; (1) 2z(1)

Finally one can prove that the compatibility conditions of (44) are given by

e tra o (a0 O

(46) 12'(1) = y(l)((t)+90)<(t)+ 5 )
#2000+ 2=l ),
—0,+0,

y (1)

0, 30+ 0,+ 0,
/(1) = ey (1) = 220 (¥ (1) = 1)> = (y(1) — 1)( - L) .

2 2

This system can be rewritten as an equation in y(z) only, which gives (42) with

1 (0,—0,+0,\>  1[0,—0,-0,)\>

(47) oc—§<—2 ) /3—§<72 ,
1 2
p=u—=0,—0y), o=—7u"

Now we apply the proof of Theorem 6 to our system (38).

Theorem 7. Let H(t) be a solution of (25) in the C-case. Then

_2a()—p

YO = ot

with a(t) defined in (39) and u a root of (40) defines a solution of the Painlevé V equation
(42) with

1
(48) a=0, B=0, y=u and 52—5/12.

On the other hand let y (t) be an arbitrary solution of (42) with constants as in (48), u & 0. Then

1(y'(1)* — 12y (1)?)

) HO === 00w —1)?

is a solution of (25). If finally 0 = y(t) and not the solution y(t) = Ce"', the solution is geo-
metrical and the metric is given by

4y(0)(y(1) —1)?
12(y'(1) — uy(0)*”

(50) e = —
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Proof. First let us normalize (38) to the special form (44) with the gauge transfor-
mation

¢

Q
|

¢

NIE NI

Since det(D) = @u this is a regular transformation if ¢ = 0. If there were a domain in C
where ¢ vanishes identically then H(z) = ¢/t and consequently a(¢) also vanishes identically.
However this would require ¢ =0 in contradiction to our assumption. By this gauge
transformation (51), equation (38) becomes

2

o, K

lPlel_lt:u'k_i_ (pefu/Z <_1 1> *u/2 4 a <a+2>

g 2 pG—D\=1 1) 7 pui < g) W
2 4
(52)
It 1( u)
i) 4 2 2
VA A + D)D)
u

We see that 0, =0, for v=0,1, 00 and by (45) we get

2 _ —u/2
(53) 0= S0 =2

These functions solve

1z'(t) = 22 (1) <y(t) = @>

(54) 1y'(t) = pty () =2z()(p(1) — 1),

3y(0)—1 ,2()_y() (@
1) T

PN , YO (y () +1)
0= 500D ~

2(y()—1)

This proves the first part of the theorem. We shall remark that we get the following formulas
by the Theorem 6

R ACIORR))
“O="500-1
w2 _ 2py (1)
(53) ele 1(y' (1) — py ()’
oo = MO0 =y (®)

2(y(t)—1)?
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On the other hand a(1), @ (t)e”*®@'? and ¢ (1)e"®’? can be expressed (39) in terms of the
functions H, H' and H". It can be interpreted as a linear system for these functions, which
is uniquely solvable since ¢ + 0. Comparing (39) with (55) we get (49), (50).

It is simple to prove that y(z) = Ce*' is a solution of (54). But it is the only negative
solution for which neither (49) nor (50) makes sense.

Remark 10. For another real reduction of the Painlevé V equation the equation in
the form (40) appeared already in papers devoted to the calculation of the correlation

functions for the Bose gas [M-T].

Remark 11. For any solution H(¢) of (25) in the C-case

~,

(56) lﬂ)z%H@,Wle=m

is also a solution of (25). That implies that we can fix u to some special value in (40).
Geometrically this is only a scaling of R3.

From now on we fix u=4. The case u = 0 is considered in Appendix A.

It turns out that in the case o = f§ = 0 the Painlevé V equation can be reduced to the
Painlevé 111 equation. The following three statements can be proved by direct calculations.

Corollary 1 ([Ki]). Let y(¢t) be a solution of (42) with « = § =0 and u = 4. The func-
tion p(t) defined by

_(p(O+1)?

solves the Painlevé 111

PP P  p*Q@
p() t

1 1
AP0

58 (1) = .
(58) P 0

The mean curvature and the metric are

(-’ -1)?)
2p*(1) ’
o _ 4p* (1)
(' +p*(0)—1)*

H(t) =
(59)

Remark 12. The reduction (57) holds in general for any Painlevé V equation (42)
with « = f =0 and arbitrary y and 9.

