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Abstract. In this paper we study surfacesimmersed in R® such that the mean curvature function H
satisfies the equation A(1/H) = 0, where A isthe Laplace operator of the induced metric. We call
them HIMC surfaces. All HIMC surfaces of revolution are classified in terms of the third Painleve
transcendent. Inthegeneral classof HIM C surfaceswe distingui sh asubclass of #-isothermic surfaces,
which is a generalization of the isothermic HIMC surfaces, and classify al the #-isothermic HIMC
surfacesin terms of the solutions of the fifth and sixth Painlevé transcendents.
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1. Introduction

In[1] anew class of surfaces was introduced, defined by the property

A (%) o0 (1)

where H is the mean curvature of the surface and A is the Laplace operator of
the induced metric. We call these surfaces the harmonic inverse mean curvature
surfaces (HIMC surfaces).

HIMC surfaces can be considered as a natural generalization of surfaces with
constant mean curvature (CM C surfaces). Thelatter classhasbeenintensively stud-
ied (see [2-4]) by the methods of the theory of integrable equations (the solition
theory). The starting point of this theory is a representation of the nonlinear differ-
ential equation (in differential geometry these are the Gauss—Codazzi equations) in
aform of compatibility condition (Lax or Zakharov—Shabat representation in the
theory of solitons)

Uy(A) = Va(A) + [UN), V(M] = 0. 2

The parameter A\, which is called a spectral parameter in the theory of solitons,
describes some special one-parametric deformation of surfaces, which is called
an associated family in geometry. The representation (2) for HIMC surfaces was
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found in [1], where the associated families of HIMC surfaces were described
as one-parametric conformal deformations preserving the ratio of the principle
curvatures. The conformal factor is the modulus of a holomorphic function. The
mean curvature function of aHIMC surfaceis given by

1

w+w’

H(w,w) =

where w(z) isaholomorphic function of the complex coordinate z on the surface.
We assume that w itself is alocal complex coordinate. In this coordinate one can
characterize HIMC surfaces via the solutions of the nonlinear system of partial
differential equations for the Hopf differential Q (dw)?

<%>w‘Qw:(w+lm>2( _%>’ 3

Qw = @w'

By the substitution Q = f,, this system can be reduced to one equation for one
real-valued function f (w, w)

A2V

2
Acf Af

(Af)? = 2Af = V13,

(w + w)?
where |V f| = 2|fy|, A = 40,,05. Note, that this equation is integrable from the
point of view of the soliton theory. This equation is the compatibility condition
(Lax representation) for the system (11) of linear differential equations* with an
additional parameter .

Ancther confirmation of the fact that HIMC surfaces are natural generalization
of CMC surfaces was abtained in [5], where it was shown that only these two
classes admit a Lie-point group of transformations of a certain type.

The integrability allows us to study HIMC surfaces by analytical methods of
the soliton theory. By using one of these technigques, namely, the so-called dressing
procedure, a Backlund transformation for HIMC surfaces was constructed in [6].
In spite of the mentioned analytical results no concrete examples of nontrivial
(not CMC) HIMC surfaces are constructed up to nowadays. Thisisthe problem we
addressinthe present publication. We excludethe CM C casefrom our consideration
and assume H # const.

Following [1] we use the quaternionic representation of surfaces in k3, which
isexplained in Section 2.

The notion of the associated family and the corresponding Lax representation
play animportant rolein our study. Thereforewe recall the results concerning them
in Section 3.

* To express al the coefficients of (11) in terms of f one should substitute h = w, @ = fu,
H=1/(w+w), € = —2(w+0)fuws-
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Since there are no harmonic functions without zeros on a compact Riemann
surface, there are no compact nontrivial HIMC immersions. The simplest case to
study are the surfaces of revolution. Surfaces of revolution are isothermic, i.e. they
allow conformal curvature line parametrizations. The duals of isothermic HIMC
surfaces (for the definition of the dual isothermic surface see, for example, [1])
are the Bonnet surfaces, i.e. the surfaces admitting isometries preserving the mean
curvature function. In [7] all Bonnet surfaces are described in terms of the third
and sixth Painlevée transcendents. Hence, all isothermic HIMC surfaces can be also
described in terms of the same Painlevétranscendents. In particular, in Section 4 we
classify all HIMC surfaces of revolution in terms of the third Painlevé transcendent
and employ its asymptotic properties to analyze their embeddedness.

Isothermic surfaces admit isothermic coordinates, i.e. conformal coordinates
in which Im(Q) = 0. A generalization of the isothermic surfaces is suggested
in Section5. In this section we consider the surfaces which allow a conformal
parametrization, such that the Hopf differential has constant imaginary part

Im(Q) = 6. ()

We call these surfaces 6-isothermic and classify their associated families in terms
of the solutions of special third-order ordinary differential equation, which can be
obtained by imposing (4) into (3). These equations can be viewed asgeneralizations
of the Hazzidakis equations [8]. We find the following geometrical property of
f-isothermic HIMC surfaces: the associated family of each #-isothermic HIMC
surface actson it just by scaling. We conjecture that this self-similarity property is
a characterization of the #-isothermic HIMC surfaces.

In Sections 6 and 7, the general solutions of the generalized Hazzidakis equa-
tions corresponding to @-isothermic HIMC surfaces in terms of the fifth and sixth
Painlevé transcendents are obtained. These Painlevé equations are more general
than those in the isothermic case. For instance, for Im(Q) # O the fifth Painlevé
equation cannot be reduced to the third Painlevé equation asit isin the isothermic
case. Note, that the solutions of the Painlevé equations are recognized as nonlinear
special functions [9], [10], and their properties are rather well known. Therefore
the 6-isothermic HIM C surfaces can be investigated aswell asthe isothermic ones.

In Section 8 we study the exceptional families of HIMC surfaces, which are not
related with the solutions of the Painlevé equations. We call them Cartan cones,
since Cartan studied these surfaces but from a different point of view: as the class
of applicable Bonnet surfaces[11].

Inthe Appendix, weestablish the rel ation between the Hamiltonian functionsfor
the Painlevé equations and the Hopf differentials of 6-isothermic HIMC surfaces.

2. Quaternionic Description of Surfacesin Euclidean 3-Space

For analytical researchesof surfacesin k3 it is convenient to describethemin terms
of 2 x 2 matrices (for more details see [1]). In Sections 6 and 7, this description



190 A.BOBENKOET AL.

allows usto identify the equationsfor the moving frame of HIMC surfaces, which
satisfy some special symmetry reduction, with the zero-curvature representation
for the Painlevé equations.

Let F: R — R® beaconformal parametrization of an orientable surface F

<FZ7Fz>:<FZ7FZ>:O7 (FZ7FZ>:%eu-
Here R is a Riemann surface with the induced complex structure,
(v, w) = v1wy + Vowz + vaws,

z isacomplex coordinate, and

oOF 1[0 .0 oOF 170 .0
pof0_1(0 0Np p_ 90 _1(9 ;0)\p
9z 2 <8x Z@y) 97 2 <8x “ay)

Thevectors F,, F5, and N defineamoving frame on the surface. The fundamental
forms are asfollows

(dF,dF) = e dz dz,
—(dF,dN) = Qdz? + H e*dz dz + Q dz?,

where Q = (F,,, N) isthe Hopf differential and H the mean curvature function
on F.
The compatibility conditions of the moving frame equations are

2
Gauss equation Uys + H? e —2QQe “ =0,
. . H,
1. Codazzi equation  Q: = —*¢", ®)

. . — H
2. Codazzi equation @, = {e“.

L et us denote the algebra of quaternions by H and the standard basisby {1,1,j,k}
ij = —ji, jk = —kj, ki = —ik.

We will use the standard matrix representation of H
i 0 —i . (0 1
(=i o) 1T -1 o)
—i 0 10
= . ) 1= .
0 ¢ 0 1

(6)
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We identify the three-dimensional Euclidean space with the space of imaginary
guaternions,

IMH = su(2) = span(i, j, k),
by
X = (21,22, 23)" = z1i + 9] + 23K € Su(2). (7
The scalar product of vectorsin terms of matricesis then
(X,Y) = —3tr(XY).
Let ustake ® € SU(2) which transformsthe basisi, j, k into theframe F,, F,,, N
F, =¢"207 %o, F,=¢/20"Y0, N =0"1ko.

