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Abstract. In this paper we study surfaces immersed in R3 such that the mean curvature function H
satisfies the equation �(1=H) = 0, where � is the Laplace operator of the induced metric. We call
them HIMC surfaces. All HIMC surfaces of revolution are classified in terms of the third Painlevé
transcendent. In the general class of HIMC surfaces we distinguish a subclass of �-isothermic surfaces,
which is a generalization of the isothermic HIMC surfaces, and classify all the �-isothermic HIMC
surfaces in terms of the solutions of the fifth and sixth Painlevé transcendents.
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1. Introduction

In [1] a new class of surfaces was introduced, defined by the property

�

�
1
H

�
= 0; (1)

where H is the mean curvature of the surface and � is the Laplace operator of
the induced metric. We call these surfaces the harmonic inverse mean curvature
surfaces (HIMC surfaces).

HIMC surfaces can be considered as a natural generalization of surfaces with
constant mean curvature (CMC surfaces). The latter class has been intensively stud-
ied (see [2–4]) by the methods of the theory of integrable equations (the solition
theory). The starting point of this theory is a representation of the nonlinear differ-
ential equation (in differential geometry these are the Gauss–Codazzi equations) in
a form of compatibility condition (Lax or Zakharov–Shabat representation in the
theory of solitons)

Uy(�)� Vx(�) + [U(�); V (�)] = 0: (2)

The parameter �, which is called a spectral parameter in the theory of solitons,
describes some special one-parametric deformation of surfaces, which is called
an associated family in geometry. The representation (2) for HIMC surfaces was
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188 A. BOBENKO ET AL.

found in [1], where the associated families of HIMC surfaces were described
as one-parametric conformal deformations preserving the ratio of the principle
curvatures. The conformal factor is the modulus of a holomorphic function. The
mean curvature function of a HIMC surface is given by

H(w;w) =
1

w + w
;

where w(z) is a holomorphic function of the complex coordinate z on the surface.
We assume that w itself is a local complex coordinate. In this coordinate one can
characterize HIMC surfaces via the solutions of the nonlinear system of partial
differential equations for the Hopf differential Q(dw)2

�
Qw �w

Q �w

�
�w

�Q �w =
1

(w + w)2

 
2� jQj2

Qw

!
;

Qw = Qw:

(3)

By the substitution Q = fw this system can be reduced to one equation for one
real-valued function f(w;w)

�2f � jr�f j2
�f

� (�f)2 =
4

(w +w)2 (2�f � jrf j2);

where jrf j = 2jfwj, � = 4@w@ �w. Note, that this equation is integrable from the
point of view of the soliton theory. This equation is the compatibility condition
(Lax representation) for the system (11) of linear differential equations? with an
additional parameter � .

Another confirmation of the fact that HIMC surfaces are natural generalization
of CMC surfaces was obtained in [5], where it was shown that only these two
classes admit a Lie-point group of transformations of a certain type.

The integrability allows us to study HIMC surfaces by analytical methods of
the soliton theory. By using one of these techniques, namely, the so-called dressing
procedure, a Bäcklund transformation for HIMC surfaces was constructed in [6].
In spite of the mentioned analytical results no concrete examples of nontrivial
(not CMC) HIMC surfaces are constructed up to nowadays. This is the problem we
address in the present publication. We exclude the CMC case from our consideration
and assume H 6= const.

Following [1] we use the quaternionic representation of surfaces in R
3 , which

is explained in Section 2.
The notion of the associated family and the corresponding Lax representation

play an important role in our study. Therefore we recall the results concerning them
in Section 3.

? To express all the coefficients of (11) in terms of f one should substitute h = w, Q = fw ,
H = 1=(w + w), eu = �2(w +w)2fw �w .
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SURFACES WITH MEAN CURVATURE AND PAINLEVÉ EQUATIONS 189

Since there are no harmonic functions without zeros on a compact Riemann
surface, there are no compact nontrivial HIMC immersions. The simplest case to
study are the surfaces of revolution. Surfaces of revolution are isothermic, i.e. they
allow conformal curvature line parametrizations. The duals of isothermic HIMC
surfaces (for the definition of the dual isothermic surface see, for example, [1])
are the Bonnet surfaces, i.e. the surfaces admitting isometries preserving the mean
curvature function. In [7] all Bonnet surfaces are described in terms of the third
and sixth Painlevé transcendents. Hence, all isothermic HIMC surfaces can be also
described in terms of the same Painlevé transcendents. In particular, in Section 4 we
classify all HIMC surfaces of revolution in terms of the third Painlevé transcendent
and employ its asymptotic properties to analyze their embeddedness.

Isothermic surfaces admit isothermic coordinates, i.e. conformal coordinates
in which Im(Q) = 0. A generalization of the isothermic surfaces is suggested
in Section 5. In this section we consider the surfaces which allow a conformal
parametrization, such that the Hopf differential has constant imaginary part

Im(Q) = �: (4)

We call these surfaces �-isothermic and classify their associated families in terms
of the solutions of special third-order ordinary differential equation, which can be
obtained by imposing (4) into (3). These equations can be viewed as generalizations
of the Hazzidakis equations [8]. We find the following geometrical property of
�-isothermic HIMC surfaces: the associated family of each �-isothermic HIMC
surface acts on it just by scaling. We conjecture that this self-similarity property is
a characterization of the �-isothermic HIMC surfaces.

In Sections 6 and 7, the general solutions of the generalized Hazzidakis equa-
tions corresponding to �-isothermic HIMC surfaces in terms of the fifth and sixth
Painlevé transcendents are obtained. These Painlevé equations are more general
than those in the isothermic case. For instance, for Im(Q) 6= 0 the fifth Painlevé
equation cannot be reduced to the third Painlevé equation as it is in the isothermic
case. Note, that the solutions of the Painlevé equations are recognized as nonlinear
special functions [9], [10], and their properties are rather well known. Therefore
the �-isothermic HIMC surfaces can be investigated as well as the isothermic ones.

In Section 8 we study the exceptional families of HIMC surfaces, which are not
related with the solutions of the Painlevé equations. We call them Cartan cones,
since Cartan studied these surfaces but from a different point of view: as the class
of applicable Bonnet surfaces [11].

In the Appendix, we establish the relation between the Hamiltonian functions for
the Painlevé equations and the Hopf differentials of �-isothermic HIMC surfaces.

2. Quaternionic Description of Surfaces in Euclidean 3-Space

For analytical researches of surfaces in R3 it is convenient to describe them in terms
of 2 � 2 matrices (for more details see [1]). In Sections 6 and 7, this description
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190 A. BOBENKO ET AL.

allows us to identify the equations for the moving frame of HIMC surfaces, which
satisfy some special symmetry reduction, with the zero-curvature representation
for the Painlevé equations.

Let F : R ! R
3 be a conformal parametrization of an orientable surface F

hFz ; Fzi = hF�z; F�zi = 0; hFz ; F�zi = 1
2eu:

Here R is a Riemann surface with the induced complex structure,

hv; wi = v1w1 + v2w2 + v3w3;

z is a complex coordinate, and

Fz =
@F

@z
=

1
2

�
@

@x
� i

@

@y

�
F; F�z =

@F

@z
=

1
2

�
@

@x
+ i

@

@y

�
F:

The vectors Fz , F�z , and N define a moving frame on the surface. The fundamental
forms are as follows

hdF; dF i = eu dz dz;

�hdF; dNi = Q dz2 +H eu dz dz +Q dz2;

where Q = hFzz; Ni is the Hopf differential and H the mean curvature function
on F .

The compatibility conditions of the moving frame equations are

Gauss equation uz�z +
H2

2
eu � 2QQ e�u = 0;

1. Codazzi equation Q�z =
Hz

2
eu;

2. Codazzi equation Qz =
H�z

2
eu:

(5)

Let us denote the algebra of quaternions by H and the standard basis by f1; i; j;kg

ij = �ji; jk = �kj; ki = �ik:

We will use the standard matrix representation of H

i =

 
0 �i
�i 0

!
; j =

 
0 1

�1 0

!
;

k =

 
�i 0

0 i

!
; 1 =

 
1 0

0 1

!
:

(6)
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SURFACES WITH MEAN CURVATURE AND PAINLEVÉ EQUATIONS 191

We identify the three-dimensional Euclidean space with the space of imaginary
quaternions,

Im H = su(2) = span(i; j;k);

by

X = (x1; x2; x3)
t = x1i + x2j + x3 k 2 su(2): (7)

The scalar product of vectors in terms of matrices is then

hX;Y i = �1
2tr(XY ):

Let us take � 2 SU(2) which transforms the basis i; j; k into the frame Fx, Fy , N

Fx = eu=2��1i�; Fy = eu=2��1j�; N = ��1k�:

One can prove [1] that � satisfies the following linear system

�z�
�1 =

0
B@

uz

4
�Q e�u=2

H

2
eu=2 �uz

4

1
CA ;

��z�
�1 =

0
B@ �u�z

4
�H

2
eu=2

Q e�u=2 u�z

4

1
CA :

(8)

3. Associated Family of HIMC Surfaces

Since, to the best of our knowledge, attention to HIMC surfaces was paid only in
the recent works [1], [5], and [6] not too many results about them are known. The
most important properties of HIMC surfaces can be summarized as follows

(1) Such surfaces are included in an associated family with conformally equivalent
induced metric; and

(2) There is a Sym-formula which gives the surface as a left-translation of the
tangent vector field on the SU(2)-representation of the moving frame of the
associated family.