Remark 13. The geometrical solutions p(¢) are of modulus 1 and we have to exclude
the solutions

p()=tanh(2t+c¢) and p()=+1.
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These two functions are solutions of (58). They come via the transformation (57) from
the solution y(7) = Ce*' of the Painlevé V (42) with « = f =0 and u = 4, which we have
excluded in Theorem 7.

Corollary 2. Let p(t) be a solution of (58) of modulus 1. Then its argument ¢ (t)

p(t) =e*v
solves

(60) t(p"(t) —2sin(2¢ (1)) + ¢'(¢) + 2sin(¢ (1)) = 0.

The solutions of (60), which are not solutions of ¢’ + 2sin (¢) = 0 are geometrical. The mean
curvature and the metric are given by

4
> (¢'(1) + 2sin (¢ (1))

Corollary 3. Let y(t) be a solution of the third equation in (54) and z(t) be defined
by the second equation in (54). Then equation (52) is of the form

(61) H(1) = 21(%02 —sinz((p(z))), e =

z(1) _E)
-1_~n: y(l) ! _Z(l) Z(Z)
T =2ikt o e e ) T ( —z(1) z(t)>’
(62) -
z(z)(y(z>—1)—t3y((,§—)_11 Z“(“%)
Yy l=2ik+ - g 1 ’ y(1)—3
z((y()—1) Z(’)<1_ y(t)> -t

The Y-function, which satisfies (62) is related to the geometrical frame @ by the
following transformation:

(63) d(1,7) = % . _11 V(1 2).

_ _ ([) _
V= V=0

4. Bonnet surfaces of types A and B and Painleve VI equation

In this part we will study Bonnet families of type A (containing A, and A, as sub-
cases) and B in more detail. First we repeat the ordinary differential equations to be solved
by the mean curvature function H(¢) in the cases A and B. These are for t =w + w (see
Table 1)

H'(t)\ , B 4 B H2(t)
(59 ( H’(z)) 0= <2 H'(z)) ’
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H' ()Y oo 4 H?(1)
(© <H'<r)> ~ 0= G <2_ H'(z))'

The solutions of these two equations are simply related. Let Hg(¢) a solution of (65). Then

(66) H, (1) = —iH,(if)

solves (64). Now we start again with (9). In all three cases A, A, and B (see Table 1) we get:

D, (2, 8) D™ (A 5) = ! <Sf/(s) ?1(5) >

AN @y(s)  —sf'(s)
n P2(8) — @ () <0 1> 4 P2(5) — @4(s) < 0 0)
A—1 00 A—s -10)°
(67)
LS 09— 50,09
_ 2 s(s—1)
Py (2,5) P~ (2,5) = ,
P3(8) — @ (5) J'(s)
s—1 2
n P2(8) —@(s) (00
A—s 10
where the coefficients are presented in Table 2.
A, A, B
s P4+ W) AoV
Y €4iw _e4iw €4W
j 1
B(s) H, <— i (log (s))) Hy <Z (log (s)))
S % Uy <— é (log (S))> % Up <% (log (S)))
?,(5) _ B e ﬁ eSO ? eI _ % oSO
@2(5‘) 7i?eﬂ”7 ﬁe—fm ?GI(S)f ﬁe—fm

Table 2. Coeflicients in (67)

Let us write down the system (67) in a more general form as

{ 1 { {
68 P 1=—"_ 4 — A A =U, &P 1=——"" 4 cC=VV.
68) @, Gt gt A= G Tt
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The compatibility conditions for this system for A — 0,1, s are

1 1
A;+[AS,C+—A0+—A1 =0,
s s—1 |

1
(69) A;+[A1,C+—AS =0,

S —

1
Ay + |:AO,C+—AS =0.
S

The last equation implies that the determinant of A4, is independent of s (see Remark 9),
and as for the Bonnet surfaces of type C we get the following first integral, first found by
Hazzidakis [H].

