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1 Definition of a Riemann Surface and Basic Examples

Let ℛ be a two-real dimensional manifold and {U�}�∈A an open cover of ℛ, i. e.
∪�∈AU� = ℛ. A local parameter (local coordinate, coordinate chart) is a pair (U�, z�)
of U� with a homeomorphism z� : U� → V� to an open subset V� ⊂ ℂ. Two coordinate
charts (U�, z�) and (U�, z�) are called compatible if the mapping

f�,� = z� ∘ z−1
� : z�(U� ∩ U�)→ z�(U� ∩ U�),

which is called a transition function is holomorphic. The local parameter (U�, z�) will
be often identified with the mapping za if its domain is clear or irrelevant.

If all the local parameters {U�, z�}�∈A are compatible, they form a complex atlas A of
ℛ. Two complex atlases A = {U�, z�} and Ã = {Ũ�, z̃�} are compatible if A ∪ Ã is a
complex atlas. An equivalence class Σ of complex atlases is called a complex structure.
It can be identified with a maximal atlas A∗, which consists of all coordinate charts,
compatible with an atlas A ⊂ Σ.

Definition 1.1 A Riemann surface is a connected one-complex-dimensional analytic
manifold, that is, a two-real dimensional connected manifold ℛ with a complex structure
Σ on it.

When it is clear, which complex structure is considered we use the notation ℛ for the
Riemann surface.

Remark If {U, z} is a coordinate on ℛ then for every open set V ⊂ U and every
function f : ℂ→ ℂ, which is holomorphic and injective on z(V ), {V, f ∘z} is also a local
parameter on ℛ.

Remark The coordinate charts establish homeomorphisms of domains in ℛ with do-
mains in ℂ. This means, that locally the Riemann surface is just a domain in ℂ. But
for any point P ∈ ℛ there are many possible choices of these homeomorphisms. There-
fore one can associate to ℛ only the notions from the theory of analytic functions in ℂ,
which are invariant with respect to biholomorphic maps, i. e. for definition of which one
should not specify a local parameter. For example one can talk about an angle between
two smooth curves  and ̃ on ℛ, intersecting at some point P ∈ ℛ. This angle equals
to the one between the curves z() and z(̃), which lie in ℂ and intersect at the point
z(P ), where z is some local parameter at P . This definition is invariant with respect to
the choice of z.

Remark If (ℛ,Σ) is a Riemann surface, then the manifold ℛ is orientable. The
transition function f�,� written in terms of real coordinates (z = x+ iy)

(x�, y�)→ (x�, y�)

preserves orientation

dx� ∧ dy� =
i

2
dz� ∧ dz̄� =

i

2

∣∣∣∣dz�dz�

∣∣∣∣2dz� ∧ dz̄� =

∣∣∣∣dz�dz�

∣∣∣∣2dx� ∧ dy�.
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The simplest examples of Riemann surfaces are any domain (connected open subset)
U ⊂ ℂ in a complex plane, the complex plane ℂ itself and the extended complex plane
(or Riemann sphere) ℂ̂ = ℂℙ1 = ℂ ∪ {∞}. The complex structures on U and ℂ are
defined by single coordinate charts (U, id) and (ℂ, id). The extended complex plane is
the simplest compact Riemann surface. To define the complex structure on it we use
two charts (U1, z2), (U2, z2) with

U1 = ℂ, z1 = z,

U2 = (ℂ∖{0}) ∪ {∞}, z2 = 1/z.

The transition functions

f1,2 = z1 ∘ z−1
2 , f2,1 = z2 ∘ z−1

1 : ℂ∖{0} → ℂ∖{0}

are holomorphic
f1,2(z) = f2,1(z) = 1/z.

In large extend the beauty of the theory of Riemann surfaces is due to the fact that
Riemann surfaces can be described in many completely different ways. Interrelations
between these descriptions comprise an essential part of the theory. The basic examples
of Riemann surfaces we are going to discuss now are exactly these foundation stones the
whole theory is based on.

1.1 Non-singular Algebraic Curves

Definition 1.2 An algebraic curve C is a subset in ℂ2

C = {(�, �) ∈ ℂ2 ∣ P(�, �) = 0}, (1)

where P is an irreducible polynominal in � and �

P(�, �) =

N∑
i=0

M∑
j=0

pij�
i�j .

The curve C is called non-singular if

gradℂP∣P=0
=

(
∂P
∂�

,
∂P
∂�

)
∣P(�,�)=0

∕= 0. (2)

To introduce a complex structure on the non-singular curve (1, 2) one uses a complex
version of the implicit function theorem.

Theorem 1.1 Let P(�, �) be an analytic function of � and � in a neighbourhood of a
point (�0, �0) ∈ ℂ2 with P(�0, �0) = 0, and, in addition

∂P
∂�

(�0, �0) ∕= 0.
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Then in a neighbourhood of (�0, �0) the set

{(�, �) ∈ ℂ2 ∣ P(�, �) = 0}

is described as
{(�(�), �) ∣ � ∈ U},

where U ⊂ ℂ is a neighbourhood of �0 ∈ U and �(�) is an analytic function. The
derivative of the function �(�) is equal

d�

d�
= −∂P/∂�

∂P/∂�
.

The complex structure on C is introduced as follows: the variable � is taken to be a local
parameter in the neighbourhoods of the points where ∂P/∂� ∕= 0, and the variable � is
a local parameter near the points where ∂P/∂� ∕= 0. The holomorphic compatibility of
the introduced local parameters results from Theorem 1.1.

The surface C can be made a compact Riemann surface Ĉ by joining point(s)∞(1), . . . ,∞(N)

Ĉ = C ∪ {∞(1)} ∪ . . . ∪ {∞N}

at infinity �→∞, �→∞, and introducing proper local parameters at this(ese) point(s).
In oder to explain this compactification let us define Riemann surfaces with punctures.

Definition 1.3 Let ℛ be a Riemann surface such that there exists an open subset U∞

U (1)
∞ ∪ . . . ∪ U (N)

∞ = U∞ ⊂ ℛ

such that ℛ∖U∞ is compact and U
(n)
∞ are homeomorphic to punctured discs

zn : U (n)
∞ → D∖{0} = {z ∈ ℂ ∣ 0 < ∣z∣ < 1},

where homomorphisms zn are holomorphically compatible with the complex structure of
ℛ. Then ℛ is called a compact Riemann surface with punctures.

z1

∞(2)

∞(1)

z2

Figure 1: A compact Riemann surface with punctures.

Let us extend the homeomorphisms zn to D

zn : Û (n)
∞ = U (n)

∞ ∪∞(n) → D = {z ∣ ∣z∣ < 1}, (3)
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defining punctures ∞(n) by the condition zn(∞(n)) = 0, n = 1, . . . , N . A complex
atlas for a new Riemann surface

ℛ̂ = ℛ∪ {∞(1)} ∪ . . . ∪ {∞(n)}

is defined as a union of a complex atlas A of ℛ with the coordinate charts (3) compatible
with A due to Definition 1.3. We call ℛ̂ a compactification of ℛ.

Hyperelleptic Curves.

Let us consider the important special case of hyperelleptic curves 1

�2 =

N∏
j=1

(�− �j), N ≥ 3, �j ∈ ℂ. (4)

The curve is non-singular if all the points �j are different

�j ∕= �i, i, j = 1, . . . , N.

In this case the choice of local parameters can be additionally specified. Namely, in
the neighbourhood of the points (�0, �0) with �0 ∕= �j ∀j, the local parameter is the
homeomorphism

(�, �)→ �. (5)

In the neighbourhood of each point (0, �j) it is defined by the homeomorphism

(�, �)→
√
�− �j . (6)

Indeed, near (0, �i)

� =
√
�− �i

⎛⎝√√√⎷ N∏
j=1

(�i − �j) + o(1)

⎞⎠ , �→ �i,

and the local parameter
√
�− �j is equivalent to �.

The hyperelleptic curve (4) is a compact Riemann surface with a puncture (or punctures)
at � → ∞. To show this one should consider the cases of even N = 2g + 2 and odd
N = 2g + 1 separately. The formulas

m =
�

�g+1
, l =

1

�

describe a biholomorphic map (�, �) 7→ (m, l) of a neighbourhood of infinity

U∞ = {(�, �) ∈ C ∣ ∣�∣ > c > ∣�i∣, i = 1, . . . , N}

onto the punctured neighbourhood

V0 = {(m, l) ∈ C ′ ∣ 0 < ∣l∣ < c−1}
1When N = 3 or 4 the curve (4) is called elliptic
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of the point (m, l) = (0, 0) of the curve

m2 = l

2g+1∏
i=1

(1− l�i) (7)

for N = 2g + 1, or onto punctured neighbourhoods of the points (m, l) = (±1, 0) of the
curve

m2 =

2g+2∏
i=1

(1− l�i) (8)

for N = 2g+ 2. Formulas (5), (6) show that at the point (0, 0) of the curve (7) the local
parameter is

√
l and at the points (±1, 0) of the curve (8) the local parameters are l.

Finally, for odd N = 2g + 1 the curve (4) has one puncture ∞

P ≡ (�, �)→∞⇐⇒ �→∞,

and the local parameter in its neighbourhood is given by the homeomorphism

z∞ : (�, �)→ 1√
�
. (9)

For even N = 2g + 2 there are two punctures ∞± distinguished by the condition

P ≡ (�, �)→∞± ⇐⇒ �

�g+1
→ ±1, �→∞,

and the local parameters in the neighbourhood of both points are given by the homeo-
morphism

z∞± : (�, �)→ �−1. (10)

Theorem 1.2 The local parameters (5, 6, 9, 10) describe a compact Riemann surface

Ĉ = C ∪ {∞} if N is odd,

Ĉ = C ∪ {∞±} if N is even,

of the hyperelleptic curve (4).