Let us start with the Lax pair for an arbitrary surface with the special condition

H(z; z) =
1

h(z) + h(z)
; (9)
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192 A. BOBENKO ET AL.

where h(z) is an arbitrary holomorphic function and z is a local conformal coor-
dinate. Note that, h(z) is not supposed to be a local coordinate as opposed to w in
(3).

The main results concerning HIMC surfaces are formulated in the following.

LEMMA 1. Let F be a surface with local conformal parametrizationF (z; z) such
that condition (9) is valid. Denote by eu (u = u(z; z)) its induced metric and
Q = Q(z; z) its Hopf differential. There exists a one-parametric (� 2 R) family of
surfacesF� (called the associated family of F = F0) which have the property (1).
Each F� is given locally by the conformal parametrization (Sym-formula)

F (�; z; z) = 2	(�; z; z)�1 @

@ �
	(�; z; z); (10)

where 	 = 	(�; z; z) 2 SU(2) solves the following system

	z	
�1 =

0
BB@

uz

4
�Q e�u=2

�(�; z; z)
H

2
eu=2 �uz

4

1
CCA ;

	�z	
�1 =

0
BB@

�uz

4
� H

2�(�; z; z)
eu=2

Q e�u=2 u�z

4

1
CCA :

(11)

Here

� =
1� i�h(z)
1 + i�h(z)

(12)

andF (z; z) = F (0; z; z). The functions of the fundamental forms of the associated
family F� in parametrization F (�; z; z) are as follows

eu� (z;z) =
eu(z;�z)

j1 + i�h(z)j4 ; Q� (z; z) =
Q(z; z)

(1 + i�h(z))2 ;

H(�; z; z) = H(z; z)j1 + i�h(z)j2:
(13)

Proof. See [1].

4. All HIMC Surfaces of Revolution

The goal of this section is to derive explicit formulas for all analytical HIMC
surfaces of revolution. The properties of analytical surfaces of revolution which we
need here are summarized in the following lemma:
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SURFACES WITH MEAN CURVATURE AND PAINLEVÉ EQUATIONS 193

LEMMA 2. Let F be a surface of revolution different from a plane. Then there
exist local coordinates x, y such that the parametrization

F (x; y) =
1
a

0
B@

eu(x)=2 cos(ay)

eu(x)=2 sin(ay)

c(x)

1
CA ; a 2 R n f0g; (14)

of F is isothermic, i.e.

1 =
1
a2

 �
u0(x)

2

�2

+ c0(x)2 e�u(x)
!
: (15)

Moreover, the mean curvature function H = H(x) is given by the following
equation

H(x) =
4a2 � u0(x)2 � 2u00(x)

8c0(x)
(16)

and

c00(x) = H(x)u0(x) eu(x): (17)

Proof. Equation (14) is just a curvature line parametrization of F . The coor-
dinates are isothermic iff they are conformal curvature line coordinates. The con-
formity condition for the above representations yields (15). Thus the isothermic
coordinates (ex; ey) read

ex(x) = 1
a

Z
x

x0

s�
u0(�)

2

�2

+ c0(�)2 e�u(�) d�; ey = y:

To derive (16) one uses the definition of the mean curvature in terms of the functions
u(x) and c(x), formula (15), and that c0 does not identically vanish in some
neighborhood of x. Finally, differentiating (15) and using (16) we arrive at (17).

COROLLARY 1. For non-CMC HIMC surfaces of revolution there exist isothermic
coordinates (x; y) such that the mean curvature function is of the form

H(x) =
1
x
:

Proof. According to Lemma 2 the mean curvature is a function of x,H = H(x).
SinceH(x) is a solution of (1) and we are considering non-CMC surfaces,H(x) =
1=x.

For the rest of this section we fix a = 2.

geom1516.tex; 5/11/1997; 9:11; v.7; p.7



194 A. BOBENKO ET AL.

THEOREM 1. Let F be a HIMC surface of revolution with (14) as a local para-
metrization. Then there exists a real-valued smooth function �(x) such that

eu(x) =
x2 (�0(x) + 2 sin(�(x)))2

4
; (18)

c(x) = �x2

4
(�0(x)2 � 4 sin2(�(x)): (19)

Moreover, � solves the Painlevé III equation (in trigonometric form),

x(�00(x)� 2 sin(2�(x)) + �0(x) + 2 sin(�(x)) = 0: (20)

Inversely, let �(x) be any arbitrary solution of (20) with �0(x) + 2 sin(�(x)) 6� 0.
Then with u(x) and c(x) defined by (18) and (19), (14) we define an isothermic
parametrization of a HIMC surface of revolution.

Proof. Using (15), introduce a function � defined as follows

sin(�(x)) = 1
2c
0(x) e�u(x)=2; cos(�(x)) = 1

4u
0(x): (21)

Putting these equations into (16) we get (18). Taking the logarithm of (18),
differentiating it with respect to x, and substituting the result into the second
equation of (21), we find (20).

Finally, integration of (17) gives us

c(x) = xc0(x)� eu(x) + C0;

where C0 can be chosen to be zero. Inserting eu(x) (18) and c0(x) (16), in which
u0(x) and u00(x) are defined by the second equation of (21), we get (19).

To prove the inverse statement one should just substitute (18) and (19), in
which �(x) solves (20), into (15) and (16) and find that these equations are valid
identically.

It is interesting to notice that the functions important for the geometrical descrip-
tion of HIMC surfaces of revolution can be presented in a lucid form by using a
formulation of the Painlevé III equation as a time-dependent Hamiltonian system.
Actually, by introducing the mechanical notations

� (time) = x; q (coordinate) = �;

p (impulse) = 1
2x(�

0(x) + 2 sin(�(x)));

we arrive at the following proposition:

PROPOSITION 1. The Painlevé III equation (20) can be considered as the Hamil-
tonian system,

_p = fH; pg; _q = fH; qg;
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SURFACES WITH MEAN CURVATURE AND PAINLEVÉ EQUATIONS 195

with the canonical Poisson structure,

fp; pg = fq; qg = 0; fp; qg = 1;

and the time-dependent Hamiltonian,

H(�; p; q) = p2

�
� 2p sin(q):

The immersion function in these notations reads as

F (x; y) =
1
2

0
B@

p cos(2 y)

p sin(2 y)

��H(�; p; q)

1
CA :

The functions of the fundamental forms are given by

eu(x) = p2 = ��L(�; p; q); H(x) =
1
�
; Q(x) = 1

2H(�; p; q);

where eu denotes the induced metric, H is the mean curvature function, and Q
is the Hopf differential. Moreover, L is the Lagrangian function defined via the
Legendre transformation,

L(�; p; q) = H(�; p; q)� p
d

d�
q:

Proof. Direct verification.

LEMMA 3. Let � be a solution of (20). Then

(i) If there is x0 2 (0;1) with

�0(x0) + 2 sin(�(x0)) 6= 0; (22)

then inequality (22) is valid for all x 2 R
+ ;

(ii) The solution � is a real analytical function for x 2 R
+ .

Proof. To prove (i), one notices that any solution of

�0(x) + 2 sin(�(x)) = 0 (23)

solves (20) as well. So, from the uniqueness theorem for solutions of ordinary
differential equations the first part of the lemma follows. The statement (ii) is a
result of the Painlevé property for p(x) = ei�(x). The function p(x) solves the
Painlevé III equation in the canonical form and, therefore, its possible singularities
forx 6= 0;1 are poles of the first order [12] (the Painlevé property). That is why the
real solution (20), �(x), is an analytical function without singularities for x 2 R

+ .
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196 A. BOBENKO ET AL.

DEFINITION 1. The solutions of Equation (20) which are different from that
defined by (23), are said to be transcendental.

Remark 1. Actually, while all solutions of (23) are elementary functions defined
by the equation

cos(�(x)) =
1� C e�4x

1 + C e�4x or �(x) � �k; k 2 Z; (24)

one can show that the transcendental solutions, in the above sense, can not be
‘expressed in a certain way’ in terms of elementary functions. See the work [13]
for the mathematical details. So, from Theorem 1, we see that it is the Painlevé
transcendent which is responsible for the geometry of HIMC surfaces of revolution.

COROLLARY 2. Any analytically immersed HIMC surface of revolution can be
globally parametrized by

F (x; y) =
x (�0(x) + 2 sin(�(x)))

8
�

�

0
B@

2 cos(2y)

2 sin(2y)

�x(�0(x)� 2 sin(�(x)))

1
CA ; x 2 R

+ ; (25)

where �(x) is a transcendental solution of (20).
Proof. The statement is a result of Lemma 2 and Theorem 1. Formula (25)

becomes singular at x = 0, where the mean curvature has a pole.
For further discussions of the geometry of HIMC surfaces of revolution, we

need some asymptotic results for the solutions of (20).

LEMMA 4. Solutions of (20) are transcendental iff they are not holomorphic
functions in a neighborhood of x = 0.