Lemma 4. Equation (25) in the cases A and B has the first integral u, given by

(70) 116+ 91(9) 9 (5) = (g)

with f(s), @,(s) and @, (s) as in Table 2. If we formulate this equation in terms of the function
B(s) we get in the B-case

(71) s2< B’ () 1 >2 B sB’(s) B B2(s) B(s) s+1 2

2B'(s)  s—1 8 8B (s)(s—1)2 8 s—1 4

and in the A-cases

(72) 52<B”(S) 1 >2 B0 B>(s) . B(s) s +1 _ u?

2B'(s) " s—1 8§ 8B (G—1)7 "8 s—1_ 4°

In contrast to the case C the parameter u seems to be an essential parameter of the
surface. In the case B p can be real, purely imaginary, or zero. In Appendix B it will be
shown that equation (72) is up to a factor the equation that describes the relation between
the curvature and the torsion of a family of helices on the exceptional helicoidal surfaces
(see Theorem 5). Along these curves these surfaces are isometric. It comes out that u?
must be strictly negative and thus ue€ iR.

Remark 14. In fact (71) and (72) can be found directly from (25) by multiplying
this equation with an integrating factor. This factor in case A is

H" (1)

7 1)

+4cot(21)

and the same in case B — but with coth(2¢) instead of cot(2¢). This factor vanishes
identically for H(t) = C,+ C,cot(2t). Thus B(s)= H(t) = C,+ C,cot(2¢) is a 2-para-
meter family of solutions of (72) (again with coth(2¢) instead of cot(2¢) we also have a
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2-parameter family of solutions of (71)). However, it comes out, that non of them is a
solution of (25).

Now let us return to the more general system (68). Again as in the case C here one
can recognize a Lax representation for a Painlevé equation, but now for the Painlevé VI
equation.

Theorem 8 (Jimbo-Miva [J-M]). Let us consider the system (68) such that

A, = —Ag— A, — A,

has two different eigenvalues. Then the compatibility conditions of this system are equivalent
to the Painlevé V1 equation. That implies that all the coefficients of the matrices in (68) can
be expressed in terms of the function y(s), which satisfies the Painlevé V1 equation

, 1/1 1 1 ' 1 1 1 ,
(74) yi=s |-+ —F+ ye—({-+ + y
2\y y—1 y—s s s—1 y—s

s—1 5s(s—1)>

yy=D—y)
s2(s—1)2

<<x—|—ﬂi+ +
TG T (=)

with some constants o, f, y and § depending on the traces and determinants of the matrices
A,, for v=0,1,s.

Proof. Due to Remark 9 we know that the determinants of the matrices 4, are
constant. First we normalize system (68) to make the matrices traceless (as in the previous
section). Then we can reach det(4,) =0 for v =0,1,s by the gauge-transformation

d - (Ao —D)"U—0") D=0

with d, =]/det(4,), v=0,1,s. Therefore we can assume that the A, -matrices are of the
form

_ Zv(s) + Ov _MV(S) Zv(s)
" A7 Lo+,
. (s) —z,(%)

with 0, =2d,. Now let us consider 4, defined as in the theorem. Both gauge-transfor-
mations we used to create the special form (75) preserve the inequality of the eigenvalues
of this matrix. Let us finally assume that A _ is diagonal with the diagonal elements x,
and «k, and 0, = k, — k,. The matrix C must be diagonal.

Define

Sty ($) 2o (5)

(76) YO = O w50
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_Z2o®+0,  z,()+ 0,  z(s) + 0,

W= T et T ye s
o 0, 0, 0,
=20 S T IO —1 ye)—s

Now the diagonality of A implies

Zo = % DO=D0 =922+ 0,(y =) +50,(y = 1) =26,(y = D) (¥ =) 2

+K§(J’_S—1)_K2(91+59s)}a

1—
= g PO DO =92 (O 0,)( =) #5001
(7 -
=21, (y =D =) 2+ 15 (¥ —5) — 1, (0, + 50,) — K, x5, }

__r—Ss _ — )52 _ _
ZS—S(S_DOOO{y(y D =922+ 0,y —5) +50,+0,)(y —1)

=28, (y =Dy =) 2+ 13y = 1) = 1,0y + 50,) — 5%, 56, -
The compatibility conditions in terms of z(s) and y(s) read as follows:

1
T (=3 +2(1+5)y—9)2

(78) + (0, 2y —s =D+ 0,2y =)+ 2y = DO, — D) z— 1, (k; + 1)),

20D =9 0 0 61
e s(s—1) ’

which can be formulated as (74) with

0, —1)*
g o — )

Now we apply this to our case.