Later on we consider basically compact Riemann surfaces and call Ĉ shortly the Riemann
surface of the curve C.

It turnes out that all compact Riemann surfaces can be described as compactifications
of algebraic curves.

1.2 Quotients under Group Actions

Definition 1.4 Let Δ be a domain2 in ℂ. A group G : Δ→ Δ of holomorphic transfor-
mations acts discontinously on Δ if for any P ∈ Δ there exists a neighbourhood V ∋ P
such that

gV ∩ V = ∅, ∀g ∈ G, g ∕= I. (11)

2Similarly one can consider action of groups of holomorphic transformations on ℂ̂.
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One can introduce the equivalence relation between the points of Δ :

P ∼ P ′ ⇔ ∃g ∈ G, P ′ = gP,

and the quotient space Δ/G of the equivalence classes.

Theorem 1.3 Δ/G is a Riemann surface.

Proof. Let us denote by
� : Δ→ Δ/G

the canonical projection, which associate to each point of Δ its equivalence class. We
define the factor topology on Δ/G: a subset U ⊂ Δ/G is called open if �−1(U) ⊂ Δ is
open. Both Δ and Δ/G are connected. Every finite point P ∈ Δ has a neighbourhood
V satisfying (11). Then U = �(V ) is open and �∣V : V → U is a homeomorphism. Its
inversion z : U → V ⊂ Δ ⊂ ℂ is a local parameter. One can cover Δ/G by domains
of this type. Let us consider two local parameters z : U → V and z̃ : U → Ṽ . The
transition function f = z̃ ∘ z : V → Ṽ satisfies

�(z) = �(f(z)).

For each point z ∈ V there is a group element g ∈ G such that

f(z) = g(z). (12)

Since f : V → Ṽ is a homeomorphism and G acts discontinuously, the group element
g ∈ G in (12) is the same for all z ∈ V . This proves that the transition functions are
holomorphic and ℛ is a Riemann surface.

Tori

Let us consider the case Δ = ℂ and the group G generated by two shifts

z → z + w, z → z + w′,

where w,w′ ∈ ℂ are two non-parallel vectors, Im w′/w ∕= 0. The group G is commutative
and consists of the elements

gn,m(z) = z + nw +mw′, n,m ∈ ℤ. (13)

The factor ℂ/G has a nice geometrical realization as the parallelogram

T = {z ∈ ℂ ∣ z = aw + bw′, a, b ∈ [0, 1)}.

There are no G-equivalent points in T and on the other hand every point in ℂ is equiv-
alent to some point in T . Since the edges of the parallelogram T are G-equivalent
z ∼ z +w, z ∼ z +w′, ℛ is a compact Riemann surface, which is topologically a torus.
We discuss this case in more detail in Section 6.

In frames of the uniformization theory it is proven that all compact Riemann surfaces
can be described as factors Δ/G.
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w0

w′ w + w′

Figure 2: A complex torus

1.3 Euclidean Polyhedral Surfaces as Riemann Surfaces

It is not difficult to build a Riemann surface glueing together pieces of the complex plane
ℂ.

Consider a finite set of disjoint Euclidean triangles Fi and identify their elements (vertices
and edges) is such a way that they comprise a compact oriented Euclidean polyhedral
surface. A polyheder in 3-dimensional Euclidean space is an example of such a surface.
A required identification of edges and vertices is shown in Fig. 3. It is characterized by
the following properties.

(i) If two triangles have common elements then these may be either a common vertex or
a common edge.

(ii) Every edge of the surface belongs exactly to two triangles.

(iii) Triangles with a common vertex P are successively glued along edges passing through
P (as in Fig. 3), i.e. the triangles with a common vertex P are arranged in a cyclic
sequence F1, F2, . . . , Fn such that each pair Fi, Fi+1 as well as Fn, F1 has a common edge
containing P .

(iv) All triangles can be oriented so that their orientations correspond.

In order to define a complex structure on an Euclidean polyhedral surface let us distin-
guish three kinds of points:

1. inner points of triangles,

2. inner points of edges,

3. vertices.

�2

�1

�n

Figure 3: Three kinds of points on an Euclidean polyhedral surface
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It is clear how to define local parameters for the points of the first and the second
kind. By an Euclidean isometry one can map the corresponding triangles (or pairs of
neighbouring triangles) into ℂ. This provides us with local parameters at the points of
the first and the second kind. Next let P be a vertex and Fi, . . . , Fn the sequence of
successive triangles with this vertex (see the point (iii) above). Denote by �i the angle
of Fi at P . Then define

 =
2�∑n
i=1 �i

.

Consider a suitably small ball neighbourhood of P, which is the union U r = ∪iF ri , where
F ri = {Q ∈ Fi ∣ ∣ Q − P ∣< r}. Each F ri is a sector with angle �i at P . We map it as
above into ℂ with P mapped to the origin and then apply z 7→ z , which produces a
sector with the angle �i. The mappings corresponding to different triangles Fi can be
adjusted to provide a homeomorphism of U r onto a disc in ℂ.

All transition functions of the constructed charts are holomorphic since they are com-
positions of maps of the form z 7→ az + b and z 7→ z (away from the origin).

Using the algebraic curve representation of compact Riemann surfaces it is not diffi-
cult to show that any compact Riemann surface can be recovered from some Euclidean
polyhedral surface [Bost].

1.4 Complex Structure Generated by Metric

There is a smooth version of the previous construction. Let (ℛ, g) be a two-real dimen-
sional orientable differential manifold with a metric g. In local coordinate (x, y) : U ⊂
ℛ → ℝ2 one has

g = a dx2 + 2b dxdy + c dy2, a > 0, c > 0, ac− b2 > 0. (14)

Definition 1.5 Two metrics g and g̃ are called conformally equivalent if they differ by
a function on ℛ

g ∼ g̃ ⇔ g = fg̃, f : ℛ → ℝ+. (15)

The relation (15) defines the classes of conformally equivalent metrics.

Remark The angles between tangent vectors are the same for conformally equivalent
metrics.

We show that there is one to one correspendence between the conformal equivalence
classes of metrics on an orientable two-manifold ℛ and the complex structures on ℛ. In
terms of the complex variable3 z = x+ iy one rewrites the metric as

g = Adz2 + 2Bdzdz̄ + Ādz̄2, A ∈ ℂ, B ∈ ℝ, B > ∣A∣, (16)

with
a = 2B +A+ Ā, b = i(A− Ā), c = 2B −A− Ā. (17)

3Note that the complex coordinate z is not compatible with the complex structure we will define on
ℛ with the help of g.
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Definition 1.6 A coordinate w : U → ℂ is called conformal if the metric in this coor-
dinate is of the form

g = e�dwdw̄, (18)

i.e. it is conformally equivalent to the standard metric of ℝ2 = ℂ

dwdw̄ = du2 + dv2, w = u+ iv.

Remark If F : U ⊂ ℝ2 → ℝ3 is an immersed surface in ℝ3 then the first fundamental
form < dF, dF > induces a metric on U . When the standard coordinate (x, y) of ℝ2 ⊃ U
is conformal, the parameter lines

F (x,Δm), F (Δn, y), x, y ∈ ℝ, n,m ∈ ℤ, Δ→ 0

comprise an infinitesimal square net on the surface. The problem of conformal coor-
dinates was studied already by Gauss, who proved their existence in the real-analytic
case.

We start with a simple

Theorem 1.4 Every compact Riemann surface admits a conformal Riemannian metric.

Proof. Each point P ∈ ℛ possesses a local parameter zP : UP → DP ⊂ ℂ, where DP is
a small open disc. Since ℛ is compact there exists a finite covering ∪ni=1UPi = ℛ. For
each i choose a smooth function mi : DPi → ℝ with

mi > 0 on Di, mi = 0 on ℂ ∖Di.

mi(zPi)dzPi dz̄Pi is a conformal metric on UPi . The sum of these metrics over i = 1, . . . , n
yields a conformal metric on ℛ.

Let us show how one finds conformal coordinates. The metric (16) can be written as
follows (we suppose A ∕= 0 )

g = s(dz + �dz̄)(dz̄ + �̄dz), s > 0, (19)

where

� =
Ā

2B
(1 + ∣�∣2), s =

2B

1 + ∣�∣2
.

Here ∣�∣ is a solution of the quadratic equation

∣�∣+ 1

∣�∣
=

2B

∣A∣
,

which can be chosen ∣�∣ < 1

∣�∣ = 1

∣A∣
(B −

√
B2 − ∣A∣2). (20)
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Comparing (19) and (18) we get

dw = �(dz + �dz̄)

or
dw = �(dz̄ + �̄dz).

In the first case the map w(z, z̄) satisfies the equation

wz̄ = �wz (21)

and preserves the orientation w : U ⊂ ℂ → V ⊂ ℂ since ∣�∣ < 1 : for the map z → w
written in terms of the real coordinates

z = x+ iy, w = u+ iv

one has
du ∧ dv = ∣wz∣2(1− ∣�∣2)dx ∧ dy.

In the second case w : U → V inverses the orientation.

Definition 1.7 Equation (21) is called the Beltrami equation and �(z, z̄) is called the
Beltrami coefficient.

Let us postpone for a moment the discussion of the proof of existence of solutions to
the Beltrami equation and let us assume that this equation can be solved in a small
neighbourhood of any point of ℛ.