Proof. Let �0(x) be a solution of (20) holomorphic in some neighborhood of
x = 0. Substituting the corresponding Taylor expansion for �0(x) into (20) one
gets that there exists only one one-parameter family of such solutions of (20). On
the other hand a one-parameter family of (20) is given by (24). Comparing the
Taylor expansions of �0(x) and �(x), one completes the proof.

Now we are ready to formulate.

THEOREM 2. For each real transcendental solution of (20) there exist real numbers
k0, p0, �0 and �0, and an n 2 Z such that the following asymptotic expansions are
valid

��(x) =
x!+1

2�n+ 1
2� +

2k0p
2x

sin('1)�
1

2x
+

1
(2x)3=2

�

�(k3
0(sin('1) + 1

6 sin(3'1)) +
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+3
2k0(

1
2 + k4

0) cos('1)) + O
�

1
x2

�
; (26)

�(x) =
x!+0

'0 �
2x

1 + �2
0

sin('0 + �) +

 
x

1 + �2
0

!2

�

�

0
@��0+

s
1 +

�4
0

4
sin(2'0 + 2�+ 2�2)

1
A+ O(x3); (27)

where

'1 = 2x� k2
0 log(2x) + p0; '0 = �0 log(x) + �0;

and

cos(�) =
1� �2

0

1 + �2
0
; sin(�) = � 2�0

1 + �2
0
;

cos(2�2) =
2� �2

0q
4 + �4

0

; sin(2�2) =
2�0q
4 + �4

0

:

The asymptotic expansions (26) and (27) are differentiable, i.e., the asymptotics of
�0(x) are just the derivatives of (26) and (27) but with the same error estimations
as in (26) and (27). Vice-versa, an arbitrary pair of real numbers can be taken
as the pair (k0; p0) or (�0; �0), in the last case �0 6= 0, to define, via asymptotic
expansions (26) or correspondingly (27), a unique real transcendental solution of
(20).

Proof. See the papers [14–18].

Remark 2. Theorem 2 and (24) imply: a solution � of (20) is nontranscendental
iff

�(x)
x!+1

- �k; k 2 Z:

Remark 3. Under the notation g(x) =x!a O(f(x))we mean that jg(x)=f(x)j <
C for some C > 0 as x! a.

Since the case when k0 = 0 in Equation (26) plays an important role in our
classification of HIMC surfaces of revolution, we formulate the following

THEOREM 3. There exists the unique real-valued solution of Equation (20), �(x),
which has the following asymptotic expansion as x!1,

�(x) = 1
2� �

1
2x

+
5

6(2x)3 +
1X

m=2

am

(2x)2m+1 ; (28)
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198 A. BOBENKO ET AL.

where the coefficients am are real numbers which can be obtained recursively by
substituting expansion (28) into (20). The asymptotic behavior of this solution as
x! 0 is given by Equation (27) with the parameters

�0 =
1
�

ln(3 +
p

8) =
2
�

ln(1 +
p

2) = 0; 5610998522:::; (29)

�0 = ��2�0 ln 2 + 2 arg�
�
i�0

2

�
�2
�

1
2
� i�0

2

�
= 0; 907634370:::; (30)

where �(�) is the standard notation for the �-function [22] and the function arg is
fixed by its principle value �� < arg(�) < �.

Proof. See [19].

Remark 4. Actually, the work [19] was done after the preprint version of this
article was completed. Our previous numerical calculations yielded the following
values for the parameters �0 = 0; 56108� 0; 00005 and �0 = 0; 908� 0; 005.

COROLLARY 3. The asymptotics of the immersion function is given by (14)
(a = 2), where

eu=2 =
x!+1

x+ k0

p
2x cos('1)� k2

0 sin2('1) +

+
1p
2x

  
k0

8
� 3

4
k5

0

!
sin('1)�

�k3
0

2
cos('1) +

k3
0

4
cos(3'1)

!
+ O

�
1
x

�
; (31)

eu=2 =
x!+0

�0

2
+

�0 xq
1 + �2

0

cos('0 +
1
2�) +

�0x
2

(1 + �2
0)

2
�

�

0
@1�

�0

q
1 + �2

0

2
sin(2'0 +

3
2�)

1
A+ O(x3); (32)

c(x) =
x!+1

x2 � 2k2
0x+ k0

p
2x sin('1)� 1

4 +

+
k4

0

2
+
k2

0

2
sin(2'1) + O

�
1p
x

�
; (33)

c(x) =
x!+0

��2
0

4
+

�0xq
1 + �2

0

sin('0 +
1
2�) +

�2
0(3 + �2

0)x
2

2(1 + �2
0)

2
+

+
�2

0x
2

2(1 + �2
0)

3=2
cos(2'0 +

3
2�) + O(x3); (34)
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where the notations are the same as in Theorem2 and

cos( 1
2�) =

1q
1 + �2

0

; sin(1
2�) = � �0q

1 + �2
0

:

Proof. The formulas (31) to (34) are the result of the substitution of (26) and
(27) into (18) and (19) correspondingly.

COROLLARY 4. For any HIMC surface of revolution there exists x0 > 0 such
that equation (25) for 0 < x < x0 and 1=x0 < x is an embedding.

Proof. As it follows from (33) and Theorem 2, c0(x) cannot vanish for large x.
This proves embeddedness of the HIMC surfaces of revolution for large x.

To prove the embeddedness for small x, consider the logarithmic spiral defined
via the first two terms of (32) and (34). This spiral is an embedding. For x ! +0
the curve (eu(x)=2; c(x)) can be interpreted as a deformation of O(x2) of this spiral.
But it is easy to see that such a deformation of the spiral cannot destroy its property
of embeddedness.

LEMMA 5. For arbitrary x0 > 0 the meridian curve (eu(x)=2; c(x)) for x0 < x <
1=x0 has a finite number of points of self-intersection.

Proof. Suppose that the number of intersections is not finite. Then using the
formula for the immersion (25) and the properties of the function � stated in
Lemma 3, one proves that there exists a pointx� 6= 0;1, such that (d=dx)k�(x�) =
0 holds for any integer k. Now the real analyticity of � implies �(x) = const for
all x.

COROLLARY 5. The meridian curve (0 < x < 1) has a finite number of self-
intersections iff the point with the coordinates (�0=2;��2

0=4) does not belong
to it.

Proof. The statement about the finite number of self-intersections ensue from
Corollary 4 and Lemma 5. If the point (�0=2;��2

0=4) belongs to the meridian curve,
then the infinite number of self-intersections occur according the asymptotics given
in Corollary 3.

PROPOSITION 2. Intersection of every HIMC surface of revolution F in para-
metrization (25) with

(1) P+, the paraboloid of revolution (with respect to the same axis as for F)
of the curve F3 = 2F 2

1 , is an infinite set of circles (we exclude those HIMC
surfaces of revolution, which correspond to the special solutions of Theorem 3
and Remark 4). A point belongs to one of these circles, iff it corresponds to an
extremum value (�0(x) = 0) for the related Painlevé function (20).

(2) P�, the paraboloid of revolution of the curve F3 = �2F 2
1 , is an infinite set of

circles. A point belongs to one of these circles, iff it corresponds to a solution
of the equation sin(�(x)) = 0.
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Figure 1. Types of possible meridian curves with their axis of rotation.

(3) The plane F3 = 0 is an umbilic circle. All umbilic points of F belong to this
circle.

A point belongs to the intersection of F with the paraboloids P+, P�, iff the
Gaussian curvature K of F vanishes there.

The part of F lying above the umbilic circle is embedded.
Proof. The Gaussian curvature of F parametrized by (25) is given by the fol-

lowing equation

K =
8 sin(�(x))�0(x)

x2(�0(x) + 2 sin(�(x)))2 :

To prove the assertions use the immersion formula (25) and the properties of the
function �(x), established in Lemma 3 and Proposition 1.

Remark 5. The analytical description of the global embeddedness of HIMC
surfaces of revolution in terms of the solutions of (20) seems to be a compli-
cated problem. Obviously, there are two possibilities: According to our numerical
investigations both of them are realized, moreover, the existence of HIMC surfaces
whose meridian curves have infinitely many self-intersections, is quite probable.

The results of our numerical simulations are presented in Figure 1.
The first plot in Figure 1 is the meridian curve of a HIMC surface of revolution

described by the special solution of Theorem 3 and Remark 4. The second plot is
numerically generated by the solution of (20) with �0 = 3:0 and �0 = �1:41,
and the third with �0 = 10 and �0 = 0. Evidently, the third curve describes a
nonembedded HIMC surface, while the first two should correspond to embedded
ones. Considering our asymptotic results and numerical simulations we come to
the
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CONJECTURE 1. All HIMC surfaces of revolution for j�0j > 4 are not embedded,
while for rather small modulus of �0 (j�0j 6 3) all of them are embedded.

5. Reduction to Ordinary Differential Equations

Let us assume a (local) conformal parametrization of a surface with (1=H)z�z = 0,
which implies that H has the representation given by (9). Now, by inserting (9)
into the Codazzi equations (5), we get

hz(z)Qz(z; z) = h�z(z)Q�z(z; z):

Then solving the first Codazzi equation with respect to u and substituting it into the
Gauss equation, we arrive at the following third order partial differential equation
for Q

hz(z)

�
Qz�z

Q�z

�
�z

�Q�z =
jhz(z)j2

(h(z) + h(z))2

 
2hz(z)�

jQj2

Qz

!
:

As long as h0(z) 6= 0, we can assume w = h(z) as a proper coordinate. Thus, we
obtain system (3). In the following part of this section we study some properties of
(3).