One can prove [1] that ¢ satisfies the following linear system

. UT: _Qe—u/Z
P, = H u, ,
7€ 7
)
Uz H u/2
1 3 2°
@2@ ==
Qe u/? Uz
4

3. Associated Family of HIMC Surfaces

Since, to the best of our knowledge, attention to HIMC surfaces was paid only in
the recent works [1], [5], and [6] not too many results about them are known. The
most important properties of HIMC surfaces can be summarized as follows

(1) Suchsurfacesareincluded inanassociated family with conformally equivalent
induced metric; and

(2) There is a Sym-formula which gives the surface as a left-trandation of the
tangent vector field on the SU(2)-representation of the moving frame of the
associated family.

Let us start with the Lax pair for an arbitrary surface with the special condition

H(zz) = ———— ©)
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where h(z) is an arbitrary holomorphic function and z is alocal conformal coor-
dinate. Note that, /(=) is not supposed to be alocal coordinate as opposed to w in
3).

The main results concerning HIMC surfaces are formulated in the following.

LEMMA 1. Let F be a surfacewith local conformal parametrization F'(z, z) such
that condition (9) is valid. Denote by €* (u = wu(z,%)) its induced metric and
Q = Q(z,7) itsHopf differential. There exists a one-parametric (7 € R) family of
surfaces F. (called the associated family of 7 = Fp) which have the property (1).
Each . is given locally by the conformal parametrization (Sym-formula)

F(r,2z,z) =2V(r, z,E)fl 83\11(7'7 z,%), (20
T

where ¥ = (7, 2,%z) € SU(2) solvesthe following system

Uz _Q e—u/2
1 4
v, U = " ,
_Uz — H eu/2
o0t = 4 2A(7,2,7
—u/2 Uz
Here
1—ith(z)
_ 1ol 12
1+i7h(z) (12)

and F'(z,z) = F(0, z,z). Thefunctions of the fundamental forms of the associated
family F- in parametrization F'(r, z, z) are as follows

u(z,2) =
° Qr(2,2) = Uz 2)

eu,—(z,E) _ . w\";e)
(1+iTh(2))?’ (23)

pEren
H(r,2,%) = H(z,Z)|1+ith(z)|%

Proof. See[1].

4, All HIMC Surfaces of Revolution

The goal of this section is to derive explicit formulas for all analytical HIMC
surfaces of revolution. The properties of analytical surfacesof revolution which we
need here are summarized in the following lemma:



SURFACES WITH MEAN CURVATURE AND PAINLEVE EQUATIONS 193

LEMMA 2. Let F be a surface of revolution different from a plane. Then there
exist local coordinatesz, y such that the parametrization

L e“(*)/2 cog(ay)
F(z,y) = = | e@/2sin(ay) |, ack\{0}, (14)
c(z)

of F isisothermic, i.e.

"1 2
1= ((“(2 )> +c'(x)2eu@>> . (15)

a

Moreover, the mean curvature function H = H(z) is given by the following
equation

az_u/ T 2 (1
H{(z) = X éc’)(:v) e (10

d'(z) = H(z)u! (z) ™). (17)

Proof. Equation (14) is just a curvature line parametrization of F. The coor-
dinates are isothermic iff they are conformal curvature line coordinates. The con-
formity condition for the above representations yields (15). Thus the isothermic
coordinates (z, i) read

i =3 [ \/ (#)Zd(&ﬁeu@d@ =y

Toderive (16) one usesthe definition of the mean curvaturein termsof the functions
u(z) and c¢(z), formula (15), and that ¢ does not identically vanish in some
neighborhood of z. Finally, differentiating (15) and using (16) we arrive at (17).

COROLLARY 1. For non-CMC HIMC surfacesof revolutionthereexist isothermic
coordinates (z,y) such that the mean curvature function is of the form
1
H(z) =—-.

T

Proof. According to Lemma2 the mean curvatureisafunctionof x, H = H(x).
Since H (z) isasolution of (1) and we are considering non-CMC surfaces, H (z) =
1/z.

For the rest of this section wefix a = 2.
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THEOREM 1. Let F be a HIMC surface of revolution with (14) as a local para-
metrization. Then there exists a real-valued smooth function ¢(z) such that

i) _ 72 (¢ (@) +28in(¢(2)))?

Z , (18)
372 .
o) = =7 (¢/(2)* = 45 (¢(z)). (19)
Moreover, ¢ solvesthe Painleve 111 equation (in trigonometric form),
z(¢"(z) — 28in(2¢(z)) + ¢'(z) + 2sin(p(z)) = 0. (20)

Inversely, let ¢(x) be any arbitrary solution of (20) with ¢'(x) + 2sin(¢(z)) # O.
Then with u(x) and ¢(z) defined by (18) and (19), (14) we define an isothermic
parametrization of a HIMC surface of revolution.

Proof. Using (15), introduce afunction ¢ defined as follows

sin(¢(x)) =

Putting these equations into (16) we get (18). Taking the logarithm of (18),
differentiating it with respect to z, and substituting the result into the second
equation of (21), we find (20).

Finally, integration of (17) givesus

d (z) e u®)/2, cos(¢p(z)) = 1u/(z). (21)

Nl

c(z) = zd (z) — "™ + Cy,

where C can be chosen to be zero. Inserting €4(*) (18) and ¢/ (x) (16), in which
u'(z) and v" (x) are defined by the second equation of (21), we get (19).

To prove the inverse statement one should just substitute (18) and (19), in
which ¢(z) solves (20), into (15) and (16) and find that these equations are valid
identically.

Itisinteresting to noticethat the functionsimportant for the geometrical descrip-
tion of HIMC surfaces of revolution can be presented in alucid form by using a
formulation of the Painlevé |11 equation as a time-dependent Hamiltonian system.
Actually, by introducing the mechanical notations

T (time) = z, g (coordinate) = ¢,
p (impulse) = 3z(¢' () + 2sin(¢(z))),
we arrive at the following proposition:

PROPOSITION 1. The Painlevé 1l equation (20) can be considered as the Hamil -
tonian system,

p= {Hap}? q= {HaQ}a
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with the canonical Poisson structure,

{p,p} ={¢,q} =0, {r,q} =1,

and the time-dependent Hamiltonian,
p? :
H(T,p,q) = - 2psin(q).
The immersion function in these notations reads as
pCcos(2y)
F(x,y) = > psSin(2y)
—TH (7-7 D, Q)

The functions of the fundamental forms are given by

1
e“(x) :pz = _T‘C(Tapa q)v H(x) = Q(!I)) = %H(T’p’ q)’

where €* denotes the induced metric, H is the mean curvature function, and @
is the Hopf differential. Moreover, £ is the Lagrangian function defined via the
Legendre transformation,

d
L(7,p,q) = H(T,p,q) —Pgd-

Proof. Direct verification.

LEMMA 3. Let ¢ be a solution of (20). Then
(i) If thereiszg € (0, c0) with

¢’ (z0) + 2sin(¢(z0)) # O, (22)

then inequality (22) isvalid for all z € RT;
(ii) The solution ¢ isareal analytical function for z € R*.

Proof. To prove (i), one notices that any solution of
¢'(z) + 2sin(¢(z)) = 0 (23)

solves (20) as well. So, from the uniqueness theorem for solutions of ordinary
differential equations the first part of the lemma follows. The statement (ii) is a
result of the Painlevé property for p(z) = €%(*). The function p(z) solves the
Painlevé 1l equation in the canonical form and, therefore, its possible singularities
for 2z # 0, 0o are polesof thefirst order [ 12] (the Painlevéeproperty). That iswhy the
real solution (20), ¢(z), isan analytical function without singularitiesfor z € R*.
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DEFINITION 1. The solutions of Equation (20) which are different from that
defined by (23), are said to be transcendental .

Remark 1. Actually, while all solutions of (23) are elementary functions defined
by the equation

1-Ce*
14+ Ce 4t

one can show that the transcendental solutions, in the above sense, can not be
‘expressed in a certain way’ in terms of elementary functions. See the work [13]
for the mathematical details. So, from Theorem1, we see that it is the Painlevé
transcendent whichisresponsiblefor the geometry of HIM C surfaces of revolution.

cos(¢(z)) or ¢(z) =nk, keI, (249

COROLLARY 2. Any analytically immersed HIMC surface of revolution can be
globally parametrized by

o) - 200 2S00
2cos(2y)
X 2sin(2y) , T € R, (25)

—z(¢/ () — 28in(¢(x)))

where ¢ () is a transcendental solution of (20).

Proof. The statement is a result of Lemma 2 and Theorem 1. Formula (25)
becomessingular at z = 0, where the mean curvature has a pole.

For further discussions of the geometry of HIMC surfaces of revolution, we
need some asymptotic results for the solutions of (20).

LEMMA 4. Solutions of (20) are transcendental iff they are not holomorphic
functionsin a neighborhood of =z = 0.