Theorem 1.5 Let ℛ be a two-dimensional orientable manifold with a metric g and an
oriented atlas ((x�, y�) : U� → ℝ2)�∈A on ℛ. Let (x, y) : U ⊂ ℛ → ℝ2 be one of
these coordinate charts with a point P ∈ U, z = x+ iy, �(z, z̄) - the Beltrami coefficient
(20) and w�(z, z̄) be a solution to the Beltrami equation (21) in a neighbourhood V� ⊂
V = z(U) with P ∈ U� = z−1(V�). Then the coordinate w� is conformal and the atlas
(w� : U� → ℂ)�∈B defines a complex structure on ℛ.

Proof. To prove the holomorphicity of the transition function let us consider two local
parameters w : U → ℂ, w̃ : Ũ → ℂ with a non-empty intersection U ∩ Ũ ∕= ∅. Both
coordinates are conformal

g = e�dwdw̄ = e�̃dw̃d ¯̃w,

which happens in one of the two cases

∂w̃

∂w̄
= 0 or

∂w̃

∂w
= 0 (22)

only. The transition function w̃(w) is holomorphic and not antiholomorphic since the
map w → w̃ preserves orientation.

Repearting the arguments of the proof of Theorem 1.5 one immeadeately observes that
conformaly equivalent metrics generate the same complex structure. Finally, we obtain
the following
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Theorem 1.6 Conformal equivalence classes of metrics on an orientable two-manifold
ℛ are in one to one correspondence with the complex structures on ℛ.

On Solution to the Beltrami Equation

For the real-analytic case � ∈ C! the existence of the solution to the Beltrami equation
was known already to Gauss. It can be proven using the Cauchy-Kowalewski theorem.

Theorem 1.7 (Cauchy-Kowalewski)
Let

∂mui
∂xm0

= Fi(x0, x, u,
∂m0+...+mn

∂xm0
0 . . . ∂xmnn

u),

i = 1, . . . , k, x ∈ ℝn,
n∑
j=0

mj ≤ m, m0 < m, m ≥ 1,

be a system of k partial differential equations for k functions u1(x, x0), . . . , uk(x, x0).
The Cauchy problem

∂jui

∂xj0

∣∣∣∣
�

= �ij(x), i = 1, . . . , k; j = 0, . . . ,m− 1,

where � = {(x, x0), x0 = 0, x ∈ Ω0, Ω0 is a domain in ℝn} with real-analytic data
(all Fi, �ij are real-analytic functions of all their arguments), has a unique real-analytic
solution u(x, x0) in some domain Ω ⊂ ℝn+1 of variables (x, x0) with Ω0 ⊂ Ω.

In terms of real variables

z = x+ iy, w = u+ iv, � = p+ iq

the Beltrami equation reads as follows:(
u

v

)
y

=
1

(1 + p)2 + q2

(
2q p2 + q2 − 1

1− p2 − q2 2q

)(
u

v

)
x

. (23)

If � is real-analytic and ∣�∣ < 1 all the coefficients in (23) are real-analytic, which implies
the existence of a real-analytic solution to the equation.

Solutions to the Beltrami equation exist in much more general case but the proof is much
more involved.

Recall that a function is of Hölder class of order � (0 < � < 1) on W , f ∈ C�(W ) if
there exists a constant K such that

∣f(p)− f(q)∣ ≤ K∣p− q∣�, ∀p, q ∈W.

If all mixed n-th order derivatives of f exist and are C� then f ∈ Cn+�(W ).

Theorem 1.8 Let z : U → V ⊂ ℂ be a coordinate chart at some point P ∈ U and � ∈
C�(V ) be the Beltrami coefficient. There is a solution w(z, z̄) to the Beltrami equation
of the class w ∈ C�+1(W ) in some neighbourhood W of the point z(P ) ∈W ⊂ V .
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Sketch of the proof of Theorem 1.8.

The Beltrami equation can be rewritten as an integral equation using

Lemma 1.9 (∂̄-Lemma)
Given g ∈ C�(V ), the formula

f(z) =
1

2�i

∫
V

g(�)

� − z
d� ∧ d�̄

defines a C�+1(V ) solution to the equation

fz̄(z) = g(z).

In case g ∈ C∞ or g ∈ C1 this lemma is a standard result in complex analysis. For the
proof in the case formulated above see [Bers] and [Spivak], v.4.

The ∂̄-Lemma implies that the solution of

w(z) = ℎ(z) +
1

2�i

∫
V

�(�)w�(�)

� − z
d� ∧ d�̄, (24)

where ℎ is holomorph, satisfies the Beltrami equation. The proof of the existence of
the solution to the integral equation (24) is standard: it is solved by iterations. Let us
rewrite the equation to be solved as

w = Tw, (25)

where Tw is the right-hand side of (24). Let us suppose that there complete metric
space ℋ such that

i) Tℋ ⊂ ℋ

ii) T is a contraction in ℋ, i. e. ∥Tw − Tw′∥ < c∥w − w′∥ for any w,w′ ∈ ℋ with
some c < 1.

Then there exists a unique solution w∗ ∈ ℋ of (25) and this solution can be obtained
from any starting point w0 ∈ ℋ by iteration

w∗ = lim
n→∞

Tnw0.

For the choice of the function space ℋ and details of the proof see [Bers] and [Spivak],
v.4.

The theorem above holds true also after replacing �→ �+ n, n ∈ ℕ.
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2 Holomorphic Mappings

Definition 2.1 A mapping
f : M → N

between Riemann surfaces is called holomorphic (or analytic) if for every local parameter
(U, z) on M and every local parameter (V,w) on N with U ∩ f−1(V ) ∕= ∅, the mapping

w ∘ f ∘ z−1 : z(U ∩ f−1(V ))→ w(V )

is holomorphic.

A holomorphic mapping into ℂ is called a holomorphic function, a holomorphic mapping
into ℂ̂ is called a meromorphic function.

The following lemma characterizes a local behaviour of holomorphic mappings.

Lemma 2.1 Let f : M → N be a holomorphic mapping. Then for any a ∈ M there
exist local parameters (U, z), (V,w) such that a ∈ U, f(a) ∈ V and F = w ∘ f ∘ z−1 :
z(U)→ w(V ) equals

F (z) = zk, k ∈ ℕ. (26)

Proof Let us normalize local parameters z̃ near a and w near f(a) to vanish at these
points: z̃(a) = w(f(a)) = 0. Since F (z̃) is holomorphic and F (0) = 0 it can be rep-
resenred as F (z̃) = z̃kg(z̃), where g(z̃) is holomorphic and g(0) ∕= 0. The map z̃ → z
with

z = z̃ℎ(z̃), ℎk(z̃) = g(z̃)

is biholomorphic and in terms of the local parameter z the mapping w ∘ f ∘ z−1 is given
by (26).

Corollary 2.2 Let f : M → N be a non-constant holomorphic mapping, then f is open,
i.e. an image of any open set is open.

Corollary 2.3 Let f : M → N be a non-constant holomorphic mapping and M com-
pact. Then f is surjective f(M) = N and N is also compact.

Proof The previous corollary implies that f(M) is open. On the other hand, f(M)
is compact since it is a continuous image of a compact set. f(M) is open, closed and
non-empty, therefore f(M) = N and N compact.

Theorem 2.4 (Liouville)
There are no non-constant holomorphic functions on compact Riemann surfaces.
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Proof An existence of a non-constant holomorphic mapping f : M → ℂ contradicts to
the previous corollary since ℂ is not compact.

Non-constant holomorphic mappings of Riemann surfaces f : M → N are discrete: for
any point P ∈ N the set SP = f−1(P ) is discrete, i.e. for any point a ∈ M there
is a neighbourhood V ⊂ M intersecting with SP in at most one point, ∣V ∩ SP ∣ ≤ 1.
Non-discreteness of S for a holomorphic mapping would imply the existence of a limiting
point in SP and finally f = const, f : M → P ∈ N. Non-constant holomorphic mappings
of Riemann surfaces are also called holomorphic coverings.

Definition 2.2 Let f : M → N be a holomorphic covering. A point P ∈ M is called a
branch point of f if it has no neighbourhood V ∋ P such that f

∣∣
V

is injective. A covering
without branch points is called unramified (ramified or branched covering in the opposite
case).4

The number k ∈ ℕ in Lemma 2.1 can be described in topological terms. There exist
neighbourhoods U ∋ a, V ∋ f(a) such that for any Q ∈ V ∖{f(a)} the set f−1(Q) ∩ U
consists of k points. One says that f has the multiplicity k at a. Lemma 2.1 allows us to
characterize the branch points of a holomorphic covering f : M → N as the points with
the multiplicity k > 1. Equivalently, P is a branch point of the covering f : M → N if

∂(w ∘ f ∘ z−1)

∂z

∣∣∣∣
z(P )

= 0, (27)

where z and w are local parameters at P and f(P ) respectively (due to the chain rule this
condition is independent of the choice of the local parameters). The number bf (P ) = k−1
is called the branch number of f at P ∈ M. The next lemma also immediately follows
from Lemma 2.1.

Lemma 2.5 Let f : M → N be a holomorphic covering. Then the set of branch points

B = {P ∈M ∣ bf (P ) > 0}

is discrete. If M is compact, then B is finite.

Proof Let P ∈ M . Then exists U ∋ P , such that F (z) := (w ∘ f ∘ z−1)(z) = zk on U ,
where k = bf + 1. Since the map zk is locally injective for all z ∕= 0, the point P is the
only possible branch point in U .

Now, if you suppose B to be infinite, this contradicts the discreteness of B, because an
infinite subset in a compact set M has a limiting point P ∈M and therefore there would
be infinitely many points with bf > 0 in any neighbourhood of P .