Remark 6. In the following it will sometimes be convenient for us to use w as
the original coordinate on the surface and z = z(w) for its reparametrization.

It seems to be a rather complicated problem to study the general solution of system
(3). Actually, in the previous section, we studied some special real solutions of (3)
for w = z=2. In general, we can formulate the following

LEMMA 6. Any isothermic HIMC surface is dual to a Bonnet surface.
Proof. We recall that, for an isothermic surfaceQ(w;w) = f(w)q(w;w), where

q(w;w) 2 R and f(w) is holomorphic. If w is an isothermic coordinate, then
f(w) � 1. For this coordinate, the coefficients of the fundamental forms of the
dual surface (given with *) read as follows

eu
�
(w; �w) = e�u(w; �w); H�(w;w) = 2q(w;w);

Q�(w;w) = 1
2H(w;w):

(35)

So from the last equation, we get that the Hopf differential of the dual surface is real
and (1=Q�)w �w = 0, which is an equivalent characterization for Bonnet surfaces as
first found by Graustein [20].

COROLLARY 6. All isothermic HIMC surfaces are describable in terms of
Painlevé III and VI equations with the same set of coefficients as for Bonnet
surfaces.
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Proof. As follows from (35), any solution for H� generates a solution for Q and
vice-versa.

The next natural step to continue the study of system (3) is to consider the
following generalization of the isothermic property (given in the proof of Lemma 6).
In any conformal parametrization the Hopf differential reads as follows

Q(w;w) = f(w)(q(w;w) + i�); (36)

where f(w) is holomorphic, q(w;w) is a real-valued function, and � is a real
constant. It is convenient for us to make the following.

DEFINITION 2. A HIMC surface is said to be �-isothermic if there exists a local
conformal coordinate z such that the Hopf differential of the surface is of the
form (36).

Remark 7. Note that, �, of course, is not an invariant of the surface as it is
dependent on f and on the choice of the conformal coordinate. If � 6= 0 then it can
always be set equal to 1. But we find it convenient in our study to keep � as a free
parameter.

PROPOSITION 3. A �-isothermic surface with � 6= 0 is isothermic iff it is a Bonnet
or CMC surface.

Proof. If a �-isothermic surface with � 6= 0 is isothermic, then the following
equation holds

ef(z)eq(z; z) = f(z)(q(z; z) + i�); (37)

where ef(z) and f(z) are holomorphic functions, and eq(z; z) and q(z; z) are real-
valued functions. Putting h(z) = �i ef(z)=(2�f(z)) one finds that

eq(z; z) = 1

h(z) + h(z)
; (38)

which means that for h(z) � const:, the surface is a CMC surface; otherwise, it is
a Bonnet surface [20].

Conversely, if the surface is a CMC or a Bonnet surface, then for any conformal
coordinate z, Q = ef(z)eq(z; z), where eq(z; z) is of the form (38). Define

q(z; z) = �� Im(h(z))
Re(h(z))

; f(z) =
ef(z)

2� ih(z)
;

and find that (37) holds.

LEMMA 7. Let Q be given by (36). With respect to the new variable

z =

Z
f(w) dw; (39)
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Equation (3) reduces to the ordinary differential equation

�
q00(t)

q0(t)

�0
� q0(t) = s(t)

 
2� q2(t) + �2

q0(t)

!
; (40)

where t = z + z, and s(t) is a real analytical function of t 2 RnD, with D a
discrete set.

Proof. Let us insert the ansatz (36) into the second equation of (3), then we get

f(w)qw(w;w) = f(w)q �w(w;w);

which implies that for z defined in (39) we have qz = q�z. As a consequence, we
get that q(z; z) � q(t).

Suppose that there is a solution of (3) such that both sides of this equation vanish
identically. This would mean Qw > 0. OO, the Codazzi equations yield for the
metric

eu = �Qw(w + w)2:

So such a solution could not be realized on a surface in R
3 .

Now using this fact and inserting

Q(w;w) = f(w)(q(t) + i�)

into the first equation of (3) we can define the function

s(t) =
1

jf � w(z)j2(w(z) + w(z))2 (41)

which had the properties stated in the Lemma.

Using the coordinate (39), we can rewrite the fundamental functions as follows:

Q(z; z) =
q(t) + i �
f � w(z) ;

eu(z;�z) = �2q0(t)(w(z) +w(z))2; (42)

H(z; z) =
1

w(z) + w(z)
:

COROLLARY 7. Let f(w) be as in Lemma 7. Then

f(w) =
1

aw2 + ibw + c
; (43)
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with a; b, and c 2 R.
Proof. Denote g(w) = 1=f(w): then differentiate s(t) (41) with respect z and

then to z to get sz(t) = s�z(t), which, by means of (39), is equivalent to

2g(w) � gw(w)(w + w) = 2g(w)� g
�w(w)(w + w): (44)

Differentiation of (44) with respect to w and w gives

gww(w) = g
�w �w(w) � 2a 2 R: (45)

The solution of (45) is a polynomial of second degree. Substituting it into (44)
yields the denominator of (43).

LEMMA 8. Let F be a �-isothermic HIMC surface. Then, up to scaling and
analytical reparametrization, the functions of its fundamental forms are given by
(42), where f(w) and w(z) is one of the following forms

(A) f(w) =
1

4iw
; w(z) = �i e4iz;

(B) f(w) =
1

�w2 + 4
; w(z) = 2 coth(2z);

(C) f(w) = 2; w(z) = 1
2z;

(D) f(w) =
1

2w2 ; w(z) = � 1
2z
;

(E) f(w) =
1

w2 + 4
; w(z) = �2 cot(2z):

(46)

Proof. To normalize the coefficients in (43) let us apply the following transfor-
mations

� w! w + i�, � 2 R (reparametrization of the surface);
� f!�f , � 2 R, � 6= 0 (f in (36) is defined up to a factor only);
� for the immersion F , F ! 
F; 
 2 R

+ , which yields the transformation
w! 
w.

Under the action of these transformations the coefficients in (43) are changed as
follows

a! a

�
; b! 1

�
(b
 + 2a�); c! 1

�
(c
2 � a�2 � b�
):
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One can choose �, �, 
 to fix the coefficients in the cases

(A) a = 0; b 6= 0;

(B) a 6= 0;
b2

4a2 +
c

a
< 0;

(C) a = 0; b = 0;

(D) a 6= 0
b2

4a2 +
c

a
= 0;

(E) a 6= 0
b2

4a2 +
c

a
> 0;

(47)

as is indicated in (46).

COROLLARY 8. For each of the cases A, B, C, D, and E, and each choice of initial
conditions in (40) one obtains an associated family of �-isothermic HIMC surfaces.
Their fundamental and immersion functions are given by Equations (10)–(13) in
Lemma 1 in which one should substitute w(z) for h(z), and (42).

Proof. Actually, we can choose five different pairs for w(z) and f(w) involved
in the equation for the immersion function (see formulas (10) and (11)) for the asso-
ciated families. Moreover, these equations are parametrized via a general solution
of the third order ordinary differential equation (40).

LEMMA 9. A � E and C � D.
Proof. Calculating the coefficients of the fundamental forms for the cases A and

C (correspondingly, for D and E) we get that these functions are the same (up to
scaling) if one assumes the following relationships between the family parameters
(� := �A; �B; �C ; �D; �E ; see Lemma 1):

�A =
2�E + 1
2�E � 1

; �C =
4
�D

: (48)

Each surface of a family of the set A (of the set C) corresponds to a surface of the
set E (of the set D) as follows:

FA(�A) =
(1� 2�E)2

4
FE(�E); ��2

DFC(�C) = FD(�D);

where F� denotes a parametrization of a surface in the set �, � = A;C;D;E.

Remark 8. Actually, we see that in each family from the sets E and C, one
surface is not included in the corresponding family from the sets A and D since
we see that equations (48) have singular points at �E = 1

2 and �C = 0. To include
these special surfaces of the E and C families into the A and D families, we have to
enlarge the domain of � by adding the point � = 1. So, in Lemma 9, one should
understand the family parameter � as an element of RP 1 .
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Table I. Functions of the Fundamental Forms of the Associated Family.

A B C

eu(�;z;�z) �
q0(t) sin2

(2t)
2� 2j sin(2(z � �))j4

�
8q0(t) sinh2

(2t)
(1+ 4� 2)2j sinh(2(z � �))j4

�
q0(t)t2�4

2jz � �j4

Q(�; z; z)
(q(t) + i�)

� sin2(2(z � �))

4(q(t) + i�)

(1 + 4� 2) sinh2(2(z � �))

�2
(q(t) + i�)
2(z � �)2

H(�; z; z) �
2� j sin(2(z � �))j2

sin(2t)
�
(1+ 4� 2

)j sinh(2(z � �))j2

2 sinh(2t)
�

2jz � �j2

�2t

� = �(�) 1
2 i log(

p
��) � 1

2 log

�r
1 + 2i�
1� 2i�

�
�

2i
�

s(t)
4

sin2(2t)
4

sinh2(2t)

1
t2

h(z) �i e4iz 2 coth(2z) 1
2z

Now, we are ready to formulate the main result of this section.

