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Introduction

Let us consider a smooth orientable surface iF in three-dimensional

Euclidean space and fix a direction of normal field Ν on it. To each point

Ρ e IF let us put into correspondence the set of spheres S(k) of curvature \k\

tangent to & at P. We put k > 0 if the centre of S(k) lies on that side of

the surface where the normal field is directed, and k < 0 otherwise. We

consider the tangent plane S(0) as a particular case of the sphere. In the case

of large \k\ the sphere S(k) lies on one side of <&P, where 3>ρ C & is some
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neighbourhood of P. The principal curvatures at Ρ are the quantities

k, = ini{k: %P Π S(k)¥^P},

k, = sup {k: 25P f] S (k) Φ Ρ),

and the corresponding spheres S(kit2) are called the spheres of principal
curvatures. There is exactly one sphere S, tangent to S(k{), S(k2) at P, the
inversion with respect to which exchanges S(ki) and S(k2). The mean
curvature of a surface at Ρ is the curvature of S, which is equal to

Surfaces for all points of which Η is the same are called constant mean
curvature (CMC) surfaces.

Compact CMC embeddings may be characterized as extremal values of the
area functional under the variations that preserve the volume of the figure
contained inside the surface. This definition is applicable to general
immersions if the components of the volume are calculated with suitable
coefficients [26]. The simplest physical model of a CMC surface is a soap
film in equilibrium between two regions of different gas pressure—inside and
outside. Everyday experience convinces us that all bubbles are spheres.

The Hopf problem. Are there compact CMC surfaces that are different from
the standard sphere ?

A negative answer to this question has been obtained under the additional
suppositions:

1) simple-connectedness—by Hopf [26],
2) embedding—by Aleksandrov [1],
3) existence of a local minimum of the area functional with respect to all

volume-preserving variations—by Barbosa and do Carmo [13].
The result of Wente, who showed the existence of CMC tori, was quite

unexpected; the evidence of this fact is the title of his work [44], as well as
the series of publications that followed right away [11], [12], [41], [45]. In
these works the Wente tori were studied in detail and some new examples
were constructed. In particular, Abresch [11] characterized Wente tori as
those that have one family of planar curvature lines and described them in
elliptic integrals. Walter gave a more detailed integration [41].

The equation of Gauss—Peterson —Codazzi (GPC) for CMC tori

(0.1) uzl + sinhu = 0

is integrable and is one of the possible real variants of the sine-Gordon
equation, which is well known in the theory of solitons. This equation has an
infinite series of integrals of motion, which in turn define commutative higher
flows that are the symmetries of the equation. However, the problem of
constructing CMC tori has been connected for the first time with the fact of
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integrability of equation (0.1) only in the recent works of Hitchin [25] and
Pinkall and Sterling [37]. In [37], which is devoted to a classification of CMC
tori, there is implicitly the important theorem that all doubly periodic
solutions of equation (0.1) are stationary with respect to any one of the higher
flows (see §5). The finiteness of the genus of the corresponding spectral curve
has also been proved in another way in [25]. In this work one considers the
similar problem of a harmonic map (including a minimal one with the same
GPC equation (0.1), see §17) from a torus into a 3-dimensional sphere.
Besides this, Hitchin characterized spectral curves corresponding to minimal
tori in S3.

The theorem mentioned above points out that this problem can be resolved
within the framework of the theory of finite-zone (or finite-gap) integration,
created by Novikov, Dubrovin, Matveev, Its, Krichever and others in the
seventies [6], [7]. In full strength this theory has been applied to the
description of CMC tori in the work [15] of the author. All the tori were
described explicitly: in terms of the Baker—Akhiezer function a formula was
obtained from immersion and periodicity conditions, singling out spectral
curves relative to tori.

The present survey pursues a double objective. On the one hand, it is to
draw the attention of specialists in the theory of integrable equations to a
great number of geometric problems, to the solution of which the methods of
the theory of solitons can be successfully applied. On the other hand, it is to
demonstrate these methods on a concrete example to specialists in differential
geometry. We will try to avoid an appeal to analogous standard results
obtained in the theory of solitons for some other equations, in order to make
the account self-contained as far as possible.

In the first chapter with the help of an analytic approach we study the
problem of constructing CMC surfaces in a general formulation. We construct
a representation of zero curvature with spectral parameter for the GPC
equation of a generic CMC surface. The variables in the equation vary on a
Riemann surface. In terms of the solution of the corresponding linear system
the formula for immersion is obtained, and some geometric properties of the
surface are defined, for example, its type with respect to regular homotopies.
In the framework of the analytic approach the problem of constructing CMC
surfaces leads to the theory of integrable equations on a Riemann surface.
The development of this theory seems to be an interesting problem.

While the classification of simply-connected compact CMC surfaces (§2) is
rather trivial, and the problem of constructing surfaces of genus G ^ 2 has
more questions than answers (§4), the tori (G = 1) can be described just by
using in full measure the apparatus of the theory of finite-zone integration.
The second chapter, representing the greatest part of the survey, is devoted to
a detailed exposition of the corresponding results.

The GPC equation for compact CMC surfaces in S3 and H3 has the same
form as for Euclidean space. The results of the first and second chapters are
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carried over to this case in the third chapter. We discuss the connection
between minimal surfaces in S3 and Willmore surfaces, and give a summary of
the results obtained, as well as a series of conjectures that are still waiting for
their solutions.

In the appendix we use another known solution of equation (0.1),
depending only on \z\. In this case the equation (0.1) is reduced to the third
Painleve equation, and with the help of the results of Its and Novokshenov
[27] we describe asymptotically proper immersions of a CMC plane.

Let us conclude this introduction with some brief commentary on the
literature. Some very similar problems have already been discussed in classical
works. The case of a constant negative Gaussian curvature Κ = — 1 has been
intensively studied; for this case the corresponding non-linear equation is the
standard real-valued form of the sine-Gordon equation uxy = sin w. In
particular, there was given a classification of surfaces with one family of
planar or spherical curvature lines, which turn out to be tori analogous to
Wente tori [17], [19], [20]. The methods of constructing these examples for
Κ = — 1 and Η = 1/2 are identical.

The author is grateful to U. Abresch, A.R. Its, V.Yu. Novokshenov,
U. Pinkall and I. Sterling for useful discussions, to the Max Planck Institut
fur Mathematik in Bonn for hospitality, and to the Alexander von Humboldt
Stiftung for financial support of the present paper.

CHAPTER I

COMPACT SURFACES OF CONSTANT MEAN CURVATURE

1. Differential equations of constant mean curvature surfaces

Let 3? be a smooth surface in a 3-dimensional Euclidean space. The
Euclidean metric induces a metric Ω on this surface, which in turn generates a
complex structure on a Riemann surface. The surface is covered by domains
Θι, Ui &i = &t > a i*d in each of these there is defined a local coordinate
zi : 3i i -*• Wt C C. If the intersection 2t Π % Φ 0 is non-empty, the
sewing functions ζ,- ο z]~x are holomorphic. Under a such parametrization,
which is called conformal, the surface is given by means of the vector-functions

F = (Fu F2, F3) (Zi, z^: U{ C C - * R3,

and the metric is diagonal: Ω = 4e"'i/z idz i. In the sequel we shall suppose
that 3F is sufficiently smooth: F e C 3. All our considerations in this section
are carried out on a local level, so we shall restrict our attention to one
domain Θ<t and omit the superscript i of the local coordinate z.

The diagonal form of the metric gives the following normalization of the
function F{z, z):

(i.i) < F 2 , F2y = <fr, Fsy = o, < F 2 ) F-Zy = 2 Λ
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where the brackets mean the scalar product

ζ_α, by = fli^i -\- a2^2 ~f" a:^'-ji

and Fz and Fj are the partial derivatives

J_ 1 / β . d \ d 1 / d . d

dz 2 \ dx dy / ' dz 2 \ dx dy

The vectors F z, Fz, as well as the normal N,

(1-2) < ^ , Λ̂ > = <Fj, 7V> = 0, <JV, Λ̂ > = 1,

define a moving basis on the surface, which, as follows from (1.1), (1.2),
satisfies the following equations of Gauss and Weingarten:

(1-3) az =%o, οι =Ψ~σ, σ = (F:, Fz, N)T,

u, 0 Q \ ,/ ο 0 Β %

0 0 Β \ / 0 uy Q \

"V"s ~ "V"Q ° / \~ "V" ̂  ~ "V"s ° /
where

(1.4) Q = (F2Z, Ν), Β = <FZ?, ΛΓ>.

The first and the second quadratic forms

are given by the matrices

0

The principal curvatures k\ and fc2 are the eigenvalues of the matrix II I \
which gives the following expressions for the mean and the Gaussian
curvatures:

I H = a » * = ~2~ tr (II I"1) = -5-Be~u,

Κ = krkz = det (II I"1) = ~ (B*— QQ) e~*u.

The Gauss—Peterson—Codazzi equations (GPC), which are the
compatibility conditions of equations (1.3),

have the following form:

— B2= 0.
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For CMC surfaces we have Qj = 0. Taking into consideration the form (1.4)
of the transformation of Q under an analytic change of coordinates, we
deduce that Q(dz)2 is a holomorphic quadratic differential, which is called
the Hopf differential. We do not consider minimal surfaces, that is,
Η = const Φ 0. A change of scale in Euclidean space gives us the
possibility, without loss of generality, of confining ourselves to the case
Η = 1/2.

Theorem 1.1. The surface of CMC Η — 1/2 under conformal parametrization
generates the homolorphic quadratic differential

Q (dzf = <F2Z, N) {dz)\

and also the solution of the GPC equation

(1-6) u* + -^eu—L

Now let us discuss the inverse problem of describing a surface from known
Q and u{z, i ) . Equation (1.6) may be represented as the compatibility
condition

(1.7) Ut - Vt + [U, V] = 0

of the system of equations

(1.8) Φ 2 = Ε/Φ, ΦΣ

where U and V are matrices dependent on an additional parameter λ, which
in the theory of integrable equations is called spectral:

0 -

The matrices (1.9) satisfy the reduction

U (λ"1) - cr2F (λ) σ,,

which is carried over to the solution of the system (1.8)

Φ (λ) = σ2Φ (λ"1) Μ (λ)

with some matrix Μ(λ) not depending on ζ, ζ. Here and below we use the
standard notation for Pauli matrices:

/0 1\ /0 —i\ [I 0\

For λ lying on the unit circle,

λ = e2{v,

we can choose a solution from the group of quartenions Φ e R+SU(2) with
det Φ independent of γ.
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Let us put into correspondence a 3-dimensional vector X with coordinates
X\, X2, Xj and the matrix

(1.10) X=£

We also denote by F and Ν the matrices obtained in this way from the
vectors F and N.

Theorem 1.2. Let u{z, Έ) be a solution of equation (1.6), where Q(dz)2 is a
holomorphic quadratic differential, and let Φ(ζ, ζ, λ = e2iy) be a solution of the
system (1.8), (1.9) belonging to the group R+St/(2), where det Φ does not
depend on λ. Then F and N, defined by the formulae

7 v=0

satisfy equations (1.3) with Β = e" and describe a CMC surface.

Proof. First of all, it is obvious that the matrices F and Ν given by formulae
(1.11) belong to the algebra s«(2), and therefore with the help of the
correspondence (1.10) define a surface. To prove the truth of equations (1.3)
we shall use a convenient expression for the scalar product of vectors in terms
of matrices (1.10):

The normalizations (1.1) and (1.2) are a simple consequence of formulae (1.10)
and

The equalities

Q = - 2 tr {FUN), Β = eu = —2 tr (FttN)

are also verified by simple computation. Equations (1.3) are equivalent to the
union of all these equalities.

Remark. The fact that Φ is not uniquely fixed, which is connected with
multiplication on the right by a matrix belonging to SU(2), leads to a general
Euclidean spatial motion according to formulae (1.11). Let us note that a
formula similar to the first of the expressions (1.11) was first found by Sym
[39] while describing surfaces of constant negative Gaussian curvature Κ = — 1.

A point at which the principal curvatures coincide: k\ = ki, is called
umbilical (non-umbilical if k\ Φ k^). Formulae (1.5) show that umbilical
points are zeros of the differential Q:
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The order η of a zero of Q(dz)2 £ zn(dz)2 is called the order of the umbilical
point. In a neighbourhood of a non-umbilical point we can choose the
variable ζ in such a way that the Hopf differential has the form (dz)2. In
such a variable the GPC equation is the elliptic sine-Gordon equation

(1.13) uzi+ sinhu = 0.

2. Sphere. Hopf theorem

Now let us proceed to the problem of describing compact CMC surfaces.
First of all, let us note that the surface must be orientable, because when
Η Φ 0 there is the greatest of the principal curvatures, and, hence, a selected
orthogonal direction inside the sphere of the largest principal curvature. In
the case of genus zero the answer is well known.

Theorem 2.1 (Hopf [26]). The unique structure of CMC Η = 1/2, topologically
equivalent to a sphere, is the standard sphere of radius 2.

Proof. On a Riemann surface of genus zero there are no quadratic
differentials not equal to zero: Q =0, that is, all points are umbilical. The
third rows of equations (1.3) with Β = eu give

TV,+4 Fz = Nt + -YFi = 0,

from which F = — 2N+C, where C = const. This is the sphere

<F — C, F - C> = 4

of radius 2 and with centre C.

3. Torus. Analytic formulation of the problem

In case of the torus the problem is noticeably simplified, and analytic tools
enable us to achieve success. The reason for simplification is the fact that on
a torus it is easy to introduce a complex global coordinate. Any Riemann
surface of genus one is conformally equivalent to the quoteint C/Λ of the
complex plane by a lattice Λ, and one can choose generators of the lattice of
the form 1 and τ, where τ belongs to the fundamental domain of the modular
group. It will be convenient to fix a scale of the plane in another way, so we
suppose that the lattice is generated by generators of generic form:

Zx = Xi + iY1, Z2 = X2 + iY2.

Thus, ζ is the global coordinate, and u(z, z) and F(z, z) are doubly periodic
functions with respect to the lattice Λ.

Proposition 3.1. CMC-tori do not have umbilical points.
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Proof. The differential Q(z)(dz)2 is holomorphic, that is, Q(z) is an elliptic
function without singularities. Therefore, Q(z) = const. This constant cannot
be equal to zero, otherwise, as follows from the proof of the Hopf theorem,
the surface is a sphere. Finally, Q = const φ 0, which proves the
proposition.

Now we fix the coordiante ζ in such a way that

Q = <Fzz, X> = I-

Under such a parametrization the lines χ = const, y = const give a net of
lines of principal curvature on a torus, and the GPC equation is the elliptic
sine-Gordon equation (1.13).

Remark. For the torus it is more convenient to use instead of Φ the function
Φο ε 517(2):

(3.1) Φ ο = β-»/

distinguished from the first one by a multiplier. This function satisfies
equations (1.8) with the matrices

<3·2) ^ = 4 -

Formulae (1.11) are invariant with respect to the transformation (3.1).
The problem of describing all CMC tori analytically is far more

complicated than in the case of the sphere. However, this problem can be
completely solved with the help of the theory of integrable equations. The
solution to this problem is given in the second chapter. We succeed in
describing all doubly periodic solutions of equation (1.13), and then, by using
the formula (1.11), constructing all doubly periodic F(z, z).

4. Surfaces of higher genus

As a matter of fact, we have already formulated analytically the problem of
constructing CMC surfaces of genus G ^ 2. First of all we need to construct
globally on a Riemann surface dt of genus G the metric eudzd~z and the
holomorphic quadratic differential Q(dz)2, which satisfy equation (1.6) in local
coordinates. Abresch showed (a private communication) that for any
holomorphic quadratic differential there is a smooth metric satisfying (1.6).
The set of parameters 0* of such a problem is the fibre bundle over the
moduli space of Riemann surfaces with the linear space of holomorphic
quadratic differentials as fibre. The number of real-valued parameters is equal
to the sum of dimensions 2 χ 6(G — 1). Then with the help of the solution Φ
of equations (1.8), (1.9) we should construct the immersion F(z, z), uniquely
defined on the same Riemann surface St. There is a natural map from the
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homotopy group of 0t into the monodromy group of (1.8). Round a cycle c
the function Φ has a monodromy

Φ -»- Φ Μ Π Me e SU (2),

and for F this is equivalent to motions in the space. Every such motion
is given by 6 parameters (3 rotation, 3 translation). The triviality of
the monodromy of F leads to 12G — 6 conditions, which corresponds to
2(7 generators and one relation of the homotopy group. Taking into
consideration the degree of freedom, mentioned in the Remark of §1, in the
choice of Φ (additionally 6 parameters of general Euclidean spatial motion) we
obtain the equality between the numbers of parameters and equations.

Question. What kind of subset of 0> corresponds to CMC surfaces'!

The calculation of parameters given above shows that most likely this is a
discrete one. Recently serious advances have been obtained in studying CMC
surfaces. Kapouleas proposed a general method, enabling one to attach
together such surfaces [28]. In particular, in this way he constructed some
examples of compact CMC surfaces with G > 3, as well as properly embedded
non-compact surfaces. A structure theory explaining the geometry of such
surfaces was elaborated in [30]. At the same time, no analytic description is
known of any example with G > 2. Besides this, there remains open the
problem whether there are CMC surfaces of genus G = 2.

Now we shall define the dependence of Φ on the holomorphic coordinate z.
Equations (1.8), (1.9) show that the following object is invariant under analytic
changes of z:

which gives a spinor structure on &. Let an, bn, η = 1, ..., G, be a canonical
basis of cycles on 01; Φ may change sign round these cycles. Hence, to Φ
there corresponds the theta-characteristic [α, β]

(4.2) a = (a l t . . ., aG), β = (βι, . . ., β6),

where an, βη € {0, 1} are determined from the condition for the following
indeterminacy of Φ on going round the cycles an, bn respectively:

(4.3) Φ -»- (-1)α«+ 1Φ, Φ -*• (-1)β»+ 1Φ

This spinor sructure has a very simple geometric sense. To clarify it, let us
consider the uniformization of M. Let An, Bn be the closed geodesies in the
metric of uniformization that correspond to an, bn (of constant negative
curvature if G ^ 2 and planar if G = 1). All these closed geodesies are
simple loops without self-intersections. We consider one of these: γ. As a
consequence of the uniformization there is also the fact that in its
neighbourhood one can globally choose the complex coordinate ζ = χ + iy in
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such a way that the geodesic itself is given by the line y = 0 , 0 < x < l ,
and its neighbourhood by a strip along this line, the ends of which are
identified by the linear-fractional transformation ζ -> σζ where σθ = 1. Let
us write formulae (1.11), (1.12) for a moving frame on a C M C surface in this
coordinate:

(4.4)

, Φ e 5*7.(2).

We consider a closed contour F(y) in R3. In the chosen coordinate Fx is the
tangent field, and Fy and Ν the normal fields to the contour. F(y) together
with the normal fields N(y) defines a closed orientable "band" in the space.
Let Ny be the number of twistors of this "band", or equivalently the
interfacing index of the contours F(y) and F(y) + εΝ, where ε is small. By
studying the simplest examples and taking into consideration the continuity,
we prove the following lemma.

Lemma 4.1. Φ in (4.4) has the following indeterminacy under the bypass
round γ:

Φ -»- (—1)Ν·ν+ 1Φ.

This enables us to formulate the following proposition.

Proposition 4.2. The numbers ocm β η in (4.3) give the parity of the number of
twistors of the "bands" corresponding to the cycles an, bn respectively.

The theta-charactristic (4.2) depends on the choice of basis of cycles on ^ .
Its parity is an invariant which is defined as the parity of the number

<α, β> = S a i P\.

This parity completely classifies compact orientable surfaces with respect to
regular homotopies. That is, there is a smooth homotopy Ft, t e [0, 1], of
two immersions, FQ and F\, of a surface of genus G which at each moment
remains an immersion if and only if the parities of the theta-characteristics
described above, corresponding to Fo and Fu coincide [36].

And finally the last remark about surfaces of higher genus. Their
characteristic property is the existence of umbilical points. The holomorphic
quadratic differential of a surface of genus G has 4G—4 zeros, which are
umbilical points. Planes with one umbilical point of arbitrary order are
constructed in the Appendix.
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CHAPTER II

CONSTANT MEAN CURVATURE TORI

5. Doubly periodic solutions of the equation u z j+ sinh υ = 0

It turns out that all doubly periodic non-singular solutions of equation
(1.13) can be described by explicit fromulae. In this section we shall prove the
central theorem explaining the reason for this unexpected phenomenon. First
of all, let us note that due to the fact that (1.13) is elliptic and a torus is
smooth, u € C°°.

Equation (1.13) can be represented [10] as the compatibility condition (1.7)
of the system

(5.1) ¥ r = tVF, Ψι=ν1Ψ,

„ 1 (0 e
(5.2) U i = -

This pair U, V satisfies the following reductions:

(5.3) ψ(ν)-σ,Ψ(-ν),

(5.4) Ψ(ν)

where the arrow means that both sides are solutions of the system (5.1), (5.2)
with the same u.

Equation (1.3) is totally integrable. It has an infinite series of integrals of
motion, which in turn define commutative higher flows. We put ζ = ζχ and
introduce an infinite series of new variables z2 zn> ... . In the standard
way [10] one can prove the following theorem.

Theorem 5.1. For any doubly periodic smooth solution u{z, z) o/(1.13) there is
a real-valued function u(z\, zu ..., zn, zn,...), real-analytic in all variables, such
that

u (zu z,, z2, z 2, . . .) 1^=0, n > 2 = u (z, z).

Its dependence on additional variables is defined by the condition that the system
(5.1), (5.2) is compatible with the additional equations

moreover, the reductions (5.3), (5.4) are preserved. The matrix Un is a
polynomial of degree 2n — l in v, the coefficients of which are some polynomials
in uz, ... u?\ and Vn(y = oo) = 0.

We shall not give the exact form of Un, which is not important later on.
For a matrix U that is gauge equivalent to (5.2), the formula (I.III.3.31) of the
book [10] gives the generating function for all Un. The real reduction (5.4)
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gives

Un (v) = RZnR~i + RVn (ν-*

Setting ν = oo, we obtain the higher sinh-Gordon equations:

u*n = Pn K , . . ., u<n)),

where Pn is the coefficient of zero degree in Un (v = 0) = —Pnc-ij2, which
proves that u is real-analytic. All Pn have been calculated in [37], where the
authors proposed a geometric interpretation of higher flows as Jacobi fields.

Let tu t2, ... denote an infinite series of real higher times zn = tin-\ + ̂ 2n.
zn = t2n-\ — itu· Because all higher flows commute, the set of solutions
stationary with respect to some flow utl = 0 is invariant with respect to all
other flows, including the flows along t\ = χ and t2 = y. Such solutions in
the soliton theory are called finite-zone (or algebraic-geometric, polyphase,
theta-functional) [6], [7].

Theorem 5.2. Any non-singular doubly periodic solution o/ (1.13) is stationary
with respect to any higher flow.

Proof. All partial derivatives o,· = 9w/8i,- satisfy the equation

(5.5) (dzdf -f cosh u) vt = 0.

The spectrum of the operator (5.5) on the torus R2/A is discrete, so the υ,· are
linearly dependent. Hence, there is a higher time with respect to which u is
stationary: u, = 0.

6. The Baker-Akhiezer function. Analytic properties

Equation (1.13) is one of the real versions of the sine-Gordon equation,
whose finite-zone solutions were first constructed by Kozel and Kotlyarov
in [9]. Analogous results have been obtained by McKean [35]. The scheme of
Krichever was applied to this equation by Its, who constructed the Baker —
Akhiezer function [34] (see also [18]). Real doubly periodic solutions of (1.18)
were constructed by the author in [15].

Let u(z, z) be a solution of (1.13), invariant with respect to some higher
flow t. The evolution Ψ along this flow is defined by a matrix that is a
polynomial of degree In — 1 in ν as well as in v" 1 . The corresponding
stationary equations look like this:

(6.1) Wz = [Uu W], Wt = [Vu W].

Without loss of generality, in these equations one can put

tr W = 0, WM = σχ.

The change

W (v) -+- 4 - (W (v) + aaW (-ν) σ,)
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enables us to assume that the following reduction always holds:

(6.2) o3W (-v) o3 = W (v).

Equations (6.1) show that the eigenvalues of JV are integrals of motion. The
characteristic polynomial

(6.3) det (W(v) - μ/) = 0

defines an algebraic curve X, which is called spectral.
Let Φ(ν, ζ, ζ) be the matrix solution of (5.1) with the normalization

Ψ(ν, 0, 0) = I. This is an entire function of v. Let Ρ denote a point of the
spectral curve with coordinates (ν, μ), and H(P, z, z) an eigenvector of W

W (ν, ζ, ζ) Η (Ρ, ζ, ζ) = μΗ (Ρ, ζ, ζ)

with the normalized first component H\ = 1. This is a meromorphic function
of the point P.

Definition. The vector-function

(6-4) ψ (Ρ, ζ, ζ) = Ψ (ν, ζ, ζ) Η (Ρ, 0, 0)

is called the Baker—Akhiezer function (BA).
It is an analytic function on Ϋ, satisfying the equations

= μψ.

Perhaps only the latter needs some comments. This equation is a consequence
of the identity

(6.5) W (ν, ζ, ζ) Ψ (ν, ζ, ζ) = Ψ (ν, ζ, ζ) W (ν, 0, 0).

To prove it, let us note that both sides of (6.5) satisfy the system (5.1) with
the same initial conditions when ζ = ζ = 0. The uniqueness of the solution
proves (6.5).

Firstly, we shall deduce the analytic properties of BA in the general
complex case, when ζ and ζ are regarded as two independent complex
variables. The spectral curve $

μ2 = —det W (v)

by virtue of (6.2) possesses the involution

(6.6) π: (ν, μ) -*• ( - ν , μ).

The equation of the quotient X - Χ/π has the following form:

μ 2 = = λ - 2 η + ι β ( λ _ λ . ) , λ = = ν 2 .

It is a hyperelliptic curve of genus g = 2n— 1, where λ = 0, oo are branch
points.
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The eigenvector Η is equal to

(6.7)

where we have used the following notation for the elements of W\

w . . _ ι Α (ν) Β (v)\

Let us note that due to (6.2)

A (v) = A (—ν), Β (ν) = —Β (—ν).

After taking account of the normalization of Φ(ν) and the reduction (5.3), we
obtain

σ3% (-ν) σ, = Ψ (ν)

and the following transformation law of the ψ-function under the involution
(6.6):

(6.8) σ,φ (Ρ*,, ζ, ζ) = σ3Ψ (— ν) μ - 4 ( - ν ) Ι = φ (Ρ, ζ, ζ).
V Β (— ν) /

The polar divisor 0 of ψ is defined by the vector H(P, 0, 0), and
consequently does not depend on z, z. Moreover, it is invariant (6.8) with
respect to π. The poles of H(P, 0, 0) are situated at the 2(2n —1) zeros of
B(y). Over each zero of B(y) there are situated two points of the curve X,
moreover, for one of these two points the numerator μ—Α(ν) in (6.7) vanishes
too. Thus, we obtain the non-special polar divisor 3) of degree 2(2n—1).
Projecting 3J on X, we get the non-special polar divisor 3s of degree (2n—1),
coinciding with the genus of X.

Remark. The fact that the genus g = 2n — 1 of the curve X is odd is of no
importance. We consider a singular spectral curve with a singularity at the
point ν = v0 (and hence at ν = — v0)

μ = (v2 — Vo) μ',

and let ± v 0 be also the points of the polar divisor ψ, that is, B(±v0, 0, 0) = 0.
Because A2 = μ2—BC, A(y) reduces to zero at these points too, and
consequently

where A = (v2-v$)A', Β = (v 2-vo)£'. As a result we obtain the BA
function on X'—the non-singular compactification of the curve X given by μ'.
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The projection of the polar divisor on the curve X' = Χ'/π of genus In —2 is
a non-special divisor of degree In—2. All analytic properties, including the
transformation law (6.8), are preserved, so for uniformity we shall call a
spectral curve non-singular in this case too. Other BA functions of singular
curves do not lead to CMC tori. They are described in §13.

Let oo * denote the points of the surface X with μ -• I v 2 " " 1 , ν -»· oo,
and O± the two points with ν = 0. The involution π interchanges them:

π
(6.9) oc+ Jt* oo-, Ο* ~ (T.

The function ψ has essential singularities at these points. To clarify their
exact form, we shall consider the matrix function

ψ (V, 2, ϊ) = (ψ (Ρ\ Ζ, Ζ), ψ (Ρ-, 2, ϊ)).

It is well defined on the union of neighbourhoods of the points ν = oo and
ν = 0 in such a way that

p± _ ^ oo±, v -i-oc;i±->O±, ν -»- 0.

On the other hand, because ψ and Η are eigenvectors of W,

ψ (Ρ, ζ, ζ) = Η (Ρ, ζ, ζ) d (Ρ, ζ, ζ),

where d{P, ζ, ζ) is some scalar function. The formula (6.7) gives the
following asymptotics:

Substituting it in (5.1), (5.2), we obtain

Together with the normalization d±(y, 0, 0) -» 1, ν -* oo, which follows from
definition (6.4), it yields

(6.10) ψ(ν ,ζ ,ζ) — ((I _ ]

Similarly we obtain

Ψ (ν, 2 , z) - .«? + 0 (v)) exp ( _ J _ ζσ 8), ν -> 0.

The symmetry (6.8) enables us to formulate analytic properties of the BA
function as a function on a Riemann surface X that is important for
constructing ψ explicitly. We fix that sheet of the covering X -* X that
contains oo+ and O+. This sheet can be identified with X, cut along the
contour JSf. Oiie should consider that on X\^f there is singled out a one-
valued branch of the function v, two-valued on X, and local parameters \/λ at
points λ = 0, oo e X are chosen so that V~\ = ν, λ -»• 0, oo.
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Theorem 6.1. The stationary solution of the higher sinh-Gordon equation
generates a Riemann surface X ( spectral curve)

(6.11) μ2 = λ~2η+1 Π (λ = 2n-i or

of genus g with contour <έ', fixing the branch \f\ on X\i£. The Β A function

Ψ = (Ψι> Ψ2)1" is analytic on X, and
1) the functions ψι and \/λ\|/2 are one-valued on X,
2) ψ has essential singularities of the kind

Ψι,« — (1+0 (1/yi)) exp ( i- ζ

3) ψ is meromorphic on X\{k = 0, oo}, i/s /?o/ar divisor is non-special of
degree g and does not depend on z, z.

7. The Baker-Akhiezer function. Explicit formulae

The function ψ is defined uniquely by its analytic properties and can
be explicitly expressed in terms of Riemann theta functions and Abelian
integrals [5], [6], [18]. Let X be a hyperelliptic Riemann surface of genus g
(6.11) with branch points λ = 0, oo, and let if be a contour defining a one-
valued branch of the function \/λ on X\&. Let a canonical basis of cycles
an, bn, η — I, ..., g, be chosen so that

X = β ι + · . . + ag.

The normalized (J dun = 27ri<5mn) holomorphic Abelian differentials dun define
the period matrix Bmn = jb dun, with the help of which the Riemann theta
function is defined:

This function is periodic with periods 2πίΖ*:

(7.1) θ (ζ + 2ni7V) = θ (ζ).

Let us also introduce two normalized ( J ^ dfij = 0) differentials of the second
kind with singularities of the following form:

(7.2) dQt-i-d/X, λ-> oo, dQ2-+ — ̂ y^, λ->0.

We denote their periods by
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Theorem 7.1. The Β A function is given by the following formulae:

θ (u 4- Ω) θ (D) [
ι = θ ( » + Θ Χ Ρ Ι

(7.3) _
2

Γ/= (£/lt . · ., f/J, F = ( F l t . . .,.Vg), A = ni(l,.. ., 1).

Here Ω = -(i/2)(Uz+ Vz) + D, the Abelian map

ρ

u =\j du, du = (duv .. .,dug),. Ρ — (λ,μ)^Χ,

D is a vector such that Q(u + D) has ^ as a null divisor. It is arbitrary. The
paths of integration in u and Ω, coincide.

Suppose that if does not separate the points λ = 0 and λ = oo. Then,
substituting (7.3) in the second equation of (5.1) and taking into consideration
that

we obtain the following theorem.

Theorem 7.2. The corresponding solution o/" (1.13) is given by the formula

<7 ·4) u(z,z) = 2 1 n f f 7 | i 5 L n .

The choice of the contour JS? separating the points 0 and oo is equivalent
to the change 0 + +-> O~ (see §6) and leads to the transformation of (7.4):

Z , ^ . *r Λ ^ n*^

~ ' *- j C ^ ' C •

It is convenient to represent X with the contour !£ in the following way.
We shall make the cuts [λ^-ι, λ^], and let JS? be a union of g contours, each
of which coincides with the corresponding cut [λ^-ι, λ2η] and is invariant
with respect to the involution of changing the sheets of X. Then to each
value ν there corresponds one point on X\<£'. Let / be a path on X that does
not intersect JSf and joins the points oo and (ν, μ), and /* the analogous
contour on the other sheet, joining oo and (—ν, —μ). Let// denote the
analytic continuation of/along the contour L. Then obviously ν/ = π*ν/*,
and hence ψ/ and σ3ψ/· (see (6.8)) correspond to the same value v. The
matrix-valued function thus defined

Ψ (ν) = (ψ,,

satisfies equations (5.1). This function is analytic on the Riemann surface
ν = V\ with the cuts [λ^-ι, λ^], on which there is a jump Ψ+ = Ψ_σι.
For this function the reduction

ψ ( _ v ) = θ3ψ ( ν ) σ ι
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holds and the following expression is true:

/ θ(Ω + κ) B(Q-ri) \ / Q(D) - ω

)
0 (<*-!-» + Α ) 0 ( Ο + κ - Α ) / \ 8 (Ρ)

V Θ(Ω-Ι-Δ) 0{£2 + Δ)

ω = L (Ω ι 2 + Ω2ζ), u = jj du.

Finally we give also a useful formula for

d = det Ψ (ν).

Studying its analytic properties, we obtain [15]:

(7.6) d = — 2 -
' θ (0) θ (Λ) 0 (κ — D) θ (u + Ζ>) '

8. Reality

Now we consider z and ζ as complex-conjugate quantities. We shall
obtain restrictions on the parameters that ensure the reality of u[z, z). First
of all, the curve possesses the antiholomorphic involution

(8.1) τ: λ-» λ"1.

All branch points are situated in pairs ( |λ , | Φ 1)

(8.2) λ2η-1 = λ2η-

The basis of cycles can be chosen so that τ acts on it in the following way:

g

ταη = — an, xbn = bn — an + ^ a4.
1 = 1

Then the period matrix is equal to

Β = BR + πι (/ - 1),

where BR is real-valued, and lmn = 1, Imn = bmn. The theta function is
conjugated in the simplest way:

θ (ζ) = θ (Ξ).

For differentials of the second kind we have

t = dQ2,

whence U = V, and hence the vector Ω is pure imaginary.

Theorem 8.1. All real-valued finite-zone solutions {corresdponding to non-
singular spectral curves) are given by formula (7.3), where X is the real curve
(6.11), and D is an arbitrary pure imaginary vector.
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This theorem may be proved by the standard technique of [8], and at the
same time it can be proved that all solutions are non-singular. All real-valued
finite-zone solutions of other real specializations of the sine-Gordon equation
were obtained in [2].

The fixed points τ, | λ | = 1 form one (if g is even) or two (if g is odd)
real ovals. The conjugation law of holomorphic differentials x*du = du gives
for points on the ovals | ν | = 1

du = I du — Δ (mod 2πί Z s ).

The function (7.5) satisfies the reduction

—e-"' 2\ _ / 0 —a-1 \ B(u — D)

) ψ ( α Ο ) ' a - 9 ( u - i ) + A ) ' »

9. Formula for immersion

For constructing formulae for an immersion F and a normal field N,
according to the representation (1.11) we need to construct the solution
Φο(λ, ζ, ζ) ε Si/(2) of equations (1.8) with matrices (3.2). This is easy to do,
using the obtained expression (7.5). In fact, the representations (3.2) and (5.2)
are gauge equivalent, and

is the solution of (1.8) with the required matrices (3.2) and λ = ν2. For Φο(ν)
we have

(9.2) Φ ο =
u) ίθ(Ο-«)

Ο (_ (ν)-" 2 / \ίθ (Ω + Δ + it) — ΐθ (Ω -j- Δ - u)j \0 e~m) M '

where u = Ĵ rfw is the Abelian map of the point ν (by the chosen contour if
the points of the surface A" are in a one-to-one corespondence with the values
of v), and M(v) is some matrix depending only on v. When ν = e'y, the
matrices in (9.2) belong to K+SC/(2). The determinant (9.2) can be
normalized to one with the help of the addition theorem (7.6):

θ (Ω -f u) θ (Ω + Δ — u) + θ (Ω — u) θ (Ω + Δ — u) =
— Ο θ(»)θ (t + Δ) fi/O\A/n J Α\

- Ζ 6(0)6 (Δ) Θ ( Ω ) Θ ( Ω + Δ ) .

Theorem 9.1. The function

) " •2Θ (ΐί) θ (tt + Δ) θ (Ω) θ (Ω + Δ)
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L· a solution of equations (1.8), (3.2) with λ = e2iy, and Φο e SU(2). With the
help of formulae (1.11) it defines a CMC surface.

A slightly different formula for F 3 was constructed in [15].

10. Periodicity conditions

We shall introduce the notations for real and imaginary parts of the
following quantites:

Theorem 10.1. All CMC tori are described by formulae (1.11), (9.3) when the
immersion F is doubly periodic. The immersion F with the period lattice Λ
generated by basis vectors (X\, Yi), {Xt, Yj) is doubly periodic if and only if

is an integer matrix, and the differential d£l\ vanishes at the point λ = 1:

(10.2) άΩ, (λ = 1) == 0.

The numbers

ΥΛ( cR

determine the parity of the number of "twistors" (§4) relative to the cycles of the
torus, defined by the basis vectors of the lattice.

Proof. The trivial solution « = 0 generates a cylinder, so to prove the first
statement it remains to show that singular curves do not lead to CMC tori.
We shall do this in §13. Condition (10.1) follows from the periodicity
condition (7.1) of the theta function and the fact that Φο may change sign.
These changes of sign (see (4.2)) according to §4 determine the parity of the
number of "twistors". Finally, we observe that the differentiation of theta
functions with respect to γ also gives functions with the lattice Λ, but on
differentiating the exponential factor in F there arises the component

(rz — Tz) a3,

where dQi = rdX when λ = 1. The condition that it vanishes on two
linearly independent vectors of the lattice is just (10.2).

The periodicity conditions are conditions only on a spectral curve,
moreover for the 2g + 4 parameters (branch points of X and basis vectors
of Λ) we have 2# + 4 conditions (10.1), (10.2). It is impossible to satisfy
(10.2) when g = 1, so the simplest CMC tori correspond to the case when
g = 2. If g > 2 there is a discrete set of spectral curves generating tori.
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In [15] we give a non-strict reasoning that verifies this fact. In the recent
work [21] Ercolani, Knorrer, and Trubowitz have proved the existence of
spectral curves that are strictly of even genus.

The vector D remains arbitrary. Its variation on the plane spanned by the
vectors of the Α-periods UR and U1 corresponds to a simple reparametrization
of the torus, but the variation in directions transversal to this plane changes
the torus.

Theorem 10.2. The tori constructed from a spectral curve of genus g have g—2
commuting deformation flows preserving their area and the CMC property.

We shall prove the preservation of area under variation of the vector D by
calculating it in the next section.

11. Area

Let Π be the fundamental domain of the lattice Λ. The normalization (1.1)
enables us to express the area of the CMC torus in the following way:

5 = J | Fx 11 Fy | dxdy = 4$ eudxdy,
II Π

where Π is the integration domain.
We can compute this integral explicitly. Substituting the asymptotic form

(6.10) in the equation Ψτ = V\¥, we get for the matrix element Bj\

B21I = eu/2i.

On the other hand, a straightforward calculation gives

(11.1) ΒΛτ— κ

Γ Θ ( Ο + Α + » ) Θ ( Ζ ? ) -II _

X) J θ (Ω + Δ) θ (D + u) 6 J |λ=οο ~

where k is the value of άΩ2 at λ = oo : dil2 = kd(l/V\). In deducing
(11.1) we used the fact that the decompositon of the Abelian map at λ = oo
has the form

u = —U/γλ,

which is proved in the ordinary way [5], [22] with the help of the reciprocity
law of Abelian differentials. The same law enables us to define in a more
convenient form the constant

(11.2) dQ1 = fc

Applying Stokes's formula to (11.1), we arrive at the following statement.
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Theorem 11.1. The area of the CMC torus is equal to

(11.3) 5=4*5(11) ,

where S(H) is the area of the corresponding fundamental parallelogram Π.

The area, like the periodicity condition, is expressed in terms of the spectral
curve.

12. Wente tori

Let us point out the position in the general picture of some examples
known earlier. Suppose that the curve X (6.11), along with the hyperelliptic
Λ : (λ, μ) -• (λ, —μ) and the anti-holomorphic τ (8.1), possesses one more
additional involution

(12.1) i: (λ, μ) -> (λ"1, μλ"-1"*).

The curve X covers two curves X' = X/ih and X" = X/ί of genus n — \ and
g—(n — 1) respectively. The involution (12.1) transforms the differentials of the
second kind into one another:

so they are combinations of normalized differenitals of the second kind dta'
and da", defined on the curves X', X":

di^ = -i- (άω" + άω'), d£l2 = -i- (do" — d<d').

The dependence on χ and y is given by

άΩχΖ + άΩ%ζ — άω"χ -f* idta'y,

so the dynamics with respect to χ and y happens on the Jacobians of two
different curves, Jac(A"') and Jac(A"). As a consequence, the periodicity
conditions with respect to χ and y are separated. We deduce that the
curvature lines χ = const and y = const are closed, and Π is a rectangle
(7i = Xi = 0). We note that the same curves define all the solutions of the
Dirichlet and Neumann problems for (1.13) on a rectangle [4].

Detailed computations for the case g = 2 when both curves X', X" are
elliptic were given in [15]. As a result the simplest tori have been obtained,
which were first found by Wente [44] and were then described in terms of
elliptic functions by Abresch [11] and Walter [41]. In our approach the
formulae are obtained in terms of Jacobi's theta functions with the help of the
reduction theory of theta functions of curves with symmetries [3]. Wente tori
have a beautiful geometric description: the curvature lines y = const are
planar and look like a figure 8. The orthogonal curvature lines χ = const lie
on spheres. Starting from a geometric property, namely, from the existence of
planar curvature lines, these tori were analytically described for the first time
in [11].
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The problem of studying tori that have only one family of curvature lines
lying on spheres leads to the case of a curve X of genus g = 3 and symmetry
(12.1). Such tori, permitting deformations (§10), are described in [46].

Let us observe that surfaces with such special (planar and spherical)
curvature lines were studied by classical authors who knew a lot of analogous
results, in particular, the similar case Κ = — 1 (see the Introduction).

13. Singular spectral curves

We shall show that singular curves do not lead to doubly periodic
immersions. Let the spectral curve X be (v, μ)-singular:

(13.1) μ = (λ — λθ . . . (λ - λ,) μ', λ = ν2, λ, = xl

At all points ν = ±ν,· the function μ vanishes, and according to (6.7) the
values of ψ coincide on the two sheets of the covering X -> v:

(13.2) ψ (ν,, μ{) = ψ (ν,, - μ , ) .

In the same manner as before, the analytic properties of the BA function are
projected onto the curve Χ(λ, μ). They can be formulated as analytic
properties of ψ on the non-singular curve X' determined by μ' (13.1). We fix
a sheet \/λ on X' as before. The analytic properties 1), 2), 3) of Theorem 6.1
are preserved with the amendment that the degree of the polar divisor 2 of ψ
is equal to the arithmetic genus of X, namely g' + k, where g' is the genus
of X'. It follows from (13.2) that the additional property 4) is formulated in
terms of Ψ in the following way:

(13.3) Ψ

or, which comes to the same thing,

(13.4)

where the values of ψ on the two sheets of the covering X' -> λ are denoted
by Roman numerals.

Lemma 13.1. If u(z, z) is real, then |λ,·| Φ 1.

Proof. Suppose that |λ< | = 1. This is a fixed point τ, and according to (5.4)
for Ψ(ν,·) we have

ΰ e\ _
\io.o) r —yeu/2 ο Ι -1 "' ι

from which it follows that

(13.6) MM = —/.



Constant mean curvature surfaces and integrable equations 25

The reduction (13.5) shows that Μ [ λ is also an eigenvector of Ψ(ν(·) with

zero eigenvalue, hence we have the proportionality

Applying MM, we obtain

which contradicts (13.6).
The linear space of functions satisfying properties 1), 2), 3) is

k+l-dimensional. Let ψ0, ψι, ..., ψ* denote a basis in it. For such a basis
we can choose BA functions with different divisors 3[ C ^ of degree g'.
They are given by the same formulae (7.3) with the same exponential factors,
differing only in the values of the free vectors Dt.

Lemma 13.2. The Β A function of the spectral curve (13.1) is equal to

(13.7) ψ = (1 — «ι — . . . — a k ) ψ 0 + αιψι + · · · + «κψΐη

where an are rational functions ο/\|/)(λ(·), ψ " (λ,·).

To prove the lemma, we note that (13.4) represents an inhomogeneous
linear system on ocn.

Thus, in addition to the dependence on z, i in terms of theta functions and
the Abelian integral

(13.8) exp[—-ί- J (dQlZ + dil2z)],
CO

the function (13.7) of the spectral curve depends rationally also on

exp rr \ (dQ]Z -f- dQ,z) .
L * J J

By virtue of Lemma 1, k = 2s, and the singularities are situated in pairs

Theorem 13.3. The condition that the immersion with period lattice Λ given by
(13.1) is doubly periodic is the union of the conditions of Theorem 10.1 on its
non-singular part X' and the condition (13.8) of double periodicity of the
exponents, i = 1, ..., s, with the same lattice Λ.

In examining the non-singular case we have seen that the periodicity
conditions single out a discrete set of spectral curves and fix a period lattice
for them. So the conditions (13.8) of double periodicity of exponents with a
period lattice defined by X' represent As real-valued conditions on s complex
unknowns λι, ..., λΛ. Of course, just as in the non-singular case, this
computation of parameters is not a rigorous mathematical proof, but we hope
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it points out in a convincing manner that there are no tori corresponding to
singular curves. This argument holds for the case of CMC tori in S3, which
is discussed in the next chapter.

CHAPTER III

CONSTANT MEAN CURVATURE SURFACES IN 5
s
 AND H

3

The results of the first two chapters carry over to the case of CMC
surfaces in S3 and H3. The changes are not of principle, so in this chapter
we shall choose a slightly more economic style of exposition, referring the
reader to the more detailed reasoning of the previous chapters.

14. Equations of constant mean curvature surfaces in S 3 and H3

Let !F be a smooth CMC surface in S3, and

F · fB C*3 ι— [TD4

its conformal parametrization. Here ^ is a Riemann surface with a complex
structure, generated by the metric of S3 C R4 on &', and F is a unit vector

(14.1) (F, Fy = 1,

where (a, b) = Σΐ=οα***· Let w denote a local complex coordinate, and Ν a
normal vector to the surface

(14.2) (Fw, Ny = <F-, Ny = (F, Ny = 0, (N, Ny = 1.

The conformality of the parametrization gives

(14.3) <FW, Fwy = <F-, F-y = 0, </?„, f-> = 2eu.

Introducing the notations

(14.4) A = (F^, Ny, (Fw-, Ny = 2Heu,

we obtain the following Gauss—Weingarten equations:

Ov, = ma, σ- =Ψσ, σ = (F, Fw, F-, JV)T.
(14.5)

0 1 0

0 uw 0

—2«u 0 0

0 — Η —Ae-u/2

The quantity Η in (14.4) is called the mean curvature. The condition for it to
be constant

Η = const

0

— 2 e u

0

0

0

0

0

—Ae-u/2

1

0

u-

— H

0

2Heu

I

0
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gives the following GPC equations:

(14.6) uw- + 2 (1 + /P) e" - ΑΑβ-β = 0, A- = 0.

In new variables

(14.7) ζ = 6sw, A = 6se
2i«><?, 6S = 2 / l + H*

(with any constant φ, which we introduce according to technical considerations)
(14.6) has the form (1.6), and we obtain a result completely analogous to
Theorem 1.1.

There is an analogue of Theorem 1.2 too. To formulate it we shall identify
the linear space 1R4 with the linear space &SU(2) of (2 χ 2)-matrices satisfying
the condition

(14.8) X = σ 2 ί σ 2

in the following way:

(14.9) X=X0I + i% X^ ~X = (Xo, Xlt X2, X3) ΕΞ R*.
l f = l

We denote by F and Ν the matrices obtained in this way from the vectors F
and N.

Theorem 14.1. Let u(z, z) be a solution of (1.6) and let

(14.10) <t>! = Φ (ζ, ζ, λ = e2**), Φ 2 = φ (ζ, ζ, λ = e2**)

be two solutions of the system (1.8) (1.9), belonging to the group IR + 5'i/(2) with
coinciding determinants det Φι = det Φ2. Then F and N, defined by the formulae

(14.11) F = Φ Γ ^ , iV = ίΦϊ 1 σ 3 Φ 2

in the variables (14.7), 2cp = 71 + 72, satisfy (14.5) and describe in S3 the CMC
surface

(14.12) Η = cot ρ, ρ = 7 l - γ 2.

Proo/ For F and JV defined by means of (14.11), (14.8) obviously holds. To
prove (14.5) it is convenient to define the scalar product in R4 on the matrices
(14.9):

(14.13) <X, Y> = 4 " t r < X r * ) ' Y* = °

We shall verify, for example, that the surface (14.11) lies in S3:

(F, F} = 4 " tr (ΦΓ'Φ2Φ* (Φ?)-1) - 1,

where we have used the equality of determinants and the fact that Φ* = Φ " 1

for Φ e (7(2). It is also easy to establish the truth of (14.2), (14.3), in
particular,

= U(X =
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A straightforward calculation also gives

</•„, N) = -i- 0e**P sin p,

1 *> 1

^zz = w~ e" sin" ρ F + -5- sin ρ cos ρ euN.

In the variables (14.7) this is equivalent to the statement of the theorem if Η
is given by (14.12).

The hyperbolic space H3

(14.14) {F, F} = - 1 ,

is embedded in the Lorentz space R3>1 with the metric

{σ, b} = a ^ -f a2b2 + a3b3 — aobo,

which is positive on H3. We normalize the complex coordinate w and the
basis in the same way as for S3:

Equations (14.5), imposed on the basis, are slightly different:

0 1 0 0 \ / 0 0

0 uw 0 A \ I 2eu 0

2e« 0 0 2Heu ' : Γ = 0 0

I \
0 — Η —Ae~ul2 0 / \0

(14.16) A = {F^, N), 2Heu = {Fw-, N).

The condition for the mean curvature to be constant, Η = const, leads to the
following GPC equatons:

" ^ + 2 (H* - 1) eu - AAe-u/2 - 0, A- = 0.

According to the maximum principle there do not exist compact CMC
surfaces with \H\ < 1, so we shall restrict our attention to the case \H\ > 1.
In the variables

(14.17) ζ = 6Bw, A = 6He*«Q, 6 H = 2 y H2 - 1

we again obtain (1.6).

Theorem 14.2. /I CMC surface in S3 or in H3 (with \H\ > 1) under the
conformal parametrization generates the holomorphic quadratic differential
Q(dz)2 and a solution of (1.6).

We shall identify the Lorentz space R3'1 with the space of (2 χ 2) self-
adjoint matrices XT = X

(14.18) X = X0I +
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with the scalar product

{X, Y} = i-tr (Xajra,).

As before, we shall use the notations F and Ν for describing surfaces in the
matrix representation.

Theorem 14.3. Let u(z, z) be a solution of (1.6) and let

(14.19) Φ ο (ζ, ζ, λ = eW*), ? s K ,

be some solution o/(1.8) with real determinant. Then

(14.20) {

in the variables (14.17) satisfy the equations on a moving basis with matrices
(14.16) and describe the CMC surface in H3

(14.21) Ε = coth q-

Proof. The formulae (14.20) are completely similar to (14.11) if we take into
account the adjointness reduction for Φ (§1) and use the notations

φ , = φ 0 , φ 2 = σ2Φ0σ2 = Φ (ζ, ζ, λ = e

Applying the equality a2X
TC2 = X~l det X for invertible matrices, we easily

obtain all the equalities (14.15). In particular,

{Fz, F;} — £- tr ((Ό\ — Uj) σ2 (F 2 — 1 * :)
τσ2) = -^- sinh2 </,

Uk = U (λ = exp [(—l)fc+1g + 2ίφ]), 7 k = V (λ = exp [ ( - l ) ^ 1 ? + 2iq>]).

A straightforward calculation gives

{F.,, N} — 4r Qe^ sinh q,

F« = 4 - e " sinh3 9 F 4 - - 1 - sinh 9 cosh q euN.

The change of variables (14.17) completes the proof.

15. Constant mean curvature spheres in S 3 and H3

A direct analogue of Hopf s theorem (§2) holds.

Theorem 15.1. All surfaces of CMC Η in S3 that are topologically equivalent
to a sphere are the intersection of S3 (14.1) by the hyperplanes

(15.1) <*", C> = 1, <C, C> = # - 2 + 1.

All surfaces of CMC H(\H\ > 1) in H3 that are topologically equivalent to a
sphere are the intersection of H3 (14.14) by the hyperplanes

(15.2) {F, C) = - 1 , {C, C) = H-* - 1.
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Proof. The holomorphic quadratic differential on the sphere & is equal to
zero: A = 0. The last rows of (14.5) give

(15.3) Ν + HF = EC = const,

from which we obtain (15.1),

(15.4) 1 = <ΛΓ, N} = H2 <F - C, F - C>

and the equalities (15.2) for H3. Spheres of CMC Η in S3 may be
represented just like the intersection of S3 with the sphere (15.4) of radius
H~l, which is orthogonal to (14.1).

16. Constant mean curvature tori in S 3

Let

(16.1) Wi = Xt + iYu W2 = Z2 + iF2

be two vectors on the plane w, generating the basis of the lattice Λ of periods
of the immersion F(w, w). We normalize the coordinate w in the same way
as in (1.6): Q = 1.

We consider separately the zero solution of (1.13), which is, of course,
doubly periodic too. To this solution there corresponds

))e*p[—f-

According to (14.10), (14.11) the corresponding surface is described by the
expression

(16.2)
COS

i sin

Ρ

Ρ
2

i sin

cos

2

ρ

\
χ

/
f

X exp [-fff, (eiyw + e-*vw)] ,

where, as later on, γι = φ+ρ/2, j2 = φ—ρ/2. Clearly, (16.2) is a torus. We
denote

(16.3)
du, ^^-l-f((c^ + ici)w

£ + id, Ω2 (ν = Jy*) = cj? -

In a completely similar manner as in the case of Euclidean space, combining
(14.10), (14.11), (9.3), (14.12), (14.7), we can prove the following theorem.



Constant mean curvature surfaces and integrable equations 31

Theorem 16.1. All CMC tori in S3 are described by (16.2) and also the doubly
periodic matrices (14.9)

, , „ , , r . . /Θ(Ω + Δ — u{) Θ(Ω — uj)\

θ(0 + «.)

θ(Ω + Δ + α

θ (0) θ (Δ)

m = = 2Θ (Ω) θ (Ω + Δ) [θ (uj) Ο (ut) θ (ΐίι + Δ) θ (u2 -|- Δ)] 1 / 2 '

and by the analogous formula for N, in which the central matrix should be
replaced by

σ 3

The immersion (16.4) is doubly periodic if and only if there is a basis (16.1) of
the lattice Λ on the plane w such that

(
R , R Μ -Η rjR TTR \

l 2 1 2 ι g
1 1 I 1 rrl ττΐ

is an integer matrix.
The numbers

determine the parity of the number of "twistors" corresponding to the cycles of
the torus given by the basis vectors of the lattice. The area of the torus is

(16.7) S = Α', ϊ"α

A 2̂ i^2

The periodicity condition (16.5) is the condition on a spectral curve that
singles out a set of the type of the set of rational points. Apparently, in a
small neighbourhood of any spectral curve there is a spectral curve satisfying
the periodicity conditions (16.5). Thanks to the free vector D there are g—2
commuting deformation flows that preserve the area.

17. Minimal tori in S3 and Willmore tori

A particular and most interesting case of CMC surfaces in S3 are minimal
surfaces. All minimal tori are described by the formulae of §16, where we
should put Η = 0. This implies that

c ρ JI m-l- π V = φ — π

& *i "
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that is, as points of the spectral parameter λ* = e2nt we should take two
opposite points on the unit circle.

The simplest of the minimal tori is the Clifford torus T&

Setting ρ = π/2, φ - 0 in (16.2), we obtain

Fo + if3 = - L e-K <«-*>, F1 + i/?a = - L e-i VI <

The area of this torus is equal to

S (Γα) = 2π2.

Minimal surfaces in S3 are connected with Willmore surfaces in three-
dimensional Euclidean space [47]. Let F : M2-+ R 3 be an immersion of an
abstract surface of the given topology. Willmore surfaces are defined as
extremals of the functional

(17.1) W = $ H2dS,

where Η is the mean curvature, and dS is the area functional. By virtue of
the Gauss—Bonnet theorem, the functional (17.1) is equivalent to the
functional

5 (k\+ki) ds,

hence the most flattened surfaces of the given topology are global minima of
the Willmore functional.

To each minimal surface in S3 there corresponds a Willmore surface.

Theorem 17.1 [43]. Let R be a minimal surface in S3, and σ : S 3 -> R3 a
stereographic projection. Then a(R) is a Willmore surface, and

W (σ (Λ)) = S (R),

where S(R) is the area of a minimal surface in S3.

There are a lot of interesting results on Willmore surfaces. First of all, for
any compact surface W ^ 4π, and equality holds only for the standard
sphere [47]. For the Clifford torus we obviously have W(a(Ta)) = 2π2.

WUlmore's conjecture. For tori W ^ 2π2.

Though this conjecture has recently attracted a great deal of attention, it
remains unproven. It has been verified for tori generated by the motion of
the centre of a ball of varying radius along a closed curve [24], and also for
some conformal types of tori [33]. Simon in [38] proved the existence of a
torus minimizing W. The absence of self-intersections have been proved by Li
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and Yau [33]. Their result is the following: if a surface possesses a self-
intersection point of order η (η different pre-images), then W > 4nn. As a
consequence, all surfaces with W < 8π are necessarily embeddings, and there
are similar results on areas of minimal surfaces in S3.

The first results in the direction of proving Willmore's conjecture with the
help of the analytic approach described in this survey were obtained by Ferus,
Pedit, Pinkall, and Sterling [23]. Their results enable us to classify Willmore
umbilic-free tori with the help of a special reduction of the two-dimensional
Toda chain. Perhaps it will be easier to prove the following particular case of
Willmore's conjecture.

Conjecture. The area of any minimal torus in S3 is greater than or equal
to In2.

This conjecture, according to the above-mentioned result of Li and Yau, is
a consequence of the following conjecture.

Conjecture of Hsiang and Lawson, The Clifford torus is the only embedded
minimal torus in S3.

In this connection we note the result of [16], where the upper bound 16π
for the area of an embedded minimal torus in S3 is obtained.

In a proof of the last conjecture by topological considerations one may
reject straightaway one quarter of minimal tori, which certainly have self-
intersections. The classification of immersions of tori in S3 with respect to
regular homotopies is exactly the same as in the Euclidean case (§4). There
are two types: "standard" and "knotted" tori. The latter must have self-
intersections. It is characterized by the property that both "bands" of the
normal corresponding to the cycle basis have an odd number of "twistors"
α = β = 1 (mod 2) (16.6). In this case the functions Φι and Φ2 are
doubly periodic. Expressions convenient for calculations for all the
quantities contained in the formulae given above are obtained with the help
of the Schottky uniformization in [15].

18. Constant mean curvature tori in Hz

In the same way as in the case of S3 we normalize the coordinate w so
that the GPC equation, which has the form (1.6) in the variables (14.17),
reduces to (1.13), that is, we set Q - 1. According to (14.21) we have

vH =

To the trivial solution u — 0 there corresponds the expression

Φα = 4 -
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The corresponding immersion is not doubly periodic. We introduce the
notations

u = \ du, ω = l-S- (Ωχ (vH) W + Ω2 (νΗ) w),

Ω = — -i^L (C/w -f uu;) + D,

Theorem 18.1. Λ// CMC tori (|/f| > \) in H3 are described by the doubly
periodic matrices (14.20), where

( 1 8 . 1 ) O 0 = m [ ( | f ^ ) ]
ϋ) Θ(Ω — u)

iy α mairix of SL(2, C), a«d « w given oj (9.3). Tne immersion (14.20), (18.1)
is doubly periodic with the period lattice Λ if and only if there is a basis (16.1)
of Λ on the plane w such that

2c*

iy a« integer matrix, and

(18.3)

^

Proof. Condition (18.3) is the consequence of the argument of the exponent
on the lattice being pure imaginary and the fact that Ω2(ν#) = Ω^ν^ 1). For
a complete proof of the theorem it remains to show that singular spectral
curves do not generate tori. The proof given in §13 is also true for the case
of H3, excluding spectral curves with singularities at the points vH and v^1,
because the corresponding exponents (13.8) in the last case are doubly periodic
(18.2). However, according to (13.3), both the columns of the matrix Ψ, and
according to (9.1) of Φ, coincide in this case. In the neighbourhood ν ~ v#,
Ψ has the representation

where Ψ ο is invertible. In this case the matrix Φ is constructed in accordance
with (9.1), replacing Ψ by Ψο· From (18.4) we get the following expression

(18.5)
v=vH
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where ψ is the BA function (13.7). The first column, besides the usual theta
functions and exponential factors, contains a term linearly dependent on w, w
that has the values of differentials in v# as the coefficients:

γ (vH) w + dQ2 (v/j) w).

If we require this term to be doubly periodic, then

(18.6) dQ1 (vfl) = άΩ2 (vH) = 0.

The additional condition (18.6) shows that doubly periodic immersions do not
exist in the case under consideration.

CMC-tori in S3 and H3, similar to Wente tori, were studied in [15], [42].
These tori exist for any Η and have spherical curvature lines.

19. Minimal surfaces of higher genus in S3

All the considerations of §4 carry over directly to the case of minimal
surfaces of higher genus G > 2 in S3. In (14.11) Oj and Φ2 are the
(l/2)-differentials (4.1), and due to the fact that ΦΓ'Φ 2 is one-valued on ^ ,
they define the same spinor structure [α, β] on 9Ϊ. This structure, in turn, is
defined by the monodromy Φ? round the canonical basis of the cycles an, bn:

φ . _^ (_1)«η+1φ.( φ . _ . (_1)Ρη+1φ..

The numbers απ and βΛ determine the parity of the number of "twistors" of
the corresponding "bands" of the normal, and the parity of the theta-
characteristic [α, β] determines the class of immersion with respect to regular
homotopies.

The condition for the monodromy F to be trivial, given by (14.11),
represents 12(G —1) conditions on the set of parameters # , singling out in it a
discrete set, apparently.

Quite a lot of examples of minimal surfaces of higher genus in S3 have
been constructed [29], [32]. All of them have large groups of symmetries. In
particular, Lawson constructed a sequence of minimal embeddings ξ?ιι of any
genus g, including the Clifford torus as ξ ^ .

Kusner's conjecture. Willmore surfaces derived from ξ? ι 1 under the stereographic
projection a : S3 -» R3 are global minima of the functional W (17.1) among
surfaces of genus g.

It would be very interesting to obtain a systematic analytic description of at
least one of these minimal surfaces.
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APPENDIX

PAINLEVE PLANES OF CONSANT MEAN CURVATURE

Modern advances in the theory of integrable equations enable us to
construct a sequence of CMC planes, including the ones with an umbilical
point of arbitrary order. The metric of these planes depends only on \z\, and
equation (1.6) reduces to the third Painleve equation. The solutions of this
equation in which we are interested, together with the corresponding functions,
were described by Its and Novokshenov [27]. Their results enable us to
obtain the asymptotic description of the planes. The problem of constructing
planes of CMC was raised and discussed in a series of works [30], [40]. In
particular, in [40] it was proved that the immersions of planes described by us
in this appendix, with intrinsic symmetry with respect to rotations, are proper
ones, however, the detailed classification of the planes has not been obtained.

Let ζ = 0 be an umbilical point of order m (including the case m = 0,
when there are no umbilical points). We select the coordinate ζ so that

Q = zm.

The GPC equation

(A.I) Uzz+4( e U - l z r<r t t ) = °

in this case has smooth solutions, depending only on \z\.

Let us describe these solutions. After the change

(A.2)

(A.I) reduces to the elliptic sinh-Gordon equation

(A.3) vw- + sinh ν = 0.

The solutions, depending only on | w | :

(A.4) w = -Lpe*r

satisfy the third Painleve equation

(A.5) i;pp + — vp + sinh ν = 0.

In accordance with (A.2), (A.4) we are interested in the solutions u(p) with the
the following singularity:

By the conditon Q(dz)2 = zm(dz)2 the system of coordinates on the z-plane is
fixed to within the rotation ζ -* ze

2™'/(»»+2) -ĵ jg shows that the plane is
symmetric with respect to the rotation through the angle 2n/(m + 2).
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Let us give some necessary results from the theory of the third Painleve
equation, which were proved in [27]. (A.5) is the compatibility condition of
the system

Λ\Π
Λ — Λ τ ι

(A.7) A — ^r- σ3 2Λ—Τ~ σ ι + "W 0 c o s n ν σ 3 — sinh νσ2),

Ψ ) ip * Ο Ι "ΙΤΓ

p=j—Τ"σ«Λ f σ 4 Ψ ·
Let us define the following regions on the plane Λ:

Ω ^ = {Λ: — π < arg Λ < π, | Λ | > R > 0},

Ωί0) = {Λ: - π < arg Λ < π, 0 φ \ Λ | < R > 0},

i \ = {Λ: 0 < arg Λ < π, Λ ^ 0},

as well as the canonical solutions Ψ ^ , Ψ^0), Ψ+, fixed by their asymptotics in
these regions:

(A.8)

ψ(0) =

ίσ3/Λ},

ο ( 0 ) _ -s inh |\

The connection matrix

(A.9) Q =

does not depend on p. For real ο the matrices Q, B+,
following structure:

ι (\ P'

-\P\AP I,

+ ' l T i J * + - \ o \r ·

Ψ-,. have the

(A. 10)
Q = τ =

- I P I
0 (ί

Let us note that the asymptotics (A.8) fix uniquely the corresponding
solutions of the system (A.7). Henceforth, for us the solution

Ψ+ (Ρ, Λ)

will be central, because the following theorem is true.
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Theorem A.l. The matrix

(A.I 1) Φ (w, ϋ>,λ = e="V) =

w/iere 5 € SU(2) is an arbitrary constant matrix, is a solution of the equations

λ „;„ \ / VU> I

\ 2 4 /

belonging to the group SU(2). Formulae (1.11)

α CMC surface.

The proof is given by a straightforward calculation. The reduction

σ2Φσ2 = Φ

is deduced from the corresponding relation between the functions Φ+(ρ, Λ)

1-)1 Α-
j
Ψ+ (ρ, Λ) Τ* = Ζ?0σ2Ψ+ (ρ, (-1-)1 Α-ή σ

The last equality is a consequence of the fact that both its sides satisfy the
system (A.7) and the solution is uniquely fixed by the asymptotics (A.8).
Theorem 1.2 (including the modified matrices (3.2)) does not depend on the
choice of local variable on a Riemann surface, which proves (A.12).

The symmetry

(A. 13) Ψ+ (ρ, Λ) = Ψ+ (ρ, - Λ ) ,

which also follows from (A.7) and (A.8), shows that besides the symmetry
mentioned above with respect to the rotation through the angle 2n/(m + 2), the
surface is symmetric with respect to the reflection

β-»-π — β.

Thus, there are m + 2 planes of symmetry, intersecting along one axis. This
enables us to restrict our attention to constructing the fundamental domain

(A. 14) 0<β<π/2,

from which the whole surface is reconstructed with the help of reflections with
respect to planes of symmetry.

The solutions of the Painleve equation are parametrized by the values of
the monodromy data—the parameter/», where \p\ < 1. The asymptotics of
the solution as ρ -»• oo and as ρ -» 0 are expressed by means of the same p,
which establishes a connection between them [27].
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Theorem A.2. Let ρ be the monodromy data for the solution of (A.5). The
following asymptotics hold as ρ -• 0:

(A. 15) ν = r0 In ρ + s0 + Ο (pMM),

A = 23r</V./2r2 (-L + . M , £ = 2-3--./2e-s./2

and if moreover ρ2Λ -»• 0, then

(A. 16) , Λ) = ~ ο χ

where H^ = H^A'1) are Bessel functions [14] and 6 = \ - %.

In the book [27] there is a misprint in the sign of δ.

Theorem A.3. Let ρ be the monodromy data for the solution of (A.5). The
following asymptotics are true as ρ -* oo:

(A.17)

v = — sing + ο (ρ-1/ζ), ξ = ρ + · ^ ~ - φ0,

Φο = 4 " l n 2 — a r 8 Γ ("TfT) — a r g Ρ
3π

In the first quadrant Re ί ^ 0, Im / ^ 0 o/ the variable t = pA ί/iere are two
regions with different asymptotics Ψ + :

(1) 3)WKB = {i: | « — 4 | / p - v oo},

(2) = {*: |ί—4|<ρ

e 2

0(1» χ

) τ
χ exp |σ3 ( 1 γ in + -|- 1η ρ + s In 2 jj

f - .

ο z=r —-. -
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Here Γ(χ) and Ds{x) are the gamma-function and the function of a parabolic
cylinder [14].

Comparing (A.6) and (A. 15), we obtain

2m
(A.20) ro = — = «<0) + - ^ r l n -

m + 2 '

The purely imaginary part of the monodromy parameter is fixed:

Imp — s in- j 2 -.

For a fixed order of the umbilical point we get a one-parameter family of
surfaces, and the value of the metric at the midpoint is taken as a parameter.

The derivative Φ γ may be computed with the help of the first equation of
(A.7). The consequences of Theorem A.I are the following formulae:

(A.21)

where we should put

Λ =

The substitution of the asymptotics of Theorems A.2 and A.3 into these
expressions enables us to obtain the asymptotic description of the surface.

The matrix S in (A.ll) corresponds to the general rotation of the surface.
In order that the symmetry axis should coincide with the· third basis vector of
R3, let us choose S to be equal to

(A-22) S = -J=,

The centre of the surface ρ = 0.
Let us substitute the asymptotics (A. 15), (A. 16) into expresisons (A.21),

making use of the relation (A. 10) between different Ψ-functions

Then, direct but rather tiresome computations connected with the decomposition
of Bessel functions at zero (we need to take into consideration only the first
terms) give

(A.23)
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Asymptotics at infinity. The "foot": ρ ->• oo, ^/ρβ -• oo.

This is the domain where WKB-asymptotics (A. 18) holds. Taking into
account only the first term, we have

Similarly,

η = ρ cos β 4 - ^ In ( tan- |-) 1η (1 — ΙΡ | 2 ) .

This enables us to conclude that

(A.25) F = S - i ( - p S i D p - i | + s i n T i - | - — cos

F o = ο (ρ), <̂><P = ο (ρ), ίΌρ = ο (1).

The asymptotics (A.25) describes a cylinder with an axis whose direction is
given by the vector

The symmetry (A.25) of the surface shows that the curve β = π/2 lies on the
plane spanned by the basis vectors 1,3. In the first approximation it is a
straight line.

Asymptotics at infinity. Cone.
All the remaining domain is covered by the curves

(A.27) / ρ β = r = const.

We consider one such curve (A.27) with a fixed r. Let us show that to within
the first order this curve is mapped into a straight ray in Euclidean space.

The asymptotics (A. 17) leads to the next main term:
i p σ3 . ia I 0 e^

r + ^
To evaluate R we should make use of the asymptotics (A. 19), which holds in
(A.27). We can simplify the formulae a little. Along the curve (A.27)

ζ _ ^ rein/4.
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Bearing in mind that ζ -»• const, we obtain from (A. 19)

D ( / > ) [ ; π α » / 3 2 _ ' V a x

 D , ζ ) _ D ( ν ) ^ _ ? ί π / 4 \

•* = I . __ίττ/,* /• - rrz— -\ I X

X exp [σ3 ( - ~ In 2 + ^ + -if!-)] | ^ . ^ = e-naVM ( ̂  J P >

(A.28) P = f

X exp [σ,, (— -i- arg Γ (— s)—-^- arg ρ + ~ ^ ,

where Ζ?,(^) = ^Da(z).

In deducing (A.28) we used the identity [14]

Finally the immersion is described by the fomula

(A.29) F = - i^£- S-ip-t ^ ° + a *^PS + o(Yp).

In the first approximation this is a ray. As r varies from 0 to oo it covers
part of the cone, which generates all the cone with the help of reflections in
the planes of symmetry. The asymptotics (A.29) goes over into (A.24) as
r -» oo.

Theorem A.4. For any m e {0, IN} there is a one-parameter family of proper
immersions Tlm(so) of the CMC plane C Β z, possessing the following properties:

(1) The metric e"^z'z^ induced by this immersion depends only on \z\.
(2) The surface Hm(so) has m + 2 planes of symmetry, intersecting along one

axis I.
(3) The midpoint (z = 0) lies on I and is umbilical of order m (non-umbilical

ifm = 0).
(4) Asymptotically nm(so) « the cone (A.29).
(5) The surface n m ( i 0 ) has m + 2 "feet" (A.25), and their axes lie on planes

of symmetry.
(6) The value of the metric at the midpoint u(0) is taken as the parameter SQ.

It is easier to imagine the "fine" structure of these surfaces by using the
example with two "feet": m — 0. We wind the plane ζ into an infinite-
sheeted covering of the cylinder. Let y be the coordinate in R 3 along the axis
of the cylinder. We cut it by the orthogonal plane y = 0. We take the



Constant mean curvature surfaces and integrable equations 43

sheets — oo and + oo of the covering at the points of the plane y = 0 and

pull the covering along some straight line lying in the plane y = 0. Instead

of the initial circle in the section y = 0 we obtain a curve of cycloid type.

The greater y is, the less is the "splitting" of sheets of the initial covering, and

in the limit as y -»• oo we get a "foot". The immersion is a proper one. We

need only give to the constructed surface the form of the cone (A.29) to the

first order, and on this form we impose the described "fine" structure.
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