4Note that there are various definitions of a covering of manifolds used in the literature (see for
example [Bers, Jost, Beardon]). In particular often the term ”covering” is used for unramified coverings
of our definition. Ramified coverings are important in the theory of Riemann surfaces.
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b = 2

b = 1
b = 1

N

f

M

Figure 4: Covering

Theorem 2.6 Let f : M → N be a non-constant holomorphic mapping between two
compact Riemann surfaces. Then there exists m ∈ ℕ such that every Q ∈ N is assumed
by f precisely m times - counting multiplicities; that is for all Q ∈ N∑

P∈f−1(Q)

(bf (P ) + 1) = m. (28)

Proof The set of branch points B is finite, therefore its projection A = f(B) is also
finite. Any two points Q1, Q2 ∈ N∖A can be connected by a curve l ⊂ N∖A. Since
f−1(l) ∩ B = ∅, the map f is a homeomorphism near each component of f−1(l), and
f−1(l) consists of m non-intersecting curves l1, . . . , lm (m is finite, otherwise the set
f−1(Q1) has a limiting point and f is constant). This shows that the number of preimages
for any points in N∖A is the same.

Generally (see Fig. 4), for a point Q ∈ N there are n preimages P1, . . . , Pn with f(Pi) =
Q and the corresponding branch numbers b(Pi). These points have non-intersecting
neighbourhoods U1, . . . , Un, Pi ∈ Ui, �(Ui) = U ∀i, Ui ∩ Uj = ∅ such that for any
Q̃ ∈ U∖{Q} there are exactly b(Pi) + 1 points of f−1(Q̃) lying in Ui. Since Q̃ ∈ N∖A
the previous consideration implies (28).

Definition 2.3 The number m above is called the degree of f . The covering f : M → N
is called m-sheeted.

Applying Theorem 2.6 to holomorphic mappings f : ℛ → ℂ̂ we get

Corollary 2.7 A non-constant meromorphic function on a compact Riemann surface
assumes every its value in ℂ̂ m times, where m is the number of its poles (counting
multiplicities).

Remark A single non-constant meromorphic function f : ℛ → ℂ̂ completely determines
the complex structure of the Riemann surface. A local parameter vanishing at P0 ∈ ℛ
is given by

(f(P )− f(P0))1/k(P0) for f(P0) ∕=∞,
where k(P0) = bf (P0) + 1. For f(P0) = ∞ one uses the local coordinate 1/z for a

neighbourhood of ∞ in ℂ̂, and a local parameter is given by

(f(P ))−1/k(P0) for f(P0) =∞.
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0

Figure 5: Riemann surface of
√
�

2.1 Algebraic curves as coverings

Let C be a non-singular algebraic curve (1) and Ĉ its compatification. The mapping

(�, �)→ � (29)

defines a holomorphic covering Ĉ → ℂ̂. If N is the degree of the polynomial P(�, �) in
�

P(�, �) = �NpN (�) + �N−1pN−1(�) + . . .+ p0(�),

where all pi(�) are polynomials, then � : Ĉ → ℂ̂ is an N -sheeted covering.

The points with ∂P/∂� = 0 are the branch points of the covering � : C → ℂ. Indeed,
at these points ∂P/∂� ∕= 0, and � is a local parameter. The derivative of � with respect
to the local parameter vanishes

∂�

∂�
= −∂P/∂�

∂P/∂�
= 0,

which characterizes (27) the branch points of the covering (29). In the same way C
covers (�, �) → � the complex plane of �. The branch points of this covering are the
points with ∂P/∂� = 0.

Hyperelliptic curves

Considering the hyperelliptic case let us remind a conventional description of the Rie-
mann surface of the function � =

√
� from the basic course of complex analysis. One

imagines oneself two copies of the complex plane ℂ with a cut [0,∞] glued together cross-
wise along this cut (see Fig. 5). The image in Fig. 5 is in one to one correspondence
with the points of the curve

C = {(�, �) ∈ ℂ2 ∣ �2 = �},

and the point � = 0 gives an idea of a branch point.

The compactification Ĉ of the hyperelliptic curve

C = {(�, �) ∈ ℂ2 ∣ �2 =
N∏
i=1

(�− �i)} (30)
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ℂ̂ ℂ̂

Figure 6: Topological image of a hyperelliptic surface

�6
�1

�2

�5

�4
�3

Figure 7: Hyperelliptic surface C as a two-sheeted cover. The parts of the curves on C
that lie on the second sheet are indicated by dotted lines.

is a two sheeted covering of the extended complex plane � : Ĉ → ℂ̂. The branch points
of this covering are

(0, �i), i = 1, . . . , N and ∞ for N = 2g + 1,

(0, �i), i = 1, . . . , N for N = 2g + 2,

with the branch numbers b� = 1 at these points. Only the branching at � =∞ possibly
needs some clarification. The local parameter at ∞ ∈ ℂ̂ is 1/�, whereas the local
parameter at the point ∞ ∈ Ĉ of the curve Ĉ with N = 2g + 1 is 1/

√
� due to (9). In

these coordinates the covering mapping reads as (compare with (26))

1

�
=

(
1√
�

)2

,

which shows that b�(∞) = 1.

One can imagine oneself the Riemann surface Ĉ with N = 2g+2 as two Riemann spheres
with the cuts

[�1, �2], [�3, �4], . . . , [�2g+1, �2g+2]

glued together crosswise along the cuts. Fig. 6 presents a topological image of this
Riemann surface. Later on we will use the image shown in Fig. 7, where we see the
Riemann surface ”from above” or ”the first” sheet on the covering � : C → ℂ and should
add the points at infinity to this image. In the case N = 2g + 1 one should move the
branch point �2g+2 to infinity.

The hyperelliptic curves obey a holomorphic involution

ℎ : (�, �)→ (−�, �), (31)
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Figure 8: Two equivalent images of a hyperelliptic Riemann surface

which interchanges the sheets of the covering � : Ĉ → ℂ̂ and is called hyperelliptic. The
branch points of the covering are the fixed points of ℎ.

Remark The cuts in Fig. 7 are conventional and belong to the image shown in Fig. 7
and not to the hyperelliptic Riemann surface itself, which is determined by its branch
points. In particular, the images shown in Fig.8 correspond to the same Riemann surface
and to the same covering (�, �)→ �.

2.2 Quotients of Riemann Surfaces as Coverings

In Section 1.2 we defined the complex structure on the factor Δ/G, where Δ is a domain
in ℂ, so that the canonical projection

� : Δ→ Δ/G

is holomorphic. This construction can be also applied to Riemann surfaces.

Theorem 2.8 Let ℛ be a (compact) Riemann surface and G a finite group of its holo-
morphic automorphisms5 of order ordG. Then ℛ/G is a Riemann surface with the
complex structure determined by the condition that the canonical projection

� : ℛ → ℛ/G

is holomorphic. This is an ordG-sheeted covering, ramified at fixed points of G.

Proof The consideration for the case when P ∈ ℛ is not a fixed point of G (there are
finitely many fixed points of G) is the same as for Δ/G above. The canonical projection
� defines an ordG-sheeted covering unramified at these points. Let P0 be a fixed point
and denote by

GP0 = {g ∈ G ∣ gP0 = P0}

the stabilizer of P0. It is always possible to choose a neighborhood U of P0 with no
other fixed point than P0 in U , which is invariant with respect to all elements of GP0

and such that U ∩ gU = ∅ for all g ∈ G ∖ GP0 . Let us normalize the local parameter z
on U by z(P0) = 0. The local parameter w in �(U), which is ordGP0-sheetedly covered
by U is defined by the product of the values of the local parameter z at all equivalent
points lying in U . In terms of the local parameter z all the elements of the stabilizer
are represented by the functions g̃ = z ∘ g ∘ z−1 : z(U) → z(U), which vanish at z = 0.

5We will see later that this group is always finite if the genus ≥ 2.
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Since g̃(z) are also invertible they can be represented as g̃(z) = zℎg(z) with ℎg(0) ∕= 0.
Finally the w − z coordinate charts representation of �

w ∘ � ∘ z−1 : z → zordGP0
∏

g∈GP0

ℎg(z)

shows that the branch number of P0 is ordGP0 .

The compact Riemann surface Ĉ of the hyperelliptic curve

�2 =

2N∏
n=1

(�2 − �2
n), �2

i ∕= �2
j , �k ∕= 0 (32)

has the following group of holomorphic automorphisms

ℎ : (�, �)→ (−�, �)

i1 : (�, �)→ (�,−�)

i2 = ℎi1 : (�, �)→ (−�,−�).

The hyperelliptic involution ℎ interchanges the sheets of the covering � : Ĉ → ℂ̂, there-
fore the factor Ĉ/ℎ is the Riemann sphere. The covering

Ĉ → Ĉ/ℎ = ℂ̂

is ramified at all the points � = ±�n.

The involution i1 has four fixed points on Ĉ: two points with � = 0 and two points with
� =∞. The covering

Ĉ → Ĉ1 = Ĉ/i1 (33)

is ramified at these points. The mapping (33) is given by

(�, �)→ (�,Λ), Λ = �2,

and Ĉ1 is the Riemann surface of the curve

�2 =
2N∏
n=1

(Λ− �2
n).

The involution i2 has no fixed points. The covering

Ĉ → Ĉ2 = Ĉ/i2 (34)

is unramified. The mapping (34) is given by

(�, �)→ (M,Λ), M = ��, Λ = �2,

and Ĉ2 is the Riemann surface of the curve

M2 = Λ

2N∏
n=1

(Λ− �2
n).
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3 Topology of Riemann Surfaces

3.1 Spheres with Handles

We have seen in Section 1 that any Riemann surface is a two-real-dimensional orientable
smooth manifold. In this section we present basic facts about topology of these mani-
folds focusing on the compact case. We start with an intuitively natural fundamental
classification theorem and comment its proof later on.