THEOREM 4. There exist three sets, which we call A, B, and C, of associated
families of �-isothermic HIMC surfaces. The immersion function of each family is
given by equations (10) and (11), where the functions of the fundamental forms are
presented in Table 1, with q(t) an arbitrary real solution of (40) with s(t) specified
in Table 1 and q0(t) < 0. All the sets A, B, and C depend on 3 arbitrary parameters
and any �-isothermic HIMC surface belong to one of these sets.

Proof. The first and the last statements follow from Lemmas 8 and 9. The
statement about the immersion function is the result of Corollary 8. The functions
of the fundamental forms given in Table 1 are calculated via the substitution of
f(w) and w(z) presented in Lemma 8 into the formulas (42), and using Lemma 1.
To compute s(t), one substitutes the results of Lemma 8 into (41). The properties
of q(t) are a consequence of Lemma 7 and the positiveness of the metrics (see
Table I).

Remark 9. Equation (40) with s(t) given in Table I is a generalization of the
Hazzidakis equation [8].

DEFINITION 3. We call two parametrized surfaces F1 and F2 equivalent up to
scaling if F2 = cF1 holds with c 2 Rn0.

Using this equivalence relation, we can formulate
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THEOREM 5. Any associated family of the set A consists of four equivalence
classes of surfaces, any family of the set B consists of one equivalence class, and
any family of the set C consists of two equivalence classes.

Proof. The scaling of the surface F ! �F yields the following transformation
of the coefficients of the fundamental forms

eu! �2 eu; Q! �Q; H! 1
�
H:

To define the different (up to scaling) surfaces (which generate the correspond-
ing equivalence classes), one has to consider the following values for the family
parameter �

�A = �1; 0; 1;1; �B = 0; �C = 0;1:

It is easy to see from Table I that these surfaces generate, via scaling, the whole
corresponding associated family.

Remark 10. In the A and C cases, one needs to consider also the asymptotic
limits as �! 0 and1 of the functions of the fundamental forms to cover the whole
family. To handle the limits �! 0 and 1 in the A case, one has to use the Euler
formula for sin(�), the formula for �(�) given in Table I, and, for the case � !1,
to scale the surface by a factor of O(��2). To light this we will discuss the limit
for � !1 in the A case. Using the Euler formula for sin(�), we get

lim
�!1

eu(�;z;�z)�4 = �8q0(t) sin2(2t)
j e2iz j4 ;

lim
�!1

Q(�; z; z))� 2 =

8>><
>>:
�4(q(t) + i�)

e4iz � < 0;

4(q(t) + i�)
e4iz � > 0;

lim
�!1

H(�; z; z)

�2 =

8>>>><
>>>>:

je2izj2
2 sin(2t)

� < 0;

� je2izj2
2 sin(2t)

� > 0:

Scaling the asymptotical surfaces by�1=� 2 gives coinciding regular limit surfaces
for both, �! �1.

Remark 11. The surfaces which belong to the associated A, B, and C families
of Theorem 4 in the isothermic case (� = 0) are dual to the A, B, and C families
of Bonnet surfaces originally introduced by E. Cartan [11].

COROLLARY 9. The HIMC surfaces of revolution are included in the C case for
� = � = 0.
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Proof. Let us compute the coefficients of the fundamental forms for a C case
surface with � = � = 0. According to Table I we have

eu(0;z;�z) = �1
2q
0(t)t2; Q(0; z; z) = 1

2q(t); H(0; z; z) =
2
t
;

where t = z + z = 2 Re(z). For x = Re(z) we find that this reads as follows:

eu(0;z;�z) = �x2 d
dx

(q � t)(x); Q(0; z; z) = 1
2(q � t)(x);

H(0; z; z) =
1
x
:

(49)

On the other hand let us take a surface of revolution parametrized by (25) with
�(x) a solution of the Painlevé III (20). Define

(q � t)(x) = 1
4x(�

0(x)2 � 4 sin2(�(x)); t = 2x:

It follows that q(t) � q � t(x) solves the Hazzidakis equation (40) with s(t) = 1=t2

and � = 0 since �(x) solves the Painlevé III equation (20). The functions of the
fundamental forms of this surface expressed in (q�t)(x) are just (49), which proves
the corollary.

Remark 12. According to Lemma9 and Remarks 8 and 10 one could equivalently
say that the HIMC surfaces of revolution are included in D families for 1=� =
� =1.

LEMMA 10. Let F :M2 ! R
3 be a conformally parametrized surface in R

3 with
the Hopf differential

Q(z; z) = q(z; z) + i �; q(z; z) 2 R; � 2 R fixed:

The functions defined via (35) are the coefficients of the fundamental forms of a
conformally immersed surface

F �:M 2 !
(
S3
r ; if � 6= 0;

R
3 ; if � = 0;

(1)

where r = 1=(2j�j) is the radius of the sphere.
Proof. � = 0 can be treated as a limit. The Codazzi equations for conformal

immersions F :M2 ! S3
(1=(2j�j)) are independent of �. Inserting the functions (35)

into the Codazzi equations and the Gauss equation

uz�z +
1
2 (H

2 + (2�)2) eu � 2jQj2 e�u = 0:

proves the claim.
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DEFINITION 4. LetF be a �-isothermic surface.F� defined above is called a dual
surface.

THEOREM 5. Let F :M2 ! R
3 be a �-isothermic HIMC surface. Then its dual

surface is a Bonnet surface in the S3
(1=(2j�j)) (R

3 can be considered as a limit), i.e.
there exists a 1-parametric family of isometric surfaces with the same principle
curvatures. This associated family is given by the dual surfaces of the associated
family of the �-isothermic HIMC surface.

Any Bonnet surface (isothermically parametrized) into S3
(1=(2j�j)) is dual to a

�-isothermic HIMC surface with fundamental forms.

eu
�
(w; �w) = e�u(w; �w); H�(w;w) = 2Q(w;w) = 2q(w;w) 2 R;

Q�(w;w) = 1
2H(w;w)� i �:

Proof. According to [25] Bonnet surfaces in S3
(1=(2j�j)) are characterized by

the harmonicity of the inverse of the Hopf differential in isothermic coordinates.
Combining this characterization with (35) and the formula above, one proves the
theorem.

We finish this section by the following

CONJECTURE 2. Iff the scaling of a HIMC surface generates the associated
family, then this surface is �-isothermic.

6. A and B Families and the Painlevé VI Equation

In this section we solve the following generalization of the Hazzidakis equation
(see Remark 9),�

q00(t)

q0(t)

�0
� q0(t) =

4
sin2(2t)

 
2� q2(t) + �2

q0(t)

!
; t = z + z; (50)

in terms of the sixth Painlevé equation [12],

y00(s) =
1
2

�
1

y(s)
+

1
y(s)� 1

+
1

y(s)� s

�
y0

2
(s)�

�
�

1
s
+

1
s� 1

+
1

y(s)� s

�
y0(s) +

+
y(s)(y(s)� 1)(y(s)� s)

s2(s� 1)2 �

�
�
�+ �

s

y2(s)
+ 


(s� 1)
(y(s)� 1)2 + �

s(s� 1)
(y(s)� s)2

�
; (51)

where �; �; 
; and � 2 C .
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LEMMA 10. Equation (50) has the first integral

2
�
q00

4 q0
+ cot(2t)

�2

�

� 1
q0

 
�2
�

cot2(2t) + 1
�
+ q2 +

�
q cot(2t) +

q0

2

�2
!
= �2: (52)

Remark 13. One can easily prove Lemma 10 by verifying, that the derivative
of the left-hand side of (52) is a product of the difference between the left- and
right-hand sides of (50) with a factor which is finite for the solutions of (50). But
we choose another way to prove this lemma since we need later the notations which
we introduce in its proof and we want to explain how to get this first integral via
the Lax representation for the differential equation (50).