Proof. Let ¢o(z) be a solution of (20) holomorphic in some neighborhood of
x = 0. Substituting the corresponding Taylor expansion for ¢o(x) into (20) one
gets that there exists only one one-parameter family of such solutions of (20). On
the other hand a one-parameter family of (20) is given by (24). Comparing the
Taylor expansions of ¢o(x) and ¢(z), one completes the proof.

Now we are ready to formulate.

THEOREM 2. For eachreal transcendental solution of (20) thereexist real numbers
ko, po, oo and Bo, and an n. € 7 such that the following asymptotic expansionsare
valid

2ky . 1 1
= 1 = e N
+é(z) e 2mn + 5m + msn(cpoo) oy + (20)32 X

X(kg(sm(‘;ooo) + %9“(39000)) +
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+3ko(3 + kg) cos(peo)) + O (x—12> ; (26)

¢@)riﬂw°_1+oo 1+ 02

4
X (—004—\/ 1+ 07? sin(2po + 2k + 252)> +0(a°), (27)

Voo = 2 — ké log(2x) + po, wo = oplog(z) + o,

2
r . x
—23”’1(900—1-%)4-( > X

where

and
103 209
cos(k) = n —
2— 08 . 2
cos(2k7) = 20 Sin(2kp) = —2

M4+o{ M4+a§

The asymptotic expansions (26) and (27) are differentiable, i.e., the asymptotics of
¢'(z) arejust the derivatives of (26) and (27) but with the same error estimations
asin (26) and (27). Vice-versa, an arbitrary pair of real numbers can be taken
as the pair (ko, po) or (oo, fo), in the last case o # O, to define, via asymptotic
expansions (26) or correspondingly (27), a unique real transcendental solution of
(20).

Proof. See the papers[14-18].

Remark 2. Theorem 2 and (24) imply: a solution ¢ of (20) is nontranscendental
iff

¢(z)

Remark 3. Under the notation g(x) =;—,, O(f(z)) wemeanthat |g(z)/f(z)| <
C forsomeC > 0asz — a.

nk, k€Z.

T—+00

Since the case when ko = 0 in Equation (26) plays an important role in our
classification of HIMC surfaces of revolution, we formulate the following

THEOREM 3. There exists the unique real-valued solution of Equation (20), ¢(x),
which has the following asymptotic expansion as z — oo,

1 i 5 > am
P(x) = 37 2 + 6(2z)3 + mX::Z (20)2m+17 (28)
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where the coefficients a,,, are real numbers which can be obtained recursively by
substituting expansion (28) into (20). The asymptotic behavior of this solution as
x — 0isgiven by Equation (27) with the parameters

1 2
o0 ==1In(3+ v8) = ZIn(1+ v2) = 0,5610998522...., (29)
T T

fo = m1—204In2 + 2arg T (“’%’) r? (% - “’7") _ 0,907634370.... (30)

where I'(-) is the standard notation for the I'-function [22] and the function arg is
fixed by its principle value —7 < arg(-) < =.

Proof. See [19].

Remark 4. Actually, the work [19] was done after the preprint version of this

article was completed. Our previous numerical calculations yielded the following
values for the parameters oo = 0, 56108 & 0, 00005 and 5y = 0, 908 + 0, 005.

COROLLARY 3. The asymptotics of the immersion function is given by (14)
(a = 2), where

g/? oS, T koV/2w cos(po0) — k3 Sin?(pog) +

= ((%O - §k8> ()~

—k—g cos( )+k—gcos(3 ) +O<E> (31)
2 Poo a4 Poo z)’

o0x?

w2 00 o0 y
(1+03)2

z—+0 2 /1 + 0_8
oo+/1+ o2
X (1 — V" Ogn(2pe+ gm) + O(°), (32)

cos(ipo + 35) +

2

c(z) e 22 — 2k3z + koV2z Sin(ps ) — %1 +

+k—3+k—8gn(2 )+o<i> (33)
2 2 QOOO \/5 ’

o(z) %0 + 9% Sin(po+ k) + 0 n
= _—— o = _ . M
a>+0 4 0 1 o 2 2(1+ 0§)?
0

0212

2(1+0§)%?

+ cos(20 + 3) + O(z3), (34)
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where the notations are the same asin Theorem2 and
1 00
J1to2 1+ 0f

Proof. The formulas (31) to (34) are the result of the substitution of (26) and
(27) into (18) and (19) correspondingly.

cos(3k) = sin(ik) = —

COROLLARY 4. For any HIMC surface of revolution there exists zo > 0 such
that equation (25) for 0 < z < zg and 1/z¢ < = isan embedding.

Proof. Asit follows from (33) and Theorem 2, ¢/() cannot vanish for large .
This proves embeddedness of the HIMC surfaces of revolution for large z.

To prove the embeddednessfor small x, consider the logarithmic spiral defined
viathe first two terms of (32) and (34). This spiral is an embedding. For x — +0
the curve (€4(*)/2_¢(z)) can beinterpreted as adeformation of O(z?) of this spiral.
But it iseasy to seethat such adeformation of the spiral cannot destroy its property
of embeddedness.

LEMMA 5. For arbitrary zo > 0 the meridian curve (€*(*)/2, ¢(z)) for zo < z <
1/z0 has afinite number of points of self-intersection.

Proof. Suppose that the number of intersections is not finite. Then using the
formula for the immersion (25) and the properties of the function ¢ stated in
Lemma3, oneprovesthat thereexistsapoint z* # 0, oo, suchthat (d/dz)*¢(z*) =
0 holds for any integer k. Now the real analyticity of ¢ implies ¢(z) = const for
al z.

COROLLARY 5. The meridian curve (0 < z < oo) has a finite number of self-
intersections iff the point with the coordinates (oo/2, —o3/4) does not belong
toit.

Proof. The statement about the finite number of self-intersections ensue from
Corollary 4 and Lemmab. If the point (o/2, —03/4) belongsto the meridian curve,
then theinfinite number of self-intersectionsoccur according the asymptoticsgiven
in Corollary 3.

PROPOSITION 2. Intersection of every HIMC surface of revolution F in para-

metrization (25) with

(1) P, the paraboloid of revolution (with respect to the same axis as for F)
of the curve F3 = 2F2, is an infinite set of circles (we exclude those HIMC
surfaces of revolution, which correspond to the special solutions of Theorem3
and Remark4). A point belongsto one of these circles, iff it correspondsto an
extremumvalue (¢'(x) = 0) for the related Painlevé function (20).

(2) P, the paraboloid of revolution of the curve F3 = —2F2, isan infinite set of
circles. A point belongs to one of these circles, iff it correspondsto a solution
of the equation sin(¢(z)) = 0.
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Figure 1. Types of possible meridian curves with their axis of rotation.

(3) The plane F3 = 0isan umbilic circle. All umbilic points of F belong to this
circle.

A point belongs to the intersection of F with the paraboloids P+, P, iff the
Gaussian curvature K of F vanishesthere.

The part of F lying above the umbilic circle is embedded.

Proof. The Gaussian curvature of F parametrized by (25) is given by the fol-
lowing equation

o 8SN($(@)¢ ()
2§ (@) + 28n($()))2

To prove the assertions use the immersion formula (25) and the properties of the
function ¢(x), established in Lemma3 and Proposition 1.

Remark 5. The analytical description of the global embeddedness of HIMC
surfaces of revolution in terms of the solutions of (20) seems to be a compli-
cated problem. Obviously, there are two possibilities: According to our numerical
investigations both of them are realized, moreover, the existence of HIMC surfaces
whose meridian curves have infinitely many self-intersections, is quite probable.

The results of our numerical simulations are presented in Figure 1.

Thefirst plot in Figure 1 is the meridian curve of a HIMC surface of revolution
described by the specia solution of Theorem3 and Remark 4. The second plot is
numerically generated by the solution of (20) with op = 3.0 and G, = —1.41,
and the third with g = 10 and Gy = 0. Evidently, the third curve describes a
nonembedded HIMC surface, while the first two should correspond to embedded
ones. Considering our asymptotic results and numerical simulations we come to
the
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CONJECTURE 1. All HIMC surfacesof revolution for |oo| > 4 are not embedded,
while for rather small modulus of oq (|oo| < 3) all of them are embedded.

5. Reduction to Ordinary Differential Equations

Let usassumea (local) conformal parametrization of asurfacewith (1/H),; = 0,
which implies that H has the representation given by (9). Now, by inserting (9)
into the Codazzi equations (5), we get

hz(z)az(zvg) = EZ(E)QZ(%E)

Then solving thefirst Codazzi equation with respect to « and substituting it into the
Gauss equation, we arrive at the following third order partial differential equation

for @

Qz\ Ih()l o QP
h()<Qz> Q: = (2@() @).