Theorem 9. Let H(t) = B(s) be a solution of (65) or (64), the functions f(s), ¢(s)
and @, (s) be defined as in Table 2 and u =+ 0 be a root of (72) respectively (71). Then

(79) (s) = s(2217()2 4 01(5)* + @1(5) 2 (s) — pusf'(s))
YO = G607+ 0,97 + 5015) 920) — 1521 ()

solves the Painleve V1 (74) with the coefficients

(80) o = M

2
- _®
2 H ﬂ_ 2>
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On the other hand let y(s) be any solution of (74) with the above constants. Then

(81) H(w+w) = B(s)

_5 P+ =y +9)* = () —y) +53'() (s —1)*
RV IOICIORECIOR))

solves the differential equation of the B-case (65). The transformation (66) yields the solution
to the differential equation of the case A (64). In case B for ne R and for 1 < y(s) <s we
get a geometrical solution. The metric is then given by

(82) PN EW) _ p20() — _ 4s (J/(S) - 1)()/(5) _S)
(sy"(s) (s = 1) — u(u(s) = 1) (u(s) —5) = y() (¥ (s) = 1))

Proof. By the gauge transformation

2¢,(s) 1
2s5f'(s) —
83)  (s) o 2| 2O H B, 5) = ¥ (,s)
2¢,(s)
1 _ =¥
2sf'(s) —
the system (67) reads as follows:
20,(¢,— ¢1)?
1 (@1_(P2)2+,u2 (o, — @)+ %
oyl ST n
A - 2
U 20,(01— @,)
ﬂ(¢1_¢2)+ﬁ _((P1_(P2)2
207
®1(s) YV
Py — Py ! 2sf"—u
wi-n| 1
—5@f =~
(84)
1
—¢ 5 Qsf" —w
®y — Py 2 2
p(A—s) 203 ’
T Qs
2sf"—u
1 !
?, —5@sf =
W ,P—1 _ Gy — Py

g = + By (s) .
W= | 203 o)

2sf — —
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Here we do not specify the diagonal matrix B, because the definition of y(s) is independent
of this. With x; = —pu, k, =0 we get (76), (79) with the coefficients given by (80), which
proves the first part for the theorem.

As in the case C we can interpret the definitions of f'(s), ¢,(s)e”/® and ¢, (s)e’®

in Table 2 as a linear system for the functions B(s), B’(s) and B"(s), which can be solved
explicitly for these functions. On the other hand we find

(¢1(s) — @5 (5))*

Zo(s) = el =41/ nz,,
U
85 z0) = cp1<s>w, andso pyef =z,
ZS(S)=([,2(S)(%(S);M%(S)), 0 e = —pz.e?t.

Because of (77) this gives (81) and (82). For the case u =0 in the case B Theorem 8 does
not hold, since the eigenvalues of 4, are not distinct and so Theorem 8 could not be
applied to (67). But by a simple calculation one can show that for this case (79) as well
as (81) and (82) are correct.

Remark 15. Formulas (81) in the cases A and B deal in general with the complex-
valued functions y(s) and B(s). The Bonnet surfaces are characterized by the condition,
that for s defined in Table 2, B(s) and f(s) in (81), (82) should be real-valued. It seems to
be rather difficult to describe the variety of the geometrical solutions in terms of y(s).

In order to integrate the Bonnet surfaces of type A and B we have to solve our special
Painlevé VI and the frame equation (84) for ¥ under the conditions that the functions B
and f as defined in (81) and (82) are both real, and e/ is strictly positive. By the inverse
left-multiplication of (83) with the functions given in (85) and (77) we find the geometrical
frame, which finally has to be integrated.