Proof of Lemma 10. Let us introduce the similarity variables,

s = e4it; � = �� e4iz; 	(�; s) = 	(�; z; z): (53)

Substituting them into the moving frame equations (11), in which the coefficients
of the fundamental forms are given in Table I for � = �1, we get the following
system

	�	
�1 =

1
�
A0(s) +

1
�� 1

A1(s) +
1

�� s
As(s);

	s	
�1 =

1
s� �

As(s) +B(s);

(54)

where

A0(s) =

 
a(s) '(s)

�'�(s) �a(s)

!
; A1(s) = ��(s)

s

 
0 0

1 0

!
;

As(s) = �(s)

 
0 1

0 0

!
;

B(s) =

0
BBB@

�a(s)

2s
+

1
4s

� �(s)

(s� 1)

'�(s)

s
+

�(s)

s(s� 1)
a(s)

2s
� 1

4s

1
CCCA ;
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and

a(s) = �1
2 i
�
q00(t)

4q0(t)
+ cot(2t)

�
;

'(s) = � i
p
�2 q0(t)

8
+

i e2it(q(t) + i�)

2 sin(2t)
p
�2q0(t)

;

�(s) =
e2it

4
sin(2t)

q
�2q0(t);

'�(s) =
i
p
�2q0(t)

8
� i e�2it(q(t)� i�)

2 sin(2t)
p
�2q0(t)

:

(55)

Define the matrix A1 = �A0�A1�As. Denote the eigenvalues of A� by���=2
(� = 0; 1; s;1). The compatibility condition for system (54) yields that the ��’s
are constants. Since det(A�) = ��2

�=4, we get �1 = �s = 0 and�
�0

2

�2

= a(s)2 � '(s)'�(s);

�
�1

2

�2

= a(s)2 � ('(s) + �(s))

�
'�(s) +

�(s)

s

�
:

(56)

Substituting (55) into (56), one finds the first integral (52), where

� = ��2
0 � �2

1; � = �2
1 � �2

0:

Remark 14. Although we start from the geometrical situation for which q0(t) < 0
and get the Lax representation for (50) by using the moving frame equations, this
representation (54) is valid for any complex solution of (50). For most of this
section, we consider the relation between the complex solutions of (50) and the
Painlevé VI functions since it seems to be difficult to describe the geometrical
solutions in terms of the Painlevé VI functions. On the other hand for the analysis
of the corresponding surfaces one can work with the representation (54) directly
and parametrize it in terms of q.

LEMMA 11. Let q(t) be a solution of (50) with the first integral (52) and �1 =p
(� � �)=2 6= 0. Then

y(s) = 1 +
(s� 1)

1 + s2

�
a� �1=2
� + '

�2 ; (57)

where a(s), '(s), and �(s) are defined in (55), solves the Painlevé VI equation
(51) with

� = 1
2(�1 � 1)2; � = ��+ �

4
; 
 = 0; � = 1

2 : (58)
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If � 2 R and q0(t) < 0, then � > max(0; �).
Conversely, let y(s) be an arbitrary solution of (51) with

�; � 2 C ; 
 = 0; � = 1
2 : (59)

Define

�1 = (1 +
p

2�); � = (1 +
p

2�)2 + 2�;

� = 2� � (1 +
p

2�)2;
(60)

where the branch of
p

2� is fixed such that
p

2� > 0 for � > 0. Then

q(t) = i �
s(y � 1) + y � s

y(s� 1)
+

+2i
�2
1(y � s)2(y � 1)2 � (s(s� 1)y0 � y(y � 1))2

(s� 1)y(y � 1)(y � s)
; (61)

with s = e4it, is a solution of (50) with the first integral (52). Furthermore, if
i(1 +

p
2�)2R, � > 0, and

q0(t) = �8
(�1(y � s)(y � 1)� y(y � 1) + s(s� 1)y0)2

(s� 1)2(y � 1)(y � s)
< 0; (62)

then according to Theorem 4, q(t) defines an A family of HIMC surfaces whose
functions of its fundamental forms are given in Table I.

Proof. Since �1 6= 0, one proves that a(s) � �1=2 6= 0. Thus by defining
� = 
	, where


 = i

s
a

�1
+

1
2

0
BBB@

� + s'�

s(a+ �1=2)
1

1
� + '

a+ �1=2

1
CCCA ;

one finds that the function � solves the system of the form (54) but with other
matrices A�! eA� (� = 0; 1; s) and B! eB, where eB is a traceless diagonal
matrix. In particular, for the matrix elements we find

eA12
1eA12
s

=
1
s

�
� + '

a� �1=2

�2

; eA11
0 =

�

4�1
� �1

2
� �2

s�1
; (63)

eA11
1 = � �

4�1
� �'�

�1
; eA11

s = � �

4�1
� �

s �1 '
: (64)

Now, to prove (57) and (58), we use the parametrization of eAik
� in terms of the

Painlevé VI function presented in [21]. If �2R and q0(t) < 0, then '� = '
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and a is pure imaginary. Therefore, (56) yields �0; �12 iR, which proves that
� > max(0; �).

Let y(s) be a solution of (51) with coefficients given by (59). Then we define
the parameters �1 6= 0, �, and � according to (60). Since �1 6= 0, we can use the
parametrization of the system (54) (A�! eA�) in terms of Painlevé VI functions
[21]. We substitute this parametrization into the left-hand side of (64) and Equations
(55) into the right-hand side of (64) for�'� and�=' to get a linear algebraic system
for q(t) and q0(t). Solving this system we arrive at the formulas for q(t) (61) and
q0(t) (62). We need to prove the correctness of these definitions as it is not clear
a priori that q0(t) is, in fact, the derivative of q(t): to prove this, differentiate (61)
with respect to t and substitute for y00(t) equation (51) with the constants (58). This
gives (62). Now, using the compatibility conditions for (54) in terms of a, �, ',
and '�, we get the formula for a(s) (55) and that the function q(t) satisfies (50).

THEOREM 6. If q(t) 6= �� cot(2t) is a solution of (50), then it satisfies (52).
The function y(s) given by (57) with �1 =

p
(� � �)=2 solves the Painlevé VI

equation (51) with the coefficients (58). Moreover, if �2R and q0(t) < 0, then
� > max(0; �).

Conversely, if y(s) is a solution of the Painlevé VI equation (51) with the
coefficients (59), then q(t) given by (61) and (60) is a solution of (50) with the first
integral (52). Furthermore, if i(1 +

p
2�)2R, � > 0, and inequality (62) is valid,

then q(t) defines an A family of HIMC surfaces according to Theorem 4.
Proof. Since the case �1 6= 0 is considered in Lemma 11, we must deal only

with the case �1 = 0. If �1 = 0 and q(t) 6= � cot(2t), then formulas (57) and
(61) are well defined for the solutions of (50) and (51), respectively. One proves
the statement of the theorem in this case by a direct calculation.

Remark 15. The functions q(t) = �� cot(2t) are the only two solutions of
the Hazzidakis equations which are not expressible through (61) in terms of the
Painlevé VI functions. The function q(t) = � cot(2t) for � > 0 is a geometrical
solution of (50) which is investigated in Section 8.

In the rest of this section, we consider the solution of another generalization of
the Hazzidakis equation (40) (B case),

�
q00(t)

q0(t)

�0
� q0(t) =

4

sinh2(2t)

 
2� q2(t) + �2

q0(t)

!
; (65)

with t = w+w; in terms of Painlevé VI equations. Since, as in the A case, we did
not find a proper description of the geometrical solution in terms of the Painlevé
VI functions, we present here only a result for the general complex solutions of
(65). An explicit formula for the case B can be obtained as a direct corollary of
Theorem 6 and the following:
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Figure 2. �-Isothermic HIMC surface of Type B.

LEMMA 12. Let qA(tA) be an arbitrary solution of (50) with � = �A 2 C . Then

qB(tB) = �iqA(tA); where tB = itA; (66)

is a solution of (65) with � = �i�A.
Proof. Straightforward verification.

Remark 16. One finds an explicit formula for qB(tB) in terms of the Painlevé VI
functions by substituting �! i�, q(t)! iq(t), and s! e4t into (61). This formula
yields all solutions of (65) except q(t) = �i� coth(2t).

Figure 2 shows a numerical produced picture of a �-isothermic surface of the B
type. The initial values inserted in (40), (s(t) as for the B case given in Table I) are

� = 1; �(�) = i; t0 = 0:1;

q(t0) = 0; q0(t0) = �1; q00(t0) = 1:

7. C Families and the Painlevé V Equation

In this section we consider the solution of the following generalization of the
Hazzidakis equation (see Remark 9),�

q00(t)

q0(t)

�0
� q0(t) =

1
t2

 
2� q2(t) + �2

q0(t)

!
; (67)
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in terms of the fifth Painlevé equation [12],

y00 =

�
1

2y
+

1
y � 1

�
y0

2 � y0

t
+

+
(y � 1)2

t2

�
�y + �

1
y

�
+ 


y

t
+ �

y(y + 1)
y � 1

; (68)

where �; �; 
, and � 2R. Let us start with the following.

LEMMA 13. Equation (67) has the first integral,

�
q00(t)

2q0(t)
+

1
t

�2

� q2(t) + �2

2q0(t)t2
� q0(t)

2
� q(t)

t
=

�2

4
: (69)

Proof. To prove this lemma, we use the way more convenient for us rather than
short: the reasons are analogous to those explained in Remark 13. We introduce the
similarity variables

� =
z + �

z + z
; t = z + z; 	(�; t) = 	(�; z; z); (70)

where � is given in Table I. By substituting them into the moving frame equations
(11), in which the coefficients of the fundamental forms are taken from Table I for
� =1, we get the following system

	�	
�1 = t

 
a(t) '(t)

'(t) �a(t)

!
+

eu(t)=2

2

0
BB@

0
1

�� 1

� 1
�

0

1
CCA ;

	t	
�1 = �

 
a(t) '(t)

'(t) �a(t)

!
+

0
BB@
�a(t)

2
0

�'(t) a(t)

2

1
CCA ;

(71)

where

a(t) =
u0(t)

2
=

q00(t)

2q0(t)
+

1
t
; '(t) = � q(t) + i�p

�2q0(t)t
+

s
�q0(t)

2
: (72)

It is a consequence of the compatibility condition of system (71) that the determinant
of the first matrix is independent of � and t. Thus, we get the first integral of (67),

a2(t) + j'(t)j2 = �2

4
; (73)
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which can be rewritten due to (72) as (69).