Theorem 3.1 (and Definition) Any compact Riemann surface is homeomorphic to
a sphere with handles 6. The number g ∈ ℕ of handles is called the genus of ℛ. Two
manifolds with different genera are not homeomorphic.

b2

b1

a2

a1

Figure 9: Sphere with 2 handles

The genus of the compactification Ĉ of the hyperelliptic curve (30) with N = 2g + 1 or
N = 2g + 2 is equal to g.

For many purposes it is convenient to use planar images of spheres with handles.

Proposition 3.2 Let Πg be an extended plane7 with 2g holes bounded by the non-
intersecting curves

1, 
′
1, . . . , g, 

′
g. (35)

and the curves i ≈ ′i, i = 1, . . . , g are topologically identified in such a way that the
orientations of these curves with respect to Πg are opposite (see Fig. 10). Then Πg is
homeomorphic to a sphere with g handles.

1

g ′g

′1

Πg

Figure 10: Planar image of a sphere with g handles

6By a sphere with handles we mean a topological manifold homeomorphic to a sphere with handles
in Euclidean 3-space.

7By an extended plane we mean ℝ2 ∪ {∞}, which is homeomorphic to S2.
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To prove this proposition one should cut up all the handles of a sphere with g handles.

A normalized simply-connected image of a sphere with g handles is described by the
following proposition.

Proposition 3.3 Let Fg be a 4g-gon with the edges

a1, b1, a
′
1, b
′
1, . . . , ag, bg, a

′
g, b
′
g, (36)

listed in the order of traversing the boundary of Fg and the curves

ai ≈ a′i, bi ≈ b′i, i = 1, . . . , g

are topologically identified in such a way that the orientations of the edges ai and a′i as
well as bi and b′i with respect to Fg are opposite (see Fig. 11). Then Fg is homeomorphic
to a sphere with g handles. The sphere without handles (g = 0) is homeomorphic to the
2-gon with the edges

a, a′, (37)

identified as above.

b′1

b1

b′g

a′1

a1

a′g

ag

Fg
bg

Figure 11: Simply-connected image of a sphere with g handles

Proof is given in Figs. 12, 13. One choice of closed curves a1, b1, . . . , ag, bg on a sphere
with handles is shown in Fig. 9.

a

b
≃ ≃b

a

a′

b′
a

b′

b

Figure 12: Gluing a torus

Let us consider a triangulation T of ℛ, i.e. a set {Ti} of topological triangles on ℛ,
which cover ℛ

∪Ti = ℛ
and the intersection Ti∩Tj for any Ti, Tj is either empty or consists of one common edge
or of one common vertex (compare with Section 1.3). Obviously, compact Riemann
surfaces are triangularizable by finite triangulations8.

8Due to Rado’s theorem (see for example [AlforsSario]) any Riemann surface is triangularizable.
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∼=∼= ∼=
a

l
b

a′

b′

l

a

a′

b alb′

b

a

b

Figure 13: Gluing a handle

Definition 3.1 Let T be a triangulation of a compact two-real dimensional manifold ℛ
and F be the number of triangles, E - the number of edges, V - the number of vertices
of T . The number

� = F − E + V (38)

is called the Euler characteristics of ℛ.

Proposition 3.4 The Euler characteristic �(ℛ) of a compact Riemann surface9 ℛ is
independent of the triangulation of ℛ.

Proof. Introduce a conformal metric eu dzdz̄ on a Riemann surface (Theorem 1.4). The
Gauss–Bonnet theorem provides us with the following formula for the Euler characteristic

�(ℛ) =
1

2�

∫
ℛ
K, (39)

where
K = −2uzz̄e

−u

is the curvature of the metric. The right hand side in (39) is independent of the triangu-
lation, the left hand side is independent of the metric we introduced on ℛ. This proves
that the Euler characteristics is a topological invariant of ℛ.

Corollary 3.5 The Euler characteristics �(ℛ) of a compact Riemann surface ℛ of
genus g is equal

�(ℛ) = 2− 2g. (40)

For the proof of this corollary it is convenient to consider the simply-connected model
Fg of Proposition 3.3.

Sketch of the proof of Theorem 3.1. Let ℛ be a compact Riemann surface and T a
triangulation of ℛ oriented in accordance with the orientation of ℛ. Each triangle Ti
can be mapped onto an Euclidean triangle. Successively mapping neighboring triangles
we finally obtain a n+ 2-gon, where n is the number of triangles in T . Since each side of
this polygon is identified with precisely one other side, the polygon has an even number

9The statement of the Proposition holds true also for general two-real dimensional manifolds. The
proof is combinatorial.
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of edges. Let us label the edges of this polygon, labelling one of the identified edges
by c and the other by c′. We call the word obtained by writing the letters in order
of traversing the boundary the symbol of the polygon. By cutting up the polygon and
pasting it after that in another way one can simplify the symbol. The simplification
to the normal form (35) (g > 0) or (36) (g = 0) can be described explicitly. All the
details of this process can be found for example in [Springer, Bers]. We see that ℛ is
homeomorphic to Fg with some g. In its turn, due to Proposition 3.3 Fg is obviously
homeomorphic to a sphere with g handles.

Directly from Definition 3.1 one gets that the Euler characteristics of two homeomorphic
manifolds coincide. This implies that F̃g̃ and Fg are homeomorphic if and only if g = g̃,
which completes the proof.

Theorem 3.6 (Riemann-Hurwitz)
Let f : ℛ̂ → ℛ be an N -sheeted covering of compact Riemann surfaces and ℛ is of genus
g. Then the genus ĝ of ℛ̂ is given by

ĝ = N(g − 1) + 1 +
b

2
, (41)

where
b =

∑
P∈ℛ̂

bf (P ) (42)

is the total branching number.

Proof As it was shown in Lemma 2.5 the set B = {P ∈ ℛ̂ ∣ bf (P ) > 0} is finite. We
triangulate ℛ so that every point of A = f(B) ⊂ ℛ is a vertex of the triangulation.
Let us assume that the triangulation has F faces, E edges and V vertices. Then the
induced triangulation lifted to ℛ̂ via the mapping f has NF faces, NE edges and NV −b
vertices, where b is given by (42). For the Euler characteristics of ℛ̂ and ℛ this implies

�(ℛ̂) = N�(ℛ)− b,

which is equivalent to (41) because of (38).

3.2 Fundamental group

Let P and Q be two points on ℛ and PQ a curve, i.e. a continuous map  : [0, 1]→ ℛ,
connecting them PQ(0) = P, PQ(1) = Q.

Definition 3.2 Two curves 1
PQ, 

2
PQ on ℛ with the initial point P and the termi-

nal point Q are called homotopic if they can be continuously deformed one to another,
i.e. provided there is a continuous map  : [0, 1] × [0, 1] → ℛ such that (t, 0) =
1
PQ(t), (t, 1) = 2

PQ(t), (0, �) = P, (1, �) = Q. The set of homotopic curves forms
a homotopic class, which we denote by ΓPQ = [PQ].
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If the terminal point of 1 coincides with the initial point of 2 the curves can be
multiplied:

1 ⋅ 2(t) =

{
1(2t) 0 ≤ t ≤ 1

2
2(2t− 1) 1

2 ≤ t ≤ 1.

This multiplication is well-defined also for the corresponding homotopic classes

Γ1 ⋅ Γ2 = [1 ⋅ 2].

Any two closed curves through P can be multiplied. The set of homotopic classes of
these curves forms a group �1(ℛ, P ) with the multiplication defined above. The curves,
which can be contracted to a point correspond to the identity element of the group.
It is easy to see that the groups �1(ℛ, P ) and �1(ℛ, Q) based at different points are
isomorphic as groups. Considering this group one can omit the second argument in the
notation

�1(ℛ, P ) ≈ �1(ℛ, Q) ≈ �1(ℛ).

Definition 3.3 The group �1(ℛ) is called the fundamental group of ℛ.

Examples

1. Sphere with N holes

D1

2
D2DN

N

1

Figure 14: Fundamental group of a sphere with N holes

ℛ = S ∖ {
∪N
n=1Dn}.

The fundamental group is generated by the homotopic classes of the closed curves
1, . . . , N each going around one of the holes (Fig 14). The curve 12 . . . N can be
contracted to a point, which implies the relation

Γ1Γ2 . . .ΓN = 1 (43)

in �1(S ∖ {
∪N
n=1Dn}).

2. Compact Riemann surface of genus g.



3 TOPOLOGY OF RIEMANN SURFACES 27

a1

b1

a−1
1

b−1
1

ag

bg

b−1
g

a−1
g

Figure 15: Fundamental group of a compact surface of genus g

It is convenient to consider the 4g-gon model Fg (Fig. 15). The curves a1, b1, . . . , ag, bg
are closed on ℛ. Their homotopic classes, which we denote by A1, B1, . . . , Ag, Bg gener-
ate �1(ℛ).

The curve
a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g

comprises the oriented boundary of Fg. This implies the relation

A1B1A
−1
1 B−1

1 . . . AgBgA
−1
g B−1

g = 1 (44)

in the fundamental group. There are no other independent relations. Indeed, such a
relation would mean that some product p of the curves a1, . . . , bg can be contracted to a
point. Since all the points of ℛ are equivalent this point can be chosen inside Fg. This
proves that [p] is a multiple of (44).

3.3 First Homology Group of Riemann surfaces

Consider a Riemann surface ℛ with an oriented triangulation T . Formal sums of points∑
niPi, oriented edges i,

 =
∑

nii ∈ C1

and oriented triangles Di,

D =
∑

niDi ∈ C2

with integer coefficients ni ∈ ℤ are called (simplicial) 0-chains, 1-chains and 2-chains
respectively. We will denote these sets by C0, C1 and C2. Define by −i (resp. −Di)
the curve i (resp. the triangle Di) with opposite orientation. It is clear that Ci form
abelian groups under addition.