Figure 1. A Bonnet A family
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In Fig.1 and 2 surfaces of both types A and B are presented. They are generated
numerically. We use the formulas for the coefficient of the fundamental functions given
in Table 1 and a 4-step Runge-Kutta method with step-size correction to integrate the
ordinary differential equation for H. In case C it is convenient to use the Painlevé functions
(namely ¢ (¢) as solution of (60) and the relations (61)) to construct the surfaces.

Figure 2. A Bonnet B surface with parameter curves

The isometry preserving the mean curvature corresponds to going along the closed
parameter curves { = w + w = const. The quasi-periodicity seems to be a periodicity, since
the surface closed up in direction of the isometry lines. (Usually the surfaces are only quasi-
periodic along these lines. It seems to be a rather complicated problem to find closing-up
conditions.)

Concluding remarks. The isomorphism between the Gauss equation of the Bonnet
surfaces and the Painlevé V (III) and VI equations we established in this paper allows one
to apply the modern theory of the Painlevé equations to describe global properties of the
Bonnet surfaces. The main tool of the theory of the Painlevé equations is the ¥-function,
which is a solution of the corresponding linear system (see [J-M]). This function is also
well investigated. It is worth mentioning, that the frame of the Bonnet surfaces is de-
scribed by a quaternion, which differs from ¥ just by gauge transformation (63), (83).

Let us mention two geometrical problems, which is now possible to solve and which
we plan to discuss in the future. It is well known that the Painlevé equations possess
Schlesinger transformations. For example, if y(s) is a solution of the Painlevé VI equation
with some constants «, f5, y, d, then there is a transformation

(86) (y,y,’aaﬁ:yaé) - (yN’yI/V’aN:ﬁN”VN’éN)’

which yields a solution yy (s) to the Painlevé VI equation with some constants oy, iy, Vx> Ox-
In (86)

(yv-8) =Ry,
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where R is a rational function. The corresponding solutions ¥ and Py of the linear systems
are also simply related. Starting with some Bonnet surface (see (80))

_(p+1)?
=t

2
_ K _ _
7 p= 5o 7 0, & ,

2

with a proper choice of parameters via iteration of the transformation (86) one can obtain

(uy +1)? JI
N:NT’ BN:__N In=0, oy=

i.e. a new Bonnet surface. The geometrical interpretation of this transformation gives us
a transformation of Backlung type. In particular the Schlesinger transformations for sur-
faces of type B were formulated in a recent paper [Eit96].

The Bonnet surface of type B presented in Fig. 1 looks very similar to the Mr. Bubble
surfaces with 3 legs [T-P-F], [D-P-W] which is a CMC plane with intrinsic rotational
symmetry and an umbilic point at the origin. The reason for this is that in Fig.1 we see
the immersion of a neighborhood of the point 1 = co. The analysis of the corresponding
differential equation shows that H(¢) converges very fast to a fixed value

lim H(t) = H, .

t— o0

In a natural local variable z at this point the Hopf differential Q(z, Z) has a zero of the
order w. If w € Z then the surface does not ramify at the point ¢ = co, which is an umbilic
point of order w. In a big neighborhood of this point the surface looks like the Mr. Bubble
surface with w + 2 legs. The global behavior of this surface can be calculated explicitly as
it has been done for the Mr. Bubble surface in [B91].

Fig.1 shows the two distinct surfaces of a family of type A. In particular the left
picture in Fig. 1 suggests that these surfaces become “closed” to helicoidal surfaces. Indeed
their asymptotes, the exceptional value surfaces, are known to be helicoidal surfaces (see
Theorem 5). Along the tubed curves the mean curvature and the metric are constant, i.e.,
the surfaces are intrinsically isometric and their principle curvatures are preserved along
these curves.

Appendix A. Bonnet surfaces of type C with g =0

Here we integrate explicitly the equation for the moving frame for the Bonnet surfaces
of type C in the case u = 0 (see section 3). In this case equation (40) with (39) implies

@) Honw =0, eon=2 oanm=—— "
’ w+w T a, ’ ww+w)

Now let us pass to isothermic coordinates as in (16)—(19)

z=log(w), z=x+1iy.