Aslong as h'(z) # 0, we can assume w = h(z) asaproper coordinate. Thus, we
obtain system (3). In the following part of this section we study some properties of

@A).

Remark 6. In the following it will sometimes be convenient for usto use w as
the original coordinate on the surface and z = z(w) for its reparametrization.

It seemsto be arather complicated problem to study the general solution of system
(3). Actualy, in the previous section, we studied some special real solutions of (3)
for w = z/2. In general, we can formulate the following

LEMMA 6. Any isothermic HIMC surface is dual to a Bonnet surface.

Proof. Werecall that, for anisothermic surface Q(w, w) = f(w)q(w,w), where
¢(w,w) € R and f(w) is holomorphic. If w is an isothermic coordinate, then
f(w) = 1. For this coordinate, the coefficients of the fundamental forms of the
dual surface (given with *) read as follows

e (W) — emulw) - H*(w, W) = 2q(w, W), (35)

Q*(w,w) = %H(uu@).
So from thelast equation, we get that the Hopf differential of the dual surfaceisreal
and (1/Q*)ww = 0, whichis an equivalent characterization for Bonnet surfaces as
first found by Graustein [20].

COROLLARY 6. All isothermic HIMC surfaces are describable in terms of
Painlevée 111 and VI equations with the same set of coefficients as for Bonnet
surfaces.
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Proof. Asfollowsfrom (35), any solution for H* generatesa solution for ) and
vice-versa.

The next natural step to continue the study of system (3) is to consider the
following generalization of theisothermic property (giveninthe proof of Lemmae).
In any conformal parametrization the Hopf differential reads as follows

Q(w,w) = f(w)(q(w,w) +i6), (36)

where f(w) is holomorphic, ¢(w,w) is a real-valued function, and 6 is a real
constant. It is convenient for us to make the following.

DEFINITION 2. A HIMC surfaceis said to be #-isothermic if there exists alocal
conformal coordinate z such that the Hopf differential of the surface is of the
form (36).

Remark 7. Note that, 8, of course, is not an invariant of the surface as it is
dependent on f and on the choice of the conformal coordinate. If 8 # 0 thenit can
always be set equal to 1. But we find it convenient in our study to keep 6 asafree
parameter.

PROPOSITION 3. A#-isothermic surfacewith 6 # Oisisothermiciff it isa Bonnet
or CMC surface.

Proof. If a #-isothermic surface with 6 # 0 is isothermic, then the following
equation holds

f(2)d(z,7) = f(2)(a(2,7) +16), (37)

where f(z) and f(z) are holomorphic functions, and ¢(z,z) and ¢(z,z) are rea-

valued functions. Putting h(z) = —if(z)/(20f(z)) onefinds that

1
§(2,2) = —————, 38
17 = e+ he) (39)
which meansthat for 4(z) = const., the surfaceis a CMC surface; otherwise, it is
aBonnet surface [20].
Conversely, if the surfaceisa CMC or aBonnet surface, then for any conformal
coordinate z, Q = f(z)q(z, %), where g(z, z) is of the form (38). Define

Im(h(2)) _ [z
rRe(z)’ ¥ T g

and find that (37) holds.
LEMMA 7. Let Q be given by (36). With respect to the new variable

q(z,E) =0

r= / £ (w) dw, (39)
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Equation (3) reducesto the ordinary differential equation

" l 2 2
( (‘)) ) = (1) (2— q(‘)—“) , (40)

q'(t) q'(t)

wheret = z + z, and s(¢) is a real analytical function of ¢t € R\D, with D a
discrete set.
Proof. Let usinsert the ansatz (36) into the second equation of (3), then we get

T(E)Qw(wvm) = f(w)QU'J(wvm)a

which implies that for z defined in (39) we have g, = ¢;. As a consegquence, we
get that ¢(z,%) = ¢(t).

Supposethat thereisasolution of (3) such that both sidesof this equation vanish
identically. This would mean @, > 0. OO, the Codazzi equations yield for the
metric

e = —Q, (w + W)

So such a solution could not be realized on a surfacein R3.
Now using this fact and inserting

Q(w,w) = f(w)(q(t) +i6)
into the first equation of (3) we can define the function

B 1
 |fow(2)P(w(z) + w(2))?

which had the properties stated in the Lemma.

s(t)

(41)

Using the coordinate (39), we can rewrite the fundamental functionsasfollows:

__q(t)+i6

Q=7 = T

e = —2¢ (1) (w(2) + ®(2))?, (42)
o 1

A2 = i oe

COROLLARY 7. Let f(w) beasin Lemma7. Then

1
aw? + ibw + ¢’

flw) = (43)
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witha,b, and c € R.
Proof. Denote g(w) = 1/f(w): then differentiate s(¢) (41) with respect z and
thento z to get s, (t) = s;(t), which, by means of (39), is equivalent to

29(w) — gu(w)(w + W) = 2g(W) — g5(W)(w + ). (44)
Differentiation of (44) with respect to w and w gives

Guww (W) = Gpp(W) = 20 € R. (45)

The solution of (45) isapolynomial of second degree. Substituting it into (44)

yields the denominator of (43).

LEMMA 8. Let F be a f-isothermic HIMC surface. Then, up to scaling and
analytical reparametrization, the functions of its fundamental forms are given by
(42), where f(w) and w(z) is one of the following forms

) Fw) =g wle) =i,

B) fw)=—3 g w(e)=2c0n(2s),

© fw=2 w(z) = 4= (46
O =5 W) =g

) f@)=—gy  wl)=-2c02)

Proof. To normalize the coefficientsin (43) let us apply the following transfor-
mations

e w — w+ia, a € R (reparametrization of the surface);

o f=[Of,BER, [ #£0(fin(36)isdefined up to afactor only);

e for theimmersion F', F — vF, -~ € R", which yields the transformation
w — Y.

Under the action of these transformations the coefficients in (43) are changed as
follows

=

1
a—)%, b— —(by + 2aa), c—= =(cy? — ac® — bay).

g g
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One can choose «, 3, vy to fix the coefficientsin the cases

(A) a=0, b#0,

(B) 20 X g
“ " 4a? ’
(C) a=0, b=0, n
b2 c
(D) a;«éO T‘Z—FE—O,
b2 c
) a#0 ,+->0,

asisindicated in (46).

COROLLARY 8. For each of thecasesA, B, C, D, and E, and each choice of initial
conditionsin (40) one obtains an associated family of #-isothermic HIMC surfaces.
Their fundamental and immersion functions are given by Equations (10)—<(13) in
Lemma 1 in which one should substitute w(z) for h(z), and (42).

Proof. Actually, we can choose five different pairs for w(z) and f(w) involved
inthe equation for theimmersion function (seeformulas (10) and (11)) for the asso-
ciated families. Moreover, these equations are parametrized via a general solution
of the third order ordinary differential equation (40).

LEMMA9.A =EandC =D.
Proof. Calculating the coefficients of the fundamental formsfor the casesA and
C (correspondingly, for D and E) we get that these functions are the same (up to
scaling) if one assumes the following relationships between the family parameters
(7 :=7a, 7B, TC, T, TE; Se€Lemmal):
_ 2rg+1 4

= = —. 4
21 — 1 = D (48)

TA
Each surface of afamily of the set A (of the set C) corresponds to a surface of the
set E (of the set D) asfollows:

(1- ZTE)2
4

where F,, denotes a parametrization of asurfaceintheset v, v = A,C,D, E.

Fa(ra) = Fg(TE), —15Fc(rc) = Fp(tp),

Remark 8. Actually, we see that in each family from the sets E and C, one
surface is not included in the corresponding family from the sets A and D since
we see that equations (48) have singular pointsat 7 = % and 7¢ = 0. Toinclude
these special surfaces of the E and C familiesinto the A and D families, we haveto
enlarge the domain of 7 by adding the point 7 = co. So, in Lemma?, one should
understand the family parameter ~ as an element of RP*.
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Tablel. Functions of the Fundamental Forms of the Associated Family.
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A B C
qires)  __ d(B)Sn(2) ___ 8q(psinh’(2) _ gt
2r?[sin(2(z — Q)| (14 4r2)?|sinh(2(z — ¢))[* 2z ¢
Qr23) (q(t) +16) Aq(t) +16) ¢(g(t) +16)
o rsin2(2(z — ¢)) (1 + 47r2)sinh?(2(z — ¢)) 2(z —()?
H(r,23) _2r|sn@z Q) _(A+4rd)|sSnhz- )P 2z ¢
7 sin(2t) 2sinh(2t) ¢%t
¢=¢r  lilog(y=m) _ilog (, /%) -2
¢ 4 4
s(t) S (2t) sinh?(2t) t2
h(z) —ieh” 2 coth(2z) 1z

Now, we are ready to formulate the main result of this section.

THEOREM 4. There exist three sets, which we call A, B, and C, of associated
families of #-isothermic HIMC surfaces. The immersion function of each family is
given by equations (10) and (11), where the functions of the fundamental formsare
presented in Table 1, with ¢(¢) an arbitrary real solution of (40) with s(¢) specified
inTableland¢'(t) < 0. All thesetsA, B, and C depend on 3 arbitrary parameters
and any #-isothermic HIMC surface belong to one of these sets.

Proof. The first and the last statements follow from Lemmas8 and 9. The
statement about the immersion function is the result of Corollary 8. The functions
of the fundamental forms given in Table1 are calculated via the substitution of
f(w) and w(z) presented in Lemma8 into the formulas (42), and using Lemmal.
To compute s(t), one substitutes the results of Lemma8 into (41). The properties
of ¢(t) are a consequence of Lemma? and the positiveness of the metrics (see
Tablel).

Remark 9. Equation (40) with s(¢) given in Tablel is a generalization of the
Hazzidakis equation [8].

DEFINITION 3. We cal two parametrized surfaces F; and F, equivalent up to
scaling if F» = cFj holdswith ¢ € R\O.

Using this equivalence relation, we can formulate
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THEOREM 5. Any associated family of the set A consists of four egquivalence
classes of surfaces, any family of the set B consists of one equivalence class, and
any family of the set C consists of two equivalence classes.

Proof. The scaling of the surface F' — nF' yields the following transformation
of the coefficients of the fundamental forms

1
e —n2eY, Q—nQ, H— —H.
n

To define the different (up to scaling) surfaces (which generate the correspond-
ing equivalence classes), one has to consider the following values for the family
parameter T

74=-10,1, 0, 8 =0, ¢ = 0, 00.

It is easy to see from Tablel that these surfaces generate, via scaling, the whole
corresponding associated family.

Remark 10. In the A and C cases, one heeds to consider also the asymptotic
limitsasT — 0 and oo of the functions of the fundamental formsto cover the whole
family. To handle the limits 7 — 0 and oo in the A case, one has to use the Euler
formulafor sin(-), the formulafor () givenin Tablel, and, for the case 7 — oo,
to scale the surface by a factor of O(7+2). To light this we will discuss the limit
for 7 — oo inthe A case. Using the Euler formulafor sin(-), we get

lim eurzn 4 _ _84() sin?(2t)

A e = e
4(q(t) +16)
lim Q(r,2,2z))7° = ,
=00 A(q(t) +i6) 0
Az T>0,
|eZiz|2
. < 0,
i H(r,z,z) ) 2sin(2t) T
Tero]o 72 o |e2iz|2 0
“2sn2n) T

Scaling the asymptotical surfaces by 41 /72 gives coinciding regular limit surfaces
for both, 7 — =+ oo.
Remark 11. The surfaces which belong to the associated A, B, and C families

of Theorem4 in the isothermic case (¢ = 0) are dua to the A, B, and C families
of Bonnet surfaces originally introduced by E. Cartan [11].

COROLLARY 9. The HIMC surfaces of revolution are included in the C case for
0=71=0.
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Proof. Let us compute the coefficients of the fundamental forms for a C case
surfacewith § = 7 = 0. According to Tablel we have

i} 2
@) = 3¢, Q022 =34t), H(Oz7) =7,
wheret = z + z = 2Re(z). For z = Re(z) we find that this reads as follows:

Qu(0.2,2) _ _$2%(q ot)(z), Q(0,2,2) = 3(got)(z),
H(0,2,%z) = E

T

(49)

On the other hand let us take a surface of revolution parametrized by (25) with
¢(x) asolution of the Painlevé 111 (20). Define

(qot)(z) = 3u(¢'(2)? — 4sin?(¢(x)), ¢ = 2a.

It followsthat ¢(t) = qot(x) solvesthe Hazzidakis equation (40) with s(t) = 1/t?
and 6 = 0 since ¢(z) solves the Painlevé |11 equation (20). The functions of the
fundamental forms of thissurfaceexpressedin (got)(x) arejust (49), which proves
the corollary.

Remark 12. According to Lemma9 and Remarks8 and 10 onecould equivalently
say that the HIMC surfaces of revolution are included in D families for 1/6 =
T = OQ.

LEMMA 10. Let F': M? — R® be a conformally parametrized surface in R® with
the Hopf differential

Q(z,2) = q(2,2) +1i80, q(z,z) € R, 0 € R fixed.

The functions defined via (35) are the coefficients of the fundamental forms of a
conformally immersed surface

S8 ife #£0,
F*M? — 3 , 7 (1)
R3, ifg =0,

wherer = 1/(2|6]) isthe radius of the sphere.

Proof. & = 0 can be treated as a limit. The Codazzi equations for conformal
immersions F: M? — 5(31 /(2)o))) @€ independent of ¢. Inserting the functions (35)
into the Codazzi equations and the Gauss equation

uyz + 3(H? + (20)%) € — 2|QPPe ™ = 0.

provesthe claim.
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DEFINITION 4. Let F be a#-isothermic surface. F* defined aboveis called adual
surface.

THEOREM 5. Let F: M? — R® be a 6-isothermic HIMC surface. Then its dual
surface is a Bonnet surfacein the S?l/(2|6‘\)) (R® can be considered as a limit), i.e
there exists a 1-parametric family of isometric surfaces with the same principle
curvatures. This associated family is given by the dual surfaces of the associated
family of the 6-isothermic HIMC surface.

Any Bonnet surface (isothermically parametrized) into 5(31 J200D) isdual to a
#-isothermic HIMC surface with fundamental forms.

gt (W) — gmu(ww) gy, w) = 2Q(w, W) = 2¢(w, W) € R,
Q*(w,w) = 3H(w,w) £i6.
Proof. According to [25] Bonnet surfaces in 5(1 /(201 are characterized by
the harmonicity of the inverse of the Hopf differential in isothermic coordinates.

Combining this characterization with (35) and the formula above, one proves the
theorem.

We finish this section by the following

CONJECTURE 2. Iff the scaling of a HIMC surface generates the associated
family, then this surface is 6-isothermic.

6. A and B Familiesand the Painlevé VI Equation

In this section we solve the following generalization of the Hazzidakis equation
(see Remark 9),

O\ A )+ — 47
<Q’(t)> _q(t)_sinZ(Zt) (2 0) )7 t=z+7, (50)

in terms of the sixth Painlevé equation [12],

b 11 1 1 2
yis) = 2<y(s>+y(s>—1+y<s>—s>y (5)

—(3+ St )y'(s>+

x<a+ﬁy28 +q y(s_l) PRI Gt ) (51)

where o, 8,y, and § € C.
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LEMMA 10. Equation (50) hasthefirst integral
qn 2
2 — t(2 -
< 4 + cot( t))
1 "\ 2
7 (92 (cot2(2t) + 1) +q?+ <q cot(2t) + %) ) =12 (52)

Remark 13. One can easily prove Lemmal0 by verifying, that the derivative
of the left-hand side of (52) is a product of the difference between the left- and
right-hand sides of (50) with afactor which is finite for the solutions of (50). But
we choose another way to provethislemmasincewe need |l ater the notationswhich
we introduce in its proof and we want to explain how to get this first integral via
the Lax representation for the differential equation (50).