Remark 17. Note that, the case � = 0 for real solutions of (67) is possible, iff
� = 0 because, otherwise, there must exists a real-valued function q which solves

q0 = �1
t
(q + i �): (74)

The case � = � = 0 is investigated in Section 8: for the rest of this section � 6= 0.

THEOREM 7. If q(t) 6= C=t (C 2 C ) is a solution of (67), then it satisfies (69),
and the functions

z(t) = � 1
2�

'(t) eu(t)=2; y(t) =
2a(t) + �

2a(t)� �
; (75)

where '(t) and a(t) are given by (72), solve the following system

tz0 = z

�
�i

�

�
+ z

��
y � 1

y

�
;

ty0 = �ty � 2z(y � 1)2 + i
�

�
(y � 1)2:

(76)

Moreover, if q0(t) < 0, then y is a negative solution of (68) with the coefficients

� = �� = � �2

4�2 ; 
 = �; � = ��2

2
: (77)

Conversely, if y is a solution of the Painlevé V equation (68) with the coefficients
(77), where � and � 6= 0 are arbitrary numbers, then

q(t) =
t(�2y2 � y0

2)

2y(y � 1)2 � �2 (y � 1)2

2�2ty
(78)

is a solution of (67) with the first integral � (69). Moreover, if y < 0 and does not
solve

y0 = �y � i
�

�t
(y � 1)2;

then q(t) given by (78) is real and defines a HIMC surface (see Theorem 4) with
the metric function

eu(t) = ��2 (y � 1)2

�2y
� t2(�y � y0)2

y(y � 1)2 :
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Proof. The existence of the first integral (69) is the result of Lemma 13. To
find an explicit representation of q(t) in terms of the fifth Painlevé function, let us
consider the following gauge transformation, � = 
(t)	, where


(t) =
v(t)i kp
�'(t)

 
a(t) + 1

2� '(t)

a(t)� 1
2� '(t)

!
;

with k defined in (6) and v(t) a solution of the differential equation

v0(t) = v(t)
'(t)

�

�
a(t)

'(t)

�0
+ 1

4�:

Remark 18. Note that, for � 6= 0, the function '(t) has no zeros. Since any zero
of '(t) solves (74), there are no such zeros for � 6= 0. Moreover, for � = 0, any
solution '(t) having at least one zero is identically zero: this is only possible for
� = 0 (see Equation (73)).

Remark 19. The gauge transformation is only an analytical trick rather than a
geometrical transformation of the moving frame because 
(t) 62 SU(2).

Now for � we get the following system

���
�1 =

�ti k

2
+

1
�

'(t) eu(t)=2

2�

0
B@

�1 v(t)2

� 1
v(t)2 1

1
CA+

+
1

�� 1
eu(t)=2

2�'(t)

0
B@

j'(t)j2 (a(t) + 1
2�)

2v(t)2

�(2a(t)� �)2

4v(t)2 �j'(t)j2

1
CA;

�t�
�1 =

��

2
�3 +

0
BBB@

�1
4�

v(t)2

2
(a(t) + 1

2�)

1
v(t)2 (a(t)�

1
2�)

1
4�

1
CCCA+

+
t

�1:

(79)

On the one hand, the coefficients a(t) and '(t) of the system (79) are expressed in
terms of the function q(t) via (72). On the other hand, it is a result of the work [21]
that these coefficients can be presented in terms of a Painlevé V function (68) with
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the coefficients given by (77). Comparing (79) with the parameterization given in
[21], we get the following system

a(t) = 1
2�

y(t) + 1
y(t)� 1

=
q00

2q0
+

1
t
;

'(t) eu(t)=2 = �
t(y0 � �y)

(y � 1)2 � i� = �q0t� q � i�;

'(t) e�u(t)=2 =
�2y

�t(�y � y0) + i�(y � 1)2 =
1
2t

+
q � i�

2t2q0
;

(80)

and that the functions z(t) and y(t) defined by (75) satisfy system (76).
If q0(t) < 0, then q(t) is real and, hence, a(t) is real. Since q(t) is real and

q(t) 6= C=t, it is not a solution of (74), and thus '(t) 6= 0. Now, from (73) and
(75) we get that y(t) < 0.

Conversely, let y(t) be a solution of (68) with (77). Then, we define the function
q(t) by using the system (80). The consistency condition for this system gives us
(69). Differentiating (69) and taking into consideration that (q00=q0+2=t) 6= 0, since
y(t) = �1 is not a solution of (68) with the coefficients given by (77), one arrives
at (67). Solving the last two equations in (80), one finds an explicit expression for
q(t) (78), and

q0(t) =
1

y(t)

 
�2 (y(t)� 1)2

2�2t2
+
(y0(t)� �y(t))2

2(y(t)� 1)2

!
:

If y(t) < 0, then q(t) is real and q0(t) < 0. Now, to finish the proof, we use
Theorem 4 and the formula for eu(t) from Table I.

Remark 20. In the case � = 0 one puts

y(t) = � cot2(�(x))

into the fifth Painlevé equation (68) with the coefficients (77) to get a third Painlevé
equation in trigonometric form (20). The solutions of this Painlevé III equation are
in one-to-one correspondence with the HIMC surfaces of revolution as proved in
Section 4.

Remark 21. The parameter � is not an essential parameter in our description of
HIMC surfaces since it can be removed from the Painlevé V equation (68) with the
coefficients in (77) via the scaling t!�t. This scaling is just a reparameterization
of the surfaces: so, in the case � 6= 0, one may fix � = 1.

Remark 22. The scaling property of the associated families stated in Theorem 5,
which we establish by calculation of the functions of the fundamental forms, can
be derived in another way: use the Sym formula (10) and the �-equations (54) or
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(71) obtained in Section 6 and here. Actually, by means of (54) or (71), we can
rewrite the Sym formula as follows

F (�; z; z) =
@�

@�
	�1(�; t)A(�; t)	(�; t); (81)

where A(�; t)	(�; t) denotes the right-hand side of (54) or (71). Now let us
consider the A case with � < 0 (the calculations in the A case � > 0, the B case,
and the C case are similar). According to (53) we have

@�

@�
= �e4 i z

and all other terms depend on � only through the variable �. For the immersion
function this implies

F (�; z; z) = ��F (�1; z + 1
4 i log(��); z � 1

4 i log(��)): (82)

Thus the associated family F (�; z; z) can be obtained by the reparametrization
z! z + 1

4 i log(��) = z + �(�) with �(�) as given in Table I of the surface
F (�1; z; z) and its scaling by the factor (��).

8. Special Families of HIMC Surfaces and Cartan Families

It is proved (see Remark 15), that in the A case there are two and only two special
solutions of the generalized Hazzidakis equation (50), q(t) = �� cot(2t), which
are not related with the Painlevé VI equation. Since we are considering t > 0, only
one of these solutions, namely,

q(t) = � cot(2t); � > 0; (83)

generates a HIMC A family. In Section 7, where we analyzed the C case, we
obtained that for � = � = 0, there is a one-parameter family of solutions

q(t) =
�

t
; � > 0 for t > 0; (84)

which is not related to the fifth Painlevé equation, but generates a HIMC C family.
The A families produced by the solutions (83) seem to be, at first glance, non-
isothermic since � 6= 0, while the C families are, of course, isothermic ones.
Unexpectedly, both solutions (83) and (84) define the same families.

PROPOSITION 4. The A families defined by the solutions (83) coincide with the
C families generated by the solutions (84) if � = 2�.

Proof. The following equations are an explicit mapping from the special A
family into the C one

� = 1
2�; �C =

q
2j�Aj; zC = sign(�A)i (e

4 i zA � 1);
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where �A and �C are the family parameters, and zA and zC are local coordinates.

DEFINITION 4. The special C families of HIMC surfaces corresponding to solution
(84) are called Cartan families.

The motivation for this definition might be clarified by the following.

PROPOSITION 5. Iff an isothermic HIMC surface is dual to itself and is not a
CMC surface, then it belongs to a Cartan family.

Proof. If a non-CMC HIMC surface is dual to itself, then 1=H and 1=Q are non-
constant harmonic functions. By using the Codazzi equations (5), one proves that
there is a local conformal parameterization of this surface in which the coefficients
of the fundamental forms read as follows

Q(z; z) = bH(z; z) =
a

z + z
; eu(z;�z) = 2

a2

b
; jajb > 0;

which means that it is an applicable Bonnet (and HIMC) surface. Now, scaling its
local coordinate z ! a=(2b)z, we get exactly the same functions of the fundamental
forms as for the special HIMC surface defined by solution (84) with � = a2=b and
�! 0 (see Table I and Theorem 4).

Remark 23. Due to this Proposition, the special C families (84) of HIMC
surfaces are simultaneously special C families of Bonnet surfaces. Cartan was the
first who distinguished these special C families as being the only kind of families
of applicable Bonnet surfaces [7, 11].

COROLLARY 10. All �-isothermic HIMC surfaces with � 6= 0, which do not
belong to the Cartan families, are nonisothermic.

Proof. This statement is a consequence of Propositions 3 and 5.

PROPOSITION 6. The immersion function for the Cartan families is

F (�; z; z) =
1
t

0
BBBBBBBB@

Re

 
!2

1� �
G2(�)� �G02(�)

!

Im

 
!2

1� �
G2(�)� �G02(�)

!

2!Re(G0(�)G(1� �))

1
CCCCCCCCA
; (85)

where

G(�) = C1 2F1(i!;�i!; 1;�) + C2(1 � �) 2F1(1 + i!; 1 � i!; 2; 1 � �);

C1; C2 2R, and

� =
�z + 2 i
�(z + z)

; t = z + z; ! = 1
2

q
1
2�:
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Here 2F1(a; b; c; t) is the standard notation for the Gaussian hypergeometric func-
tion [22].

Proof. To derive formula (85) one substitutes into the Sym formula (10)
	� (�; z; z) = ��	�(�; t), where 	�(�; t) is given by the first equation of (71)
with � changed to 1 � �. Since in our case a(t) = '(t) = � = � = 0, (71) as
follows

	�(�; t)	
�1(�; t) = !

0
BB@

0
1
�

1
1� �

0

1
CCA :

The general solution of this equation is given by

	(�; t) =

0
BB@

G(�) � 1
!
(1� �)G0(1� �)

1
!
�G0(�) G(1� �)

1
CCA ;

where G solves the hypergeometric differential equation

�(1� �)G00(�) + (1� �)G0(�)� !2G(�) = 0 :

since 	(�; t)2SU(2), C1; C2 2R. One uses the Sym formula (10) to get the
immersion function F (�; z; z) in the quaternionic representation. Since the Cartan
surfaces are cones, one simplifies F (�; z; z) by scaling to get, after identification
(7), the final result (85).

Remark 24. The variation of the constants C1 and C2 just means a rotation of
the surface as a whole. Therefore, they can be fixed arbitrarily, but not both equal
to zero.

According to Proposition 6, each Cartan family consists of two different sur-
faces: a cone (� 6= 0), and a cylinder (� = 0). Actually, from the point of view of
projective geometry, there is only one surface in each family: we call it the Cartan
cone.

In Figures 3–5, we present the parts of different Cartan cones inside spheres,
centered at their vertices. The black curves are the sections of the cones by the
spheres. In all pictures these spherical curves wind around two centers whose
positions depends on the parameter � in Equation (84); therefore, � regulates the
number of self-intersections of the cone. Since the Cartan cones depend smoothly
on �, there should be a discrete set of values of � such that the corresponding
Cartan cones have infinitly many lines of self-intersection when the centers of the
spherical curves belong to them.
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Figure 3. (� = 32):

Figure 4. (� = 8).

Appendix. The Hopf Differential as a Hamiltonian for the Painlevé Equations

It is well known that the Painlevé equations admit Hamiltonian formulations
[21, 23, 24]. Since, as was shown in Section 4, Proposition 1, geometrical objects
acquire a simple formulation in Hamiltonian notation, we consider here Hamil-
tonian structures associated with the Painlevé equations arising in our study of
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Figure 5. (� = 2).

HIMC surfaces. In the A and B cases, a reference to the Hamiltonian structure
allows us to get another representation of solutions of the generalized Hazzidakis
equations (50) and (65) in terms of the sixth Painlevé functions then that obtained
in Section 6.

PROPOSITION 7. Let q(t) be a solution of (50) with the first integral (52) and
q(t) 6= �� cot(2t). Denote by fi; j; k; lg a permutation of the set f1; 2; 3; 4g and
put

bk = bl = 0; bi;j =
1
2

r
���

q
�2 � �2:

Then

H6(s)

=
1

s(s� 1)

0
@q(t)

8i
� (b1b3 + b1b4 + b3b4)s+

1
2

X
16m<n64

bmbn

1
A ; (86)

where s = 1
2 �

1
2 i cot(2t), is the Hamiltonian function corresponding to the Hamil-

tonian H6(q6; p6; s) : H6(s) = H6(q6(s); p6(s); s)

H6(q6; p6; s)

=
1

s(s� 1)
(q6(q6 � 1)(q6 � s)p2

6 �

�((b1 + b2)(q6 � 1)(q6 � s) +
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+(b1 � b2)(q6 � s)q6 + (b3 + b4)(q6 � 1)q6)p6 +

+(b1 + b3)(b1 + b4)(q6 � s));

where (q6(s), p6(s)) is a solution of the Hamiltonian system

dq6

ds
=

@H6(q6; p6; s)

@p6
;

dp6

ds
= �@H6(q6; p6; s)

@q6
: (87)

The function y(s) = q6(s) solves the Painlevé VI equation (51) with the coefficients

� = 1
2 (b3 � b4)

2; � = �1
2(b1 + b2)

2;


 = 1
2(b1 � b2)

2; � = 1
2(1 � (b3 + b4 + 1)2):

(88)

Conversely, if y(s) = q6(s) is a solution of (51) with the coefficients (88), then one
finds from the first equation of (87) the function p6(s) and, thereby, from Equation
(86), the function q(t) 6= � cot(2t).

Proof. The Hamiltonian formulation for the Painlevé VI equation is due to
Okamoto [23]: he also proved that the Hamiltonian function for the Painlevé VI
equation is the general solution of a second-order differential equation quadratic
with respect to the second derivative. We just notice that the first integral (52) can
be transformed into the Okamoto equation by the change of variables presented in
the Proposition.

COROLLARY 11. Let QA(�; z; z) be a Hopf differential in the parametrization
given in Theorem 4 for A families of HIMC surfaces defined by solutions of the
sixth Painlevé equation (51) with the coefficients

� = 0; � =
�� �

4
; 
 = ��+ �

4
; � = 0:

Then

QA(�; z; z) =
8is(s� 1)H6(s)

� sin2(2(z � �(�)))
; (89)

where H6(s) is defined in Proposition 7 for

b3 = b4 = 0; b1;2 =
1
2

r
���

q
�2 � �2:

Proof. Direct consequence of Theorem 4 and Proposition 7.

COROLLARY 12. Let q(t) be a solution of (65); then, it has the first integral

2
�
q00

4q0
+ coth(2t)

�2

�

� 1
q0

 
�2(coth2(2t)� 1)� q2 +

�
q coth(2t) +

q0

2

�2
!
= �:
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Let fi; j; k; lg be a permutation of the set f1; 2; 3; 4g. Define

bk = bl = 0; bi;j =
1
2

r
��

q
�2 + �2;

then, for q(t) 6= � i� coth(2t); the function

H6(s) =
1

s(s� 1)

0
@q(t)

8
� (b1b3 + b1b4 + b3b4)s+

1
2

X
16m<n64

bmbn

1
A ;

where s = 1
2 (1+coth(2t)), is a Hamiltonian function corresponding to the Hamil-

tonian H6(q6; p6; s) defined in Proposition 7.
For fi; j; k; lg = f3; 4; 2; 1g and q0(t) < 0; the Hopf differential is as follows

QB(�; z; z) =
32s(s� 1)H6(s)

(1 + 4�2) sinh2(2(z � �(�)))
: (90)

The function y(s) = q6(s) solves a Painlevé VI equation with the coefficients

� = 0; � = ��+ i�

2
; 
 =

�� i�

2
; � = 0:

Proof. This statement is an implication of Theorem 4, Lemma 12, and Proposi-
tion 7.

PROPOSITION 8. Let y(t) be a solution of the fifth Painlevé equation (68) with
the coefficients (77). Then the system (76) with respect to the canonical variables
q5 = y and p5 = z=y gains a Hamiltonian form

dq5

dt
=

@H5(q5; p5; t)

@p5
;

dp5

dt
= �@H5(q5; p5; t)

@q5
;

with the Hamiltonian

H5(q5; p5; t) = �1
t

�
(q5 � 1)2q5p

2
5 � �tp5q5 � i

�

�
(q5 � 1)2p5

�
:

The Hopf differential QC(�; z; z) for the non-Cartan C families (see Theorem 4
and Section 8) is, up to a holomorphic function, equal to the Hamiltonian function.
In the parametrization of Theorem 4.

QC(�; z; z) =
�2(�)

(z � �(�))2H5

�
y(t);

z(t)

y(t)
; t

�
: (91)
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Proof. For the Hamiltonian formulation of the fifth Painlevé equation, see the
works [21] and [24]. The proof follows from the fact that

Res
�=1

(tr(	�	
�1)2) = Res

�=1
(tr(���

�1)2);

where 	 and � = 
(t)	 are the solutions of (71) and (79), respectively, and the
definition of the Hamiltonian in the framework of the Isomonodromy Deformation
Method [21].

Remark 25. As it is obvious from (91), QC(�; w;w) = H5(t) for a proper
local conformal reparametrization of the surfaces in this case. In the A and B
cases, one can not find such reparametrization for (89) and (90) since the factor
s(s � 1) is not a holomorphic function: but, possibly, the richness of the group
of canonical transformations for the sixth Painlevé Hamiltonian system [23] may
allow one to find, instead of (89) and (90), relations between the Hopf differentials
and Hamiltonians for these cases with holomorphic factors.
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RIMS 18 (1982), 1137–1161.
15. McCoy, B. M., Tracy, C. A. and Wu, T. T.: Painlevé functions of the third kind, J. Math. Phys.
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