74 Bobenko and Eitner, Bonnet surfaces and Painleve equations

In the 1sothermic coordinates the fundamental functions are:

aO u(z,z')zg 2x 7\ — ex
2e*cos(y)’ ¢ aoe > 0@ 2cos(y)’

H(z,z) =

and the frame equations are of the following form:
2e* N
cos(y)

Fo=F, Fy=F, F,=-F+

XX X

(88)

do

N=0, N=——"—-F.
y e*cos(y) ”

One can integrate (88)
F(z,2)=F (z,2) = F,(z,2) + F;(z,2) = wF,,(w,w) + WF, (w, W)

and so

(0w L 0 1-24 _1/4%
B9) F(w,w) = wd) <w 0>€D— w@ ()»)(i 0 (L), o= 5

where A and ¢ are defined as in (37). Here @ depends on A only and solves (see (38)) the
ordinary differential equation

ol =

(90) O,()D () =

Let us recall that @ is a quaternion

a(2) —p(4)

A) = =

2= 30y o )
with |«|?> 4+ |f|> =const+ 0 and 1=1— /.

In terms of these functions (90) gives:

o
1—4

() =B, B = 1)

where ' denotes the derivative with respect to 4. This system can be formulated as differential
equation of second order for o only:

21— a" (D) + (1 — ) a'(l) — wla() =0.

This is a hypergeometric equation which can be integrated in terms of special functions.
The function ,F,(a, b, c, ) is a solution of the hypergeometric equation

1) 20.—1)a" () + (@+b+1)i—c)a'(A) + aba(i) = 0
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which is regular at 4 = 0, and which has, for |1| <1, the expansion

& TOMa+Ib+k)
©2) @b e = Y T B e k) -

In our case

a=+iow, b=Fiow, c=1.
The general solution of (90) is given by
93) a(d) =C,F(io,—iw,1; )+ C,(1 =), Fi(1+iw,1—iw,2;1—2)
and finally

©o4) ()=

wu(d) —(1—=NDa’'(1—2)
Ao’ (A) wu(l—4)

which is for geometrical 4 in R SU(2) if the constants C,, C, € R. We can choose C, =0
because any other solution of (90) differs from this special one only by a multiplication
on the right by a quaternion independent of w and w. This multiplication however is a
rotation of the surface (89) as a whole.

Theorem 10. [n the isothermic coordinates (x,y) the Bonnet cones, which are the
surfaces of type C with u =0, are given by the formulas

Re (A(w?a()? — 1222 (1))
Im (A (w2a(2)? — 220" (1))
2|22 Re(a’ (D)o (1—2))

t

O D= TP 1P D)

where

aw(A) = C,,F (io,—iw,1;7), o'(l)=aw?C ,FF(1+in,1—in,2;1),
(96)
A= 5(1 +itan(y)), t=2e*cos(y)

with some arbitary positive number .

For the proof one should use formula (89) and the isomorphism (7) between R* and
su(2). One should also note, that

d\" r r r
(—) (@b, )= LEXDTOEDTQ by fnybnted.

di (@I ®)rc+n)
Remark 16. Since o solves equation (91) for 4 of the form (96),
o(@?|a(D)? + 2122 (D)]?)

is constant. Therefore this factor can be ignored.
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A plot of such a surface which w =1 is presented in Figure 3.

Figure 3. A Bonnet C surface with u =0

The expectional value surfaces (asymptotes) of these surfaces are cylinders generated by
logarithmic spirals as shown in [C-K].