Proof of Lemma 10. Let usintroduce the similarity variables,
_ it _ diz . _
s=e" A=—T€" U(A,s) =9(T,2,2). (53)

Substituting them into the moving frame equations (11), in which the coefficients

of the fundamental forms are given in Tablel for - = —1, we get the following
system
nInIrl—lA()Jr A()+LA()
A S N D WP
. (54)
T = — AAs(s) + B(s),
where
[ a(s) ©(s) _ _a(s)(0 0
Aols) = (—tp*(s) —a(s)) ’ Aas) = = s (1 0> ’
01
As(s) = U(S) (0 0) )
a(s) 1 o(s)
PR P P
B(s)=1| )
'), ols) als) 1
s s(s—1) 2s  4s
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and

a(s) = —bi (Z;,((’;)) + cot(2t)> ,

(s) = _iV/=24() i €2t (q(t) +i6)
= 8 28in(2t)/—2¢ ()’

o(s) = eZTSin(Zt)\/—Zq’(t),
e V=24 e @ (g(t) — i)
) =——g - 25in(2t) /=24 (1)

Definethematrix A,, = —Ag— A1 — A;. Denotethe eigenvaluesof A, by £6,,/2
(v = 0,1, s,00). The compatibility condition for system (54) yields that the 6,’s
are constants. Since det(A,) = —62/4, weget §; = 6, = O and

(55)

<9_20>2 = a(s)? — p(s)p* (s), (56)
(%«3)2 = a(s)” = (p(s) + o(s)) (Ws) * #) ‘

Substituting (55) into (56), one finds the first integral (52), where
p=—05—0%,  0=065—065

Remark 14. Although we start from thegeometrical situationfor which¢'(t) < 0
and get the Lax representation for (50) by using the moving frame equations, this
representation (54) is valid for any complex solution of (50). For most of this
section, we consider the relation between the complex solutions of (50) and the
Painlevé V1 functions since it seems to be difficult to describe the geometrical
solutions in terms of the Painlevé VI functions. On the other hand for the analysis
of the corresponding surfaces one can work with the representation (54) directly
and parametrizeit in terms of q.

LEMMA 11. Let ¢(t) be a solution of (50) with the first integral (52) and 6, =

V0= 1)/2 # 0. Then

(s—1)
y(s) =1+ 55 (57)
14 g2 <ioo/2>
o+

where a(s), ¢(s), and o(s) are defined in (55), solves the Painlevé VI eguation
(51) with
_rto

a =300 —1)% B = Y v =0, §=1 (58)
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If0 € Rand¢'(t) < 0, then > max(0, 9).
Conversely, let y(s) bean arbitrary solution of (51) with

a,BEC, v =0, §=3. (59)
Define
s = (1 4+ V20a), 0= (1+V2a)?+ 283, (60)
p=28—(1+v Za)ZJ
where the branch of /2« is fixed such that v/2a > 0 for o > 0. Then
o s(y—1)+y—s
t) =16 +
« v
2 _ 2 _ 2 _ I _ _ 2
i 05y —8)7(y — 1) — (s(s = 1)y —y(y — 1)) (61)

(s = Dyly — Dy — s ’

with s = €%, is a solution of (50) with the first integral (52). Furthermore, if
i(1+V2a)€eR, 5> 0,and

i allooly—s)y—1) —yly — 1) +s(s — 1)y')?
1 =-8 (s = D2y ~ Dy — 9

<0, (62)

then according to Theorem4, ¢(t) defines an A family of HIMC surfaces whose
functions of its fundamental forms are givenin Tablel.

Proof. Since 6, # 0O, one proves that a(s) + /2 # 0. Thus by defining
o = QU, where

o+ sp* 1
_|\/_ 2 s(a+0o0/2)
1 oty |
a+0x/2

one finds that the function @ solves the system of the form (54) but with other
matrices A, - A, (v = 0,1,s) and B — B, where B is a traceless diagonal
matrix. In particular, for the matrix elementswe find

12 2 _ 2
4_1:}<0+_80) om0 7 (63)
A2 7 s\a—0/2 4, 2 sbe
gilz_i_% qu__ 9 g (64)

40, 0y ST My b

Now, to prove (57) and (58), we use the parametrization of A in terms of the
Painlevé VI function presented in [21]. If 6 R and ¢'(¢t) < O, then ¢* = B
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and a is pure imaginary. Therefore, (56) yields g, 0 € iR, which proves that
p > max(0, ).

Let y(s) be asolution of (51) with coefficients given by (59). Then we define
the parameters 6, # 0, p, and 6 according to (60). Since 6, # 0, we can usethe
parametrization of the system (54) (4, — A,) in terms of Painlevé VI functions
[21]. We substitutethis parametrization into theleft-hand side of (64) and Equations
(55) into theright-hand side of (64) for o™ and o/ to get alinear algebraic system
for ¢(t) and ¢/(t). Solving this system we arrive at the formulas for ¢(¢) (61) and
q'(t) (62). We need to prove the correctness of these definitions as it is not clear
apriori that ¢'(¢) is, in fact, the derivative of ¢(t): to prove this, differentiate (61)
with respect to ¢ and substitute for 3" () equation (51) with the constants (58). This
gives (62). Now, using the compatibility conditions for (54) in terms of a, o, ¢,
and ¢*, we get the formulafor a(s) (55) and that the function ¢(t) satisfies (50).

THEOREM 6. If ¢(t) # +6cot(2t) is a solution of (50), then it satisfies (52).
The function y(s) given by (57) with 6, = /(0 — p)/2 solves the Painlevé VI
equation (51) with the coefficients (58). Moreover, if # € R and ¢'(t) < 0, then
p > max(0, 0).

Conversely, if y(s) is a solution of the Painlevé VI equation (51) with the
coefficients (59), then ¢(t) given by (61) and (60) is a solution of (50) with the first
integral (52). Furthermore, if i(1+ v2a) € R, 8 > 0, and inequality (62) is valid,
then ¢(t) definesan A family of HIMC surfaces according to Theorem4.

Proof. Since the case 6, # 0 is considered in Lemmall, we must deal only
with the case 6, = 0. If 6, = 0 and ¢(t) # 6 cot(2t), then formulas (57) and
(61) are well defined for the solutions of (50) and (51), respectively. One proves
the statement of the theorem in this case by a direct calculation.

Remark 15. The functions ¢(¢t) = 46 cot(2t) are the only two solutions of
the Hazzidakis equations which are not expressible through (61) in terms of the
Painlevé VI functions. The function ¢(t) = 6 cot(2¢) for & > 0 is a geometrical
solution of (50) which isinvestigated in Section 8.

In the rest of this section, we consider the solution of another generalization of
the Hazzidakis equation (40) (B case),

SO\ 4 (1) + 67
( )—q(w—gnhz(%) (2— 0 ) (65)

with¢ = w + w, in terms of Painlevé VI equations. Since, asin the A case, we did
not find a proper description of the geometrical solution in terms of the Painleve
VI functions, we present here only a result for the general complex solutions of
(65). An explicit formula for the case B can be obtained as a direct corollary of
Theorem 6 and the following:
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Figure 2. 6-1sothermic HIMC surface of Type B.

LEMMA 12. Let g4(t4) be an arbitrary solution of (50) with = 64 € C. Then
qp(tp) = —iqa(ta), where tp =ita, (66)

isa solution of (65) with 8 = +i6 4.
Proof. Straightforward verification.

Remark 16. Onefindsan explicit formulafor ¢ (¢5) interms of the Painlevé VI
functions by substituting 6 — 6, ¢(t) — iq(t), and s — €* into (61). This formula
yields all solutions of (65) except ¢(t) = +i6 coth(2t).

Figure 2 shows anumerical produced picture of a #-isothermic surface of the B
type. Theinitial valuesinserted in (40), (s(t) asfor the B casegivenin Tablel) are

=1, &) =i, to=01,
q(to) =0, q'(to) = -1, q"(to) = 1.

7. C Familiesand the Painlevé V Equation

In this section we consider the solution of the following generalization of the
Hazzidakis equation (see Remark 9),

SOV o L[ P
(F) ~10=2 (2 70 ) ©
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in terms of the fifth Painlevé equation [12],

1 1 2y
" __ a - /__
v _<2y+y—1>y i

—1)? 1 1
+% (ay—i—ﬁ—) +7Q+5M7 (68)
t Y t y—1
where o, 3,~, and § € R. Let us start with the following.
LEMMA 13. Equation (67) hasthefirst integral,
(q”(t> }>2 _ W+ d) g _p? (69)
2q'(t) t 2q'(t)t? 2 t 4-

Proof. To prove this lemma, we use the way more convenient for us rather than
short: the reasons are anal ogous to those explained in Remark 13. We introduce the
similarity variables

_z2+( _ _ _ _
A= t=ren WY = U(na), (70

where ¢ isgivenin Tablel. By substituting them into the moving frame equations
(11), in which the coefficients of the fundamental forms are taken from Tablel for
¢ = oo, we get the following system

L falt) e\ eor 0 377
U\w 1_t<¢(t) —a(t)> +— 1 ; ;
A (72)
_alt)
T I
o) =) | ) a0
where
() ') 1 _ q()+i6 —q'(t)
a(t) =5 = 2q’(t) +¥, (,D(t) ——\/Tl(t)t-i— 5 (72)

Itisaconsequence of the compatibility condition of system (71) that thedeterminant
of thefirst matrix isindependent of A and ¢. Thus, we get the first integral of (67),

) + o = = &
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which can be rewritten due to (72) as (69).

Remark 17. Note that, the case ;» = O for real solutions of (67) is possible, iff
# = 0 because, otherwise, there must exists a real-valued function ¢ which solves

q'z—%(q—i—i@). (74)

Thecase u = 0 = Oisinvestigated in Section 8: for the rest of this section i # O.

THEOREM 7. If ¢(t) # C/t (C €C) is a solution of (67), then it satisfies (69),
and the functions

1 2a(t) + p
__* u(t)/2 _
z(t) 2uw(t) e"vre y(t) 2alt) — (75)
where ¢(t) and a(t) are given by (72), solve the following system
= (52 (3)
tz =z|—-1—+z)|y——),
s Y (76)

ty = pty — 2z(y — 1)> +1i %(y - 1)2
Moreover, if ¢'(t) < O, then y isa negative solution of (68) with the coefficients

92 2
a:_ﬁ:_4—,uz’ 7= 5:_%- (77)

Conversely, if y is a solution of the Painlevée V equation (68) with the coefficients
(77), where  and 1 # 0 are arbitrary numbers, then

PP —y?) oy —1)?
(t) = y(y—12 2 2uPty (78)

isa solution of (67) with thefirst integral i (69). Moreover, if y < 0 and does not
solve

0
"=y +i—(y—1)2
y =y ut(y )%

then ¢(¢) given by (78) is real and defines a HIMC surface (see Theorem 4) with
the metric function

0 _ =1 fpy—y)*

eu
12y y(y —1)?
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Proof. The existence of the first integral (69) is the result of Lemmal3. To
find an explicit representation of ¢(¢) in terms of the fifth Painlevé function, let us
consider the following gauge transformation, ® = Q(¢) ¥, where

Q) = v(t)'K (a(t)—i—%u <,0(t)>7

po(t) \ a(t) — 3u o(t)

with k defined in (6) and v(t) asolution of the differential equation

v (t) = mn@ <@> + 24

Remark 18. Note that, for 1 # 0O, the function o(¢) has no zeros. Since any zero
of ¢(t) solves (74), there are no such zeros for 6 # 0. Moreover, for § = 0, any
solution ¢(t) having at least one zero is identically zero: thisis only possible for
u = 0 (see Equation (73)).

Remark 19. The gauge transformation is only an analytical trick rather than a
geometrical transformation of the moving frame because 2(t) ¢ SU(2).

Now for @ we get the following system

| “1 0 w?
' u(t) /2
oo 1= M Llelt)e ; .
2 A 2# 1 1
v(t)?
1 eu®)/2 o (t)[? (a(t) + %u)zv(t)z
t—~ (2a(t) — p)? ,
»— 1200t | (2alt) —p)° B )
110 (t) 40(1)2 lo(t)] 79)
v(t)?
e T (2) (a(t) + 31)
hb =G|y -
U(t)z(a(t) — 31) Iy
+Qt971.

On the one hand, the coefficients a(¢) and (t) of the system (79) are expressed in
terms of the function ¢(¢) via(72). On the other hand, it isaresult of the work [21]
that these coefficients can be presented in terms of a Painlevé V function (68) with
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the coefficients given by (77). Comparing (79) with the parameterization given in
[21], we get the following system

_1y®+1_¢" 1
we _ W )
p(t) € =12 ! q't—q— i, (80)
2 .
S(t) e (02 = Y L, a-1

jt(uy —y) +i0y—12 2t 22

and that the functions z(¢) and y(t) defined by (75) satisfy system (76).

If ¢'(t) < 0, then ¢(t) is real and, hence, a(t) is real. Since ¢(¢) is rea and
q(t) # C/t, itis not asolution of (74), and thus ¢(t) # 0. Now, from (73) and
(75) we get that y(t) < O.

Conversely, let y(t) beasolution of (68) with (77). Then, we define the function
q(t) by using the system (80). The consistency condition for this system gives us
(69). Differentiating (69) and taking into considerationthat (¢” /¢’ +2/t) # 0, since
y(t) = —1isnot asolution of (68) with the coefficients given by (77), one arrives
at (67). Solving the last two equationsin (80), one finds an explicit expression for
q(t) (78), and

S0 = (oz(y(lt)—l)2 (y'(t)—uy(t))2>_

) 222 T 200 — 1)?

If y(t) < O, then ¢(¢) is rea and ¢'(t) < 0. Now, to finish the proof, we use
Theorem4 and the formula for €(*) from Tablel.

Remark 20. In the case # = 0 one puts

y(t) = —cot*(¢(x))

into the fifth Painlevé equation (68) with the coefficients (77) to get athird Painleve
equation in trigonometric form (20). The solutions of this Painlevé Il equation are
in one-to-one correspondence with the HIMC surfaces of revolution as proved in
Section4.

Remark 21. The parameter 1 is not an essential parameter in our description of
HIMC surfaces sinceit can be removed from the Painlevé V equation (68) with the
coefficientsin (77) viathe scaling t — ut. Thisscaling is just a reparameterization
of the surfaces: so, in the case 4 # 0, onemay fix p = 1.

Remark 22. The scaling property of the associated families stated in Theorem 5,

which we establish by calculation of the functions of the fundamental forms, can
be derived in another way: use the Sym formula (10) and the A-equations (54) or
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(71) obtained in Section 6 and here. Actually, by means of (54) or (71), we can
rewrite the Sym formula as follows

F(r,27) = 900 MO0 A0, ), )

where A(X,t)¥ (A, t) denotes the right-hand side of (54) or (71). Now let us
consider the A case with 7 < O (the calculationsin the A case 7 > 0, the B case,
and the C case are similar). According to (53) we have

% _ Az

or
and all other terms depend on 7 only through the variable \. For the immersion
function thisimplies

F(r,2,z)=—-1F(-1,z+ %i log(—7),z — %i log(—7)). (82

Thus the associated family F'(7, z,%Z) can be obtained by the reparametrization
z—z + 3ilog(—7) = z + £(7) with ¢(7) as given in Tablel of the surface
F(-1,z,7z) andits scaling by the factor (—7).

8. Special Families of HIMC Surfacesand Cartan Families

It is proved (see Remark 15), that in the A case there are two and only two special
solutions of the generalized Hazzidakis equation (50), ¢(t) = £6 cot(2t), which
are not related with the Painlevé V1 equation. Since we are considering ¢ > 0, only
one of these solutions, namely,

q(t) = 6@cot(2t), 6 >0, (83)

generates a HIMC A family. In Section 7, where we analyzed the C case, we
obtained that for # = . = 0, there is aone-parameter family of solutions

q(t):%, a>0 for t >0, (84)

whichis not related to the fifth Painlevé equation, but generatesa HIMC C family.
The A families produced by the solutions (83) seem to be, at first glance, non-
isothermic since # # 0, while the C families are, of course, isothermic ones.
Unexpectedly, both solutions (83) and (84) define the same families.

PROPOSITION 4. The A families defined by the solutions (83) coincide with the
C families generated by the solutions (84) if § = 2«.

Proof. The following equations are an explicit mapping from the special A
family into the C one

Oé:%e, TC:1/2|7_A|, zC:Sign(TA)i(eﬂ'iZA—l)’
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where 74 and 7 are the family parameters, and z4 and z¢ arelocal coordinates.

DEFINITION 4. Thespecia Cfamiliesof HIMC surfaces corresponding to solution
(84) are called Cartan families.

The motivation for this definition might be clarified by the following.

PROPOSITION 5. Iff an isothermic HIMC surface is dual to itself and is not a
CMC surface, then it belongsto a Cartan family.

Proof. If anon-CMC HIMC surfaceisdual toitself, then1/H and 1/() are non-
constant harmonic functions. By using the Codazzi equations (5), one proves that
thereisalocal conformal parameterization of this surface in which the coefficients
of the fundamental forms read as follows

2
7Z) = ) = u(z,Z) — a_
Qz7) =bH(z7) = ——, € 27, lap>0,
which meansthat it is an applicable Bonnet (and HIMC) surface. Now, scaling its
local coordinatez — a/(2b)z, weget exactly the samefunctionsof thefundamental
forms asfor the special HIMC surface defined by solution (84) with «« = a?/b and
7 — 0 (see Tablel and Theorem4).

Remark 23. Due to this Proposition, the special C families (84) of HIMC
surfaces are ssmultaneously special C families of Bonnet surfaces. Cartan was the
first who distinguished these specia C families as being the only kind of families
of applicable Bonnet surfaces[7, 11].

COROLLARY 10. All #-isothermic HIMC surfaces with 8 # 0, which do not
belong to the Cartan families, are nonisothermic.
Proof. This statement is a consequence of Propositions 3 and 5.

PROPOSITION 6. The immersion function for the Cartan familiesis

w2 12
Re (1 — AGZ(,\) - \G (,\)>
Fire®) =] (@)

Im (1(‘:2)\612()\) - AG’Z(A)> ’
2wRe(G'(N)G(1 - N))
where

G(\) = C12Fi(iw, —iw, L) + Co(1 = \) 2Fi(1+iw, 1 —iw, 21— \),

C1,Co€R, and
TZ + 2i _ 1 /1
A:T(z—i—E)’ t=2z47%, w = 35\/ 3.
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Here,Fi(a, b, ¢;t) isthe standard notation for the Gaussian hypergeometric func-
tion [22].

Proof. To derive formula (85) one substitutes into the Sym formula (10)
U, (7,2,Z) = A\ WA(A, t), where Uy (), t) is given by the first equation of (71)
with A changed to 1 — \. Since in our case a(t) = ¢(t) = 0 = u = 0, (71) as
follows

0

T O)T I\ =w 1

1-A

o >k

The general solution of this equation is given by

GO\ —%(1 —NG(1- )

v = |, | ,
“AG'() G(1— )

where G solvesthe hypergeometric differential equation
AL = 2)G"(N) + (1= NG (\) —w?G(\) =0:

since ¥ (A, t) € SU(2), C1,C2 € R. One uses the Sym formula (10) to get the
immersion function F'(r, z, z) in the quaternionic representation. Since the Cartan
surfaces are cones, one simplifies F'(r, z,z) by scaling to get, after identification
(7), thefinal result (85).

Remark 24. The variation of the constants C'; and C just means a rotation of
the surface as awhole. Therefore, they can be fixed arbitrarily, but not both equal
to zero.

According to Proposition 6, each Cartan family consists of two different sur-
faces: acone (7 # 0), and acylinder (7 = 0). Actualy, from the point of view of
projective geometry, there is only one surface in each family: we call it the Cartan
cone.

In Figures 3-5, we present the parts of different Cartan cones inside spheres,
centered at their vertices. The black curves are the sections of the cones by the
spheres. In all pictures these spherical curves wind around two centers whose
positions depends on the parameter « in Equation (84); therefore, o regulates the
number of self-intersections of the cone. Since the Cartan cones depend smoothly
on «, there should be a discrete set of values of « such that the corresponding
Cartan cones have infinitly many lines of self-intersection when the centers of the
spherical curves belong to them.
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Figure3. (a = 32).

Figure4. (a = 8).

Appendix. The Hopf Differential asa Hamiltonian for the Painlevé Equations

It is well known that the Painlevé equations admit Hamiltonian formulations
[21, 23, 24]. Since, as was shown in Section4, Proposition 1, geometrical objects
acquire a simple formulation in Hamiltonian notation, we consider here Hamil-
tonian structures associated with the Painlevé equations arising in our study of
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Figure5. (a = 2).

HIMC surfaces. In the A and B cases, a reference to the Hamiltonian structure
allows us to get another representation of solutions of the generalized Hazzidakis
equations (50) and (65) in terms of the sixth Painlevé functions then that obtained
in Section 6.

PROPOSITION 7. Let ¢(¢) be a solution of (50) with the first integral (52) and
q(t) # L6 cot(2t). Denote by {3, j, k, 1} a permutation of the set {1, 2, 3,4} and
put

b, =b =0, bij = %\/—,ui \/ 2 — 602,

1 q(t) 1
= - (b1b3 + b1bg + b3b4)5 + 2 Z bmbn, ) (86)

s(s—1) \ 8 Lcrmen<a
wheres = % — %i cot(2t), isthe Hamiltonian function corresponding to the Hamil-
tonian He(ge, pe, s) : He(s) = He(gs(s), ps(s), s)
H6(q67p67 8)
1 2
BT (g6(g6 — 1)(g6 — s)p§ —

—((b1+b2)(g6 — D)(g6 — ) +
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+(b1 — b2)(g6 — s)g6 + (b3 + ba) (g6 — 1)ge)ps +
+(b1 + b3) (b1 + ba) (g6 — 5)),

where (¢s(s), pe(s)) isa solution of the Hamiltonian system

dgs  OHe(ge, e, 5) dps  9Hel(gs, Ps: 5)

ds Ope ’ ds dqe
Thefunctiony(s) = gs(s) solvesthe Painlevé VI equation (51) with the coefficients

a=3(bs—ba)?  B=—3b1+b)?
v = 3(br—b2)?, § = 3(1— (bg+ba+1)?).

Conversely, if y(s) = gs(s) isasolution of (51) with the coefficients (88), then one
finds from the first equation of (87) the function pg(s) and, thereby, from Equation
(86), the function ¢(t) # 6 cot(2t).

Proof. The Hamiltonian formulation for the Painlevé VI equation is due to
Okamoto [23]: he also proved that the Hamiltonian function for the Painlevé VI
equation is the general solution of a second-order differential equation quadratic
with respect to the second derivative. We just notice that the first integral (52) can
be transformed into the Okamoto equation by the change of variables presentedin
the Proposition.

(87)

(88)

COROLLARY 11. Let Q4(T, z,Z) be a Hopf differential in the parametrization
given in Theorem4 for A families of HIMC surfaces defined by solutions of the
sixth Painlevé equation (51) with the coefficients

Oé:O, ﬁzuf;ev F)/:_Mf—:ev 6 =0.

8is(s — 1)Hg(s)
TSIN?(2(z — ((7)))’

where Hg(s) is defined in Proposition 7 for

by = by =0, br2 = %\/—pi \/ 2 — 62,

Proof. Direct consequence of Theorem4 and Proposition7.

Qa(T,2,Z) = (89)

COROLLARY 12. Let ¢(t) be a solution of (65); then, it has the first integral

2 (% 4 Coth(2t)>2 -

L (02 (cot?(2) — 1) — ¢2 <coth(2t) q—'>2 _
- 1) - ¢+ (g +2) ) =n
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Let {i, 7, k,[} beapermutation of theset {1, 2, 3,4}. Define

bk:bl:O, bz’,j:% ui\/uz—l—az;

then, for ¢(t) # + 16 coth(2t), the function

1 ¢ 1
He(s) = (&_(blbg+b1b4+b3,b4)s+é 3 bmbn),

8 1<m<n<4

wheres = Z(1+ coth(2t)), isaHamiltonian function corresponding to the Hamil -
tonian He(gs, pe, s) defined in Proposition7.
For {i,7,k,1} ={3,4,2,1} and ¢'(t) < 0, the Hopf differential is as follows

32s(s — 1)Hg(s)
(1+ 472)sinh?(2(z — ¢(7)))’

Qp(T,2,Z) = (90)

The function y(s) = ge(s) solvesa Painlevé VI equation with the coefficients

a=0,  p=—tE0 870 o0

Proof. This statement is an implication of Theorem4, Lemmal2, and Proposi-
tion7.

PROPOSITION 8. Let y(t) be a solution of the fifth Painlevé equation (68) with
the coefficients (77). Then the system (76) with respect to the canonical variables
gs = y and ps = z/y gains a Hamiltonian form

dgs _ 9Hs(gs, ps, t) dps _ 9Hs(gs,ps,t)
dt Ops ’ dt dgs

with the Hamiltonian
1 0
Hs(as, ps, t) = — ((qs — 1)%gsp§ — ptpsgs — Zﬁ(% - 1)2ps> :

The Hopf differential Q¢ (7, z,%) for the non-Cartan C families (see Theorem4
and Section 8) is, up to a holomor phic function, equal to the Hamiltonian function.
In the parametrization of Theorem4.

I ()
Qelr=.2) = iy (10 551)- o
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Proof. For the Hamiltonian formulation of the fifth Painlevé equation, see the
works [21] and [24]. The proof follows from the fact that

Res (Ir(Wa ¥ 1)?) = Res (tr(2:2Y)?),

where U and @ = Q(¢) ¥ are the solutions of (71) and (79), respectively, and the
definition of the Hamiltonian in the framework of the Isomonodromy Deformation
Method [21].

Remark 25. As it is obvious from (91), Q¢ (7, w,w) = Hs(t) for a proper
local conformal reparametrization of the surfaces in this case. In the A and B
cases, one can not find such reparametrization for (89) and (90) since the factor
s(s — 1) is not a holomorphic function: but, possibly, the richness of the group
of canonical transformations for the sixth Painlevé Hamiltonian system [23] may
allow oneto find, instead of (89) and (90), relations between the Hopf differentials
and Hamiltonians for these cases with holomorphic factors.
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