Denote by (P1, P2) the oriented edge from P1 to P2 and by D0 = (P1, P2, P3) the ori-
ented triangle bounded by the oriented edges (P1, P2), (P2, P3) and (P3, P1). Define the
boundary operator � on the edge and triangle by

�(P1, P2) = P2 − P1, �D0 = (P1, P2) + (P2, P3) + (P3, P1).

The boundary operator can be extended to whole C1 and C2 by linearity �D =
∑
ki�Di,

defining the group homomorphisms � : C1 → C0, � : C2 → C1.
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C1 contains two important subgroups - of cycles and of boundaries. A 1-chain  with
� = 0 is called a cycle, a 1-chain  = �D is called a boundary. We denote these
subgroups by

Z = { ∈ C1 ∣ � = 0}, B = �C2.

Due to �2 = 0 every boundary is a cycle and we have B ⊂ Z ⊂ C1.

One can introduce an equivalence relation between elements of C1. Two 1-chains are
called homologous if their difference is a boundary:

1 ∼ 2, 1, 2 ∈ C1 ⇔ 1 − 2 ∈ B, i.e. ∃D ∈ C2 : �D = 1 − 2.

Definition 3.4 The factorgroup

H1(ℛ,ℤ) = Z/B

is called the first homology group of ℛ.

All the groups we consider are abelian and the elements of H1(ℛ,ℤ) can be described
as equivalence classes10

[] ∈ {1− cycles}
{1− dimensional boundaries}

.

Any closed oriented continuous curve ̃ (i.e. periodic continuous map ̃ : [0, 1] → ℛ)
can be deformed homotopically into a 1-cycle in the triangulation T . To show this
one should consider the triangles of T close to ̃ and construct the 1-cycle using the
edges of their boundaries. Details of this construction can be found in [Springer]. Since
homotopical simplicial 1-cycles are obviously homologous, this insight allows us to define
the homology group as a homology group of cycles composed of arbitrary closed curves
rather than symplicial 1-cycles on ℛ. We call such a curve ̃ a simple cycle on ℛ.

This definition of homologous continuous cycles later will be shown to be independent
of T . Directly from the definition follows that freely homotopic closed curves are ho-
mologous. Note that the converse is however false in general as one can see from the
example in Fig. 16.

Figure 16: A cycle homologous to zero but not homotopic to a point.

10Considering n-chains on a triangulated manifold one can analogously define n-th homology group.
Homology groups can be also introduced over arbitrary fields if one considers formal linear combinations
with coefficients in these fields. For example so one can define H1(ℛ,ℤ2), Hn(ℛ,ℝ) etc.
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The first homology group is the fundamental group ”made commutative”11. Indeed,
let  be a 1-cycle on ℛ with a point P0 ∈  and Γ1, . . . ,Γn be generators of �(ℛ, P0).
Denote by [], [Γ1], . . . , [Γn] ∈ H1(ℛ,ℤ) the corresponding homology classes. The cycle
 is homotopic to

 = Γj1i1 . . .Γ
jk
ik
, i1, . . . , ik ∈ {1, . . . , n}, ji ∈ ℤ,

which implies for the homology classes

[] = j1[Γi1 ] + . . . jk[Γik ].

By linearity this representation can be extended to arbitrary combination of cycles in
H1(ℛ,ℤ). As in Section 3.2 it is easy to see that [Γi] are independent of P0. Finally we see
that the homology group is the abelian group generated by the elements [Γi], i = 1, . . . , n.
This shows in particular that the whole construction is independent of the triangulation
T we started with.

To introduce intersection numbers of elements of the first homology group it is convenient
to represent them by smooth cycles. Every element of H1(ℛ,ℤ) can be represented by a
C∞-cycle. Moreover given two elements of H1(ℛ,ℤ) one can represent them by smooth
cycles intersecting transversally in finite number of points.

Let 1 and 2 be two curves intersecting transversally at the point P . One associates to
this point a number (1 ∘ 2)P = ±1, where the sign is determined by the orientation of
the basis ′1(P ), ′2(P ) as it is shown in Fig. 17.

1 2

2 1

(1 ∘ 2)P = 1

P P

(1 ∘ 2)P = −1

Figure 17: Intersection number at a point.

Definition 3.5 Let 1, 2 be two smooth cycles intersecting transversally at the finite
set of their intersection points. The intersection number of 1 and 2 is defined by

1 ∘ 2 =
∑

P∈Intersection set

(1 ∘ 2)P . (45)

Lemma 3.7 The intersection number of any boundary � with any cycle  vanishes, i.e.
 ∘ � = 0.

11Precisely

H1(ℛ,ℤ) =
�(ℛ)

[�(ℛ), �(ℛ)]
,

where the denominator is the commutator subgroup, i.e. the subgroup of �(ℛ) generated by all elements
of the form ABA−1B−1, A,B ∈ �(ℛ).
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Proof. Since (45) is bilinear it is enough to prove the statement for a boundary of a
domain � = �D and a simple cycle . In this case the statement follows from the simple
fact that the cycle  goes as many times inside D as outside (see Fig. 18).

D

�D



Figure 18:  ∘ �D = 0.

To define the intersection number on homologies represent , ′ ∈ H1(ℛ,ℤ) by C∞-cycles

 =
∑
i

nii, ′ =
∑
j

mj
′
i,

where i, 
′
j are smooth curves intersecting transversally. Define  ∘′ =

∑
ij nimji ∘′j .

Due to Lemma 3.7 the intersection number is well defined on homologies.

Theorem 3.8 The intersection number is a bilinear skew-symmetric map

∘ : H1(ℛ,ℤ)×H1(ℛ,ℤ)→ ℤ.

Examples

1. Homology group of a sphere with N holes.

The homology group is generated by the loops 1, . . . , N−1 (see Fig. 14). For the
homology class of the loop N one has

N = −
N−1∑
i=1

i,

since
∑N

i=1 i is a boundary.

2. Homology group of a compact Riemann surface of genus g.

Since the homotopy group is generated by the cycles a1, b1, . . . , ag, bg shown in Fig. 15
it is also true for the homology group. The intersection numbers of these cycles are as
follows

ai ∘ bj = �ij , ai ∘ aj = bi ∘ bj = 0. (46)

The cycles a1, b1, . . . , ag, bg build a basis of the homology group. They are distinguished
by their intersection numbers and as a consequence are linearly independent.
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Definition 3.6 A homology basis a1, b1, . . . , ag, bg of a compact Riemann surface of
genus g with the intersection numbers (46) is called canonical basis of cycles.

Remark Canonical basis of cycles is by no means unique. Let (a, b) be a canonical
basis of cycles. We represent it by a 2g-dimensional vector

(
a
b

)
, a =

⎛⎜⎝ a1
...
ag

⎞⎟⎠ , b =

⎛⎜⎝ b1
...
bg

⎞⎟⎠ .

Any other basis (ã, b̃) of H1(ℛ,ℤ) is then given by the transformation(
ã

b̃

)
= A

(
a
b

)
, A ∈ SL(2g,ℤ). (47)

Substituting (47) into

J =

(
ã

b̃

)
∘ (ã, b̃), J =

(
0 I
−I 0

)
we obtain that the basis (ã, b̃) is canonical if and only if A is symplectic A ∈ Sp(g,ℤ),
i.e.

J = AJAT . (48)

Two examples of canonical basis of cycles are presented in Figs. 19, 20. The curves bi
in Fig. 19 connect identified points of the boundary curves and therefore are closed. In
Fig. 20 the parts of the cycles lying on the ”lower” sheet of the covering are marked by
dotted lines.

b1a1

ag

bg

Πg

Figure 19: Canonical basis of cycles on the planar model Πg of a compact Riemann
surface.



4 ABELIAN DIFFERENTIALS 32

�2g �2g+2�2 �4 �2g−1 �2g+1�1 �3

b1

b2 bg

a2a1 ag

Figure 20: Canonical basis of cycles of a hyperelliptic Riemann surface.

4 Abelian differentials

Our main goal is to construct functions on compact Riemann surfaces with prescribed
analytical properties (for example, meromorphic functions with prescribed singularities).
This and next sections are devoted to this problem. We start with a description of
meromorphic differentials, which are much simpler to handle than the functions and
which are the basic tool to investigate and to construct functions.

4.1 Differential forms and integration formulas

We recall the theory of integration on 2-dimensional C∞-manifolds using complex nota-
tions. Let ℛ be such a manifold and

z : U ⊂ ℛ → V ⊂ ℂ

be local parameters. The transition functions z̃(z, z̄) defined for non-trivial intersections
U ∩ Ũ

z̃ ∘ z−1 : z(U ∩ Ũ)→ z̃(U ∩ Ũ) (49)

are C∞.

If to each local coordinate on ℛ there are assigned complex valued functions12

f(z, z̄), p(z, z̄), q(z, z̄), s(z, z̄) such that

f = f(z, z̄),

! = p(z, z̄)dz + q(z, z̄)dz̄, (50)

S = s(z, z̄)dz ∧ dz̄.

are invariant under coordinate changes (49) one says that the function (0-form) f , the
differential (1-form) ! and the 2-form S are defined on ℛ. The identification

dz = dx+ idy, dz̄ = dx− idy
12We will not treat the problems in the most general setup and assume that the functions are smooth.

It will be enough for applications in the Riemann surface theory.
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implies the standard description of !, S in real coordinates x, y. The exterior product
of two 1-forms !1 and !2 is the 2-form

!1 ∧ !2 = (p1q2 − p2q1)dz ∧ dz̄.

If we let !(1,0) = p(z, z̄)dz, !(0,1) = q(z, z̄)dz̄, the forms !(1,0) and !(0,1) are independent
of the choice of the local holomorphic coordinate and therefore are differentials defined
globally on ℛ. The 1-form ! is called a form of type (1,0) (resp. a form of type (0,1)) iff
locally it may be written ! = p dz (resp. ! = q dz̄), i.e. its (0,1)-part (resp. (1,0)-part)
vanish. The space of differentials is obviously a direct sum of the subspaces of (1,0) and
(0,1) forms.

One can integrate:

1. 0-forms over 0-chains, which are finite sets {P�}� of points P� ∈ ℛ:∑
�

f(P�),

2. 1-forms over 1-chains (paths, i.e. smooth oriented curves, and their finite unions):∫


!,

3. 2-forms over 2-chains (finite unions of domains):∫
D

S.

Here if  : [0, 1]→ U and D ⊂ U are contained in a single coordinate disc, the integrals
are defined by

∫


! =

1∫
0

(
p(z((t)), z((t)))

dz()

dt
+ q(z((t)), z((t)))

dz()

dt

)
dt,

∫
U

S =

∫
V

s(z, z̄)dz ∧ dz̄.

Due to invariance of (50) under coordinate changes the integrals are well-defined.

The differential operator d, which transforms k-forms into (k + 1)-forms is defined by

df = fzdz + fz̄dz̄,

d! = (qz − pz̄)dz ∧ dz̄, (51)

dS = 0.
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Definition 4.1 A differential df is called exact. A differential ! with d! = 0 is called
closed.

One can also easily check using (51), that

d2 = 0

whenever d2 is defined and
d(f!) = df ∧ ! + fd! (52)

for any function f and 1-form !. This implies in particular that any exact form is closed.

The most important property of d is contained in

Theorem 4.1 (Stokes)
Let D be a 2-chain with a piecewise smooth boundary ∂D. Then the Stokes formula∫

D

d! =

∫
∂D

! (53)

holds for any differential !.

Our principal interest will be in 1-forms. Let PQ be a curve connecting P and Q. When
does the integral

∫
PQ

! depend on the points P,Q and not on the integration path?

Corollary 4.2 A differential ! is closed, d! = 0, if and only if for any two homological
paths  and ̃ ∫



! =

∫
̃

!

holds.

Proof The difference of two homological curves  − ̃ is a boundary for some D.
Applying (53) we have ∫



! −
∫
̃

! =

∫
∂D

! =

∫
D

d! = 0.

The differential ! is closed since D is arbitrary.

Corollary 4.3 Let ! be a closed differential, Fg be a simply connected model of Riemann
surface of genus g (see Section 3) and P0 be some point in Fg. Then the function

f(P ) =

P∫
P0

!, P ∈ Fg,

where the integration path lies in Fg is well-defined on Fg.
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One can easily check the identity

d(

P∫
P0

!) = !(P ). (54)

Let 1, . . . , n be a homology basis of ℛ and ! a closed differential. Periods of ! are
defined by

Λi =

∫
i

!.

Any closed curve  on ℛ is homological to
∑
nii with some ni ∈ ℤ, which implies∫



! =
∑

niΛi,

i.e. Λi generate the lattice of periods of !. In particular, if ℛ is a Riemann surface of
genus g with the canonical homology basis a1, b1, . . . , ag, bg, we denote the corresponding
periods by

Ai =

∫
ai

!, Bi =

∫
bi

!.

Theorem 4.4 (Riemann’s bilinear identity)
Let ℛ be a Riemann surface of genus g with a canonical basis ai, bi, i = 1, . . . , g and
Fg be its simply-connected model. Also let ! and !′ be two closed differentials on ℛ and
Ai, Bi, A

′
i, B

′
i, i = 1, . . . , g be their periods. Then∫

ℛ

! ∧ !′ =
∫
∂Fg

!′(P )

P∫
P0

! =

g∑
j=1

(AjB
′
j −A′jBj), (55)

where P0 is some point in Fg and the integration path [P0, P ] lies in Fg.

Proof The Riemann surface ℛ cut along all the cycles ai, bi, i = 1, . . . , g of the fun-
damental group is the simply connected domain Fg with the boundary (see Figs. 11,
15)

∂Fg =

g∑
i=1

ai + a−1
i + bi + b−1

i . (56)

The first identity in (55) follows directly from the Stokes theorem with D = Fg, Corollary
4.3, (52) and (54).

The curves aj and a−1
j of the boundary of Fg are identical on ℛ but have opposite

orientation. For the points Pj and P ′j lying on aj and a−1
j respectively and coinciding

on ℛ we have (see Fig. 21)

!′(Pj) = !′(P ′j),

Pj∫
P0

! −
P ′j∫
P0

! =
Pj∫
P ′j

! = −Bj . (57)
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In the same way for the points Qj ∈ bj and Q′j ∈ b
−1
j coinciding on ℛ one gets

!′(Qj) = !′(Q′j),

Qj∫
P0

! −
Q′j∫
P0

! =
Qj∫
Q′j

! = Aj . (58)

Substituting, we obtain

∫
∂Fg

!′(P )

P∫
P0

! =

g∑
j=1

(
−Bj

∫
aj

!′ +Aj

∫
bj

!′
)

=

=

g∑
j=1

(AjB
′
j −A′jBj).

Finally, to prove Riemann’s bilinear identity for an arbitrary canonical basis of H1(ℛ,ℂ)
one can directly check that the right hand side of (55) is invariant with respect to the
transformation (47, 48).

Q′j

P ′jQj

Pj

b−1
j

a−1
j

aj
bj

Figure 21: To the proof of the Riemann bilinear relations.

4.2 Abelian differentials of the first, second and third kind

Let now ℛ be a Riemann surface. The transition functions (49) are holomorphic and
one can define more special differentials on ℛ.

Definition 4.2 A differential ! on a Riemann surface ℛ is called holomorphic (or an
Abelian differential of the first kind) if in any local chart it is represented as

! = ℎ(z)dz

where ℎ(z) is holomorphic. The differential !̄ is called anti-holomorphic.

Holomorphic and anti-holomorphic differentials are closed.

Holomorphic differentials form a complex vector space, which is denoted by H1(ℛ,ℂ).
What is its dimension?
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Lemma 4.5 Let ! be a non-zero (! ∕≡ 0) holomorphic differential on ℛ. Then its
periods Aj , Bj satisfy

Im

g∑
j=1

AjB̄j < 0.

Proof The periods of !̄ are Āj , B̄j . Apply Theorem 4.4 to ! and !̄ and use

i! ∧ !̄ = i∣ℎ∣2dz ∧ dz̄ = 2∣ℎ∣2dx ∧ dy > 0.

Corollary 4.6 If all a-periods of the holomorphic differential ! are zero∫
aj

! = 0, j = 1, . . . , g,

then ! ≡ 0.

Corollary 4.7 If all periods of a holomorphic differential ! are real, then ! ≡ 0.

Corollary 4.8 dim H1(ℛ,ℂ) ≤ g.

Proof If !1, . . . , !g+1 are holomorphic, then there exists a linear combination of them∑g+1
i=1 �i!i with all zero a-periods. Corollary 4.6 implies

∑g+1
i=1 �i!i ≡ 0, i.e. the differ-

entials are linearly dependent.

Theorem 4.9 The dimension of the space of holomorphic differentials of a compact
Riemann surface is equal to its genus

dim H1(ℛ,ℂ) = g(ℛ).

We give a proof of this theorem in Section 4.4. When the Riemann surface ℛ is con-
cretely described, one can usually present the basis !1, . . . , !g of holomorphic differentials
explicitly.

Theorem 4.10 The differentials

!j =
�j−1d�

�
, j = 1, . . . , g (59)

form a basis of holomorphic differentials of the hyperelliptic Riemann surface

�2 =

N∏
i=1

(�− �i) �i ∕= �j , (60)

where N = 2g + 2 or N = 2g + 1.
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Proof The differentials (57) are obviously linearly independent. Their holomorphicity
at all the points (�, �) with � ∕= �k, � ∕=∞ is evident. Local parameters at the branch
points � = �k are zk =

√
�− �k. In terms of zk the differentials !j are holomorphic

!j ≈
�j−1
k d�√∏N

i=1,i ∕=k(�k − �i)
√
�− �k

=
2�j−1

k√∏N
i=1,i ∕=k(�k − �i)

dzk, �→ �k.

If N = 2g + 2 there are two infinity points ∞±, and z∞ = 1/� is a local parameter at
these points. The differentials !j are holomorphic at these points

!j ≈ ±
�j−1

�g+1
d� = ±zg−j∞ dz∞, �→∞±.

If N = 2g + 1 there is one ∞ point and z∞ = 1/
√
�. At the point ∞ the differentials

are holomorphic

!i ≈
�j−1

�g+1/2
d� = z2(g−j)

∞ dz∞, �→∞.

One more example is the holomorphic differential

! = dz

on the torus ℂ/G of Section 2. Here z is the coordinate of ℂ.

Corollary 4.6 implies that the matrix of a-periods

Aij =

∫
ai

!j

of any basis !j , j = 1, . . . , g of H1(ℛ,ℂ) is invertible. Therefore the basis can be
normalized as in the following

Definition 4.3 Let aj , bj j = 1, . . . , g be a canonical basis of H1(ℛ,ℤ). The dual basis
of holomorphic differentials !k, k = 1, . . . , g normalized by∫

aj

!k = 2�i�jk

is called canonical.

We consider also differentials with singularities.

Definition 4.4 A differential Ω is called meromorphic or Abelian differential if in any
local chart z : U → ℂ it is of the form

Ω = g(z)dz,
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where g(z) is meromorphic. The integral

P∫
P0

Ω

of a meromorphic differential is called the Abelian integral.

Let z be a local parameter at the point P, z(P ) = 0 and

Ω =
∞∑

k=N(P )

gkz
kdz, N ∈ ℤ (61)

be the representation of the differential Ω at P . The numbers N(P ) and g−1 do not
depend on the choice of the local parameter and are characteristics of Ω only. N(P ) is
called the order of the point P . If N(P ) is negative −N(P ) is called the order of the
pole of Ω at P . g−1 is called the residue of Ω at P . It also can be defined by

resPΩ ≡ g−1 =
1

2�i

∫


Ω, (62)

where  is a small closed simple loop going around P in the positive direction.

Let S be the set of singularities of Ω

S = {P ∈ ℛ ∣ N(P ) < 0}.

S is discrete and if ℛ is compact then S is also finite.

Lemma 4.11 Let Ω be an Abelian differential on a compact Riemann surface ℛ. Then∑
Pj∈S

resPjΩ = 0,

where S is the singular set of Ω.

Proof Use the simply connected model Fg of ℛ and the equivalent definition of resPjΩ
via the integral ∑

Pj∈S
resPjΩ =

1

2�i

∑
j

∫
j

Ω =
1

2�i

∫
∂F

Ω = 0.

Here we used that Ω is holomorphic on ℛ ∖ S and (56).

Definition 4.5 A meromorphic differential with singularities is called an Abelian dif-
ferential of the second kind if the residues are equal to zero at all singular points. A
meromorphic differential with non-zero residues is called an Abelian differential of the
third kind.
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Lemma 4.11 motivates the following choice of basic meromorphic differentials. The

differential of the second kind Ω
(N)
R has only one singularity. It is at the point R ∈ ℛ

and is of the form

Ω
(N)
R =

(
1

zN+1
+O(1)

)
dz, (63)

where z is the local parameter at R with z(R) = 0. The Abelian differential of the third
kind ΩRQ has two singularities at the points R and Q with

resRΩRQ = −resQΩRQ = 1,

ΩRQ =

(
1

zR
+O(1)

)
dzR near R,

ΩRQ =

(
− 1

zQ
+O(1)

)
dzQ near Q, (64)

where zR and zQ are local parameters at R and Q with zR(R) = zQ(Q) = 0. For the
corresponding Abelian integrals this implies

P∫
Ω

(N)
R = − 1

NzN
+O(1) P → R, (65)

P∫
ΩRQ = log zR +O(1) P → R,

P∫
ΩRQ = − log zQ +O(1) P → Q. (66)

Remark The Abelian integrals of the first and second kind are single-valued on Fg.
The Abelian integral of the third kind ΩRQ is single-valued on Fg ∖ [R,Q], where [R,Q]
is a cut from R to Q lying inside Fg.

Remark The Abelian differential of the second kind Ω
(N)
R depends on the choice of the

local parameter z.

One can add Abelian differentials of the first kind to Ω
(N)
R , ΩRQ preserving the form of

the singularities. By addition of a proper linear combination
∑g

i=1 �i!i the differential
can be normalized as follows: ∫

aj

Ω
(N)
R = 0,

∫
aj

ΩRQ = 0 (67)

for all a-cycles j = 1, . . . , g.

Definition 4.6 The differentials Ω
(N)
R , ΩRQ with the singularities (63), (64) and all

zero a-periods (67) are called the normalized Abelian differentials of the second and third
kind.
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Theorem 4.12 Given a compact Riemann surface ℛ with a canonical basis of cycles
a1, b1, . . . , ag, bg, points R,Q ∈ ℛ, a local parameter z at R and N ∈ ℕ there exist unique

normalized Abelian differentials of the second Ω
(N)
R and of the third ΩRQ kind.

The existence will be proven in Section 4.4. The proof of the uniqueness is simple. The
holomorphic difference of two normalized differentials with the same singularities has all
zero a-periods and vanishes identically due to Corollary 4.6.

Remark Due to Corollary 4.7 Abelian differentials of the second and third kind can
be normalized by a more symmetric then (67) condition. Namely all the periods can be
normalized to be pure imaginary

Re

∫


Ω = 0, ∀ ∈ H1(ℛ,ℤ).

Corollary 4.13 The normalized Abelian differentials form a basis in the space of Abelian
differentials on ℛ.

Again, as in the case of holomorphic differentials, we present the basis of Abelian differ-
entials of the second and third kind in the hyperelliptic case

�2 =
M∏
k=1

(�− �k).

Denote the coordinates of the points R and Q by

R = (�R, �R), Q = (�Q, �Q).

We consider the case when both points R and Q are finite �R ∕=∞, �Q ∕=∞. The case
�R =∞ or �Q =∞ is reduced to the case we consider by a fractional linear transforma-
tion. If R is not a branch point, then to get a proper singularity we multiply d�/� by
1/(� − �R)n and cancel the singularity at the point �R = (−�R, �R) by multiplication
by a linear function of �.

The following differentials are of the third kind with the singularities (64)

Ω̂RQ =

(
�+ �R
�− �R

−
�+ �Q
�− �Q

)
d�

2�
if �R ∕= 0, �Q ∕= 0,

Ω̂RQ =

(
�+ �R

�(�− �R)
− 1

�− �Q

)
d�

2
if �R ∕= 0, �Q = 0,

Ω̂RQ =

(
1

�− �R
− 1

�− �Q

)
d�

2
if �R = �Q = 0.

The differentials

Ω̂
(N)
R =

�+ �
[N ]
R

(�− �R)N+1

d�

2�
if �R ∕= 0,
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where �
[N ]
R is the Taylor series at R up to the term of order N

�
[N ]
R = �R +

∂�

∂�

∣∣∣∣
R

(�− �R) + . . .+
1

N !

∂N�

∂�N

∣∣∣∣
R

(�− �R)N

have the singularities at R of the form(
z−N−1 + o(z−N−1)

)
dz (68)

with z = � − �R. If R is a branch point �R = 0 the following differentials have the
singularities (68) with z =

√
�− �R

Ω̂
(N)
R =

d�

2(�− �R)n�

√√√√⎷ N∏
i=1
i ∕=R

(�R − �i) for N = 2n− 1,

Ω̂
(N)
R =

d�

2(�− �R)n
for N = 2n− 2.

Taking proper linear combinations of these differentials with different N ′s we obtain
the singularity (63). The normalization (67) is obtained by addition of holomorphic
differentials (57)

4.3 Periods of Abelian differentials. Jacobi variety

Definition 4.7 Let aj , bj , j = 1, . . . , g be a canonical homology basis of ℛ and !k, k =
1, . . . , g the dual basis of H1(ℛ,ℂ). The matrix

Bij =

∫
bi

!j (69)

is called the period matrix of ℛ.

Theorem 4.14 The period matrix is symmetric and its real part is negative definite

Bij = Bji, (70)

Re(B�,�) < 0, ∀� ∈ ℝg ∖ {0}. (71)

Proof For the proof of (70) substitute two normalized holomorphic differentials ! = !i
and !′ = !j into the Riemann bilinear identity (55). The vanishing of the left hand side
!i ∧ !j ≡ 0 implies (70). Lemma 4.5 with ! =

∑
�k!k yields

0 > Im

g∑
j=1

AjB̄j = Im

⎛⎝ g∑
j=1

2�i�j

g∑
k=1

B̄jk�k

⎞⎠ = 2�Re(B�,�).

The period matrix depends on the homology basis. Let us use the column notations(
ã

b̃

)
=

(
A B
C D

)(
a

b

)
,

(
A B
C D

)
∈ Sp(g,ℤ). (72)
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Lemma 4.15 The period matrices B and B̃ of the Riemann surface ℛ corresponding
to the homology basis (a, b) and (ã, b̃) respectively are related by

B̃ = 2�i(DB + 2�iC)(BB + 2�iA)−1,

where A,B,C,D are the coefficients of the symplectic matrix (72).

Proof Let ! = (!1, . . . , !g) be the canonical basis of holomorphic differentials dual to
(a, b). Labeling columns of the matrices by differentials and rows by cycles we get∫

ã

! = 2�iA + BB,

∫
b̃

! = 2�iC + DB.

The canonical basis of H1(ℛ,ℂ) dual to the basis (ã, b̃) is given by the right multiplica-
tion

!̃ = 2�i!(2�iA + BB)−1.

For the period matrics this implies

B̃ =

∫
b̃

!̃ = (2�iC + DB)2�i(2�iA + BB)−1

Using the Riemann bilinear identity the periods of the normalized Abelian differentials
of the second and third kind can be expressed in terms of the normalized holomorphic
differentials.

Lemma 4.16 Let !j ,Ω
(N)
R ,ΩRQ be the normalized Abelian differentials from Definition

4.6. Let also z be a local parameter at R with z(R) = 0 and

!j =

∞∑
k=0

�k,jz
kdz P ∼ R (73)

the representation of the normalized holomorphic differentials at R. The periods of

Ω
(N)
R , ΩRQ are equal to: ∫

bj

Ω
(N)
R =

1

N
�N−1,j (74)

∫
bj

ΩRQ =

R∫
Q

!j , (75)

where the integration path [R,Q] in (75) does not cross the cycles a, b.
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Proof Substitute ! = Ω
(N)
R , !′ = !j into (55). The integral∫

∂Fg

!j(P )

P∫
Ω

(N)
R

can be calculated by residues. The integrand is a meromorphic function