Appendix B. A geometrical meaning of the first integral u in the case A

As stated in Theorem 5 we know that each family of type A contains four different
surfaces, two of them — the exceptional value surfaces (7= + 1/2) — are helicoidal surfaces.
In this appendix we will prove this. Moreover we will find that surprisingly just these
surfaces give us a meaning of the first integral u in (72). To see this, let us collect what we
know about these exceptional value surfaces (asymptotes). The coefficients of their fun-
damental forms are

Qp_ (0, 9) =2(cotQn) +1) = Q. (x) = 2(cot(4x) £1),
8 16

u(x)

TS HG) S T sint@oH ()

o7

eu(w,W) —

with 1 =w 4w = 2x and the mean curvature H = H(t) = H(x) (we use the same symbol
although the functions for ¢ and x are different). H is a solution of (25) with
|O|*> =4/sin*(2t). Let us denote by

(98) 7.(») = e "MI2F(x,y), F the immersion

the y-curve on the surface immersed by F(x,y) for a fixed x. It is not hard to find that
its curvature x and torsion 7 are

@ =l = (152) e (0 e~ dcot a0
99)
o det (R 7 (1), (D)

K2

=16 "™,
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It is a simple calculation to show that
(100) k?+1>=C, CeR", xandy independent,

or in another form

uw'(x)\* 5 _
(101) ) e (H@)e ™ —dcot(4x)* + 167 = C.

Lemma 5. Equation (101) is, up to a constant factor, the first integral equation (72).
The constants u and C are related by

(102) C=—164>.
Proof. Substituting H(x) = B(s), s = 3™ into (97) one finds

81
(s —1)*B'(s)’

(103) e — — B 2 >

d "(x) = —8i
and so u'(x) 1S<B’(s) =
Now inserting these identities into (101) gives the left hand side of (72) up to a factor.
Thus both constants, C and p, are related by this constant factor which gives (102).

Lemma 6. If k=0 then the curves y (y) are circular helices and ]/E is the angular
velocity.

Proof. First we see that the curvature and the torsion of these curves are constant
(they depend only on x). It is an elementary geometrical statement that these curves are

circular helices and the velocity of the revolution is |/x* + t%. See for instance [Sto].

Remark 17. The interpretation of ]/E’ as the angular velocity of the “screwing” of
the helices y, () might suggest that this parameter can be omitted. However, we know
that H as well as the metric ¢“ depend in a hidden way on C. Thus this parameter seems
to be essential for the surfaces.

Theorem 11. Let F(x,y) be an immersion of an asymptote of a Bonnet surface of
type A. Then the curvature of the curves y (y) = e “®/2F(x,y), x fixed, never vanishes.

Proof. From (99) we see that x can only vanish if both «'(x) and
H(x)e"™ — 4 cot(4x)

are zero at the same time. H(x) = w cot(4x) satisfies both conditions for a proper w. Since
the solutions of (101) depend uniquely on the initial conditions H (x) must be of this form.
All solutions of (25) are solutions of (101), so this must be a solution of (25) which con-
tradicts to the statement of Remark 14. Thus x never vanishes. Finally we have the
following
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Theorem 12. The exceptional value surfaces (asymptotes) in a Bonnet family of type
A are helicoidale surfaces.

Proof. A surface is a helicoidal surface if it is generated by a rigid motion acting
on a plane curve such that the trace of any point of the plane curve under this action is
a circular helix. In our case the curves F(x = const) are circular helices. But the curves
F(y = const) are not plane curves. By introducing new coordinates

(104) t=x, s=y+o¢(x),

and the similarity condition F(¢,s) = F(x, y) we find that the curves F (¢ = const) are still
circular helices. Moreover we can choose ¢ (x) in such a way that the curves F(s = const)
are plane curves for all 5. To see this, we compute the partial derivatives F,(t, S0)s Fn(t, o)
and F,,(1,5,) and express them in terms of the moving frame F,, F,, N, where F,_and F,
are the partial derivatives of F(x,y) and N is the normal vector field. The coefficients
involve just H(x), Q(x) and ¢“™ as given in (97) and the first derivative of u(x).

The curve F (t,50) 1s a plane curve, if

N

(105) 0 = det(F, F,,, F,,) = 9 (u(x), u'(x), H(x), ¢'(x), 9" (x)) det (F,, F,, N) .

The latter determinant is just ¢ which is a function of x only. Thus (105) is an ordinary
differential equation of second order in ¢ which we can solve for this function. The curves
F(s = const) are now plane curves and the trace of any point on this is just a circular
helix, i.e. the trace of a rigid motion applied to the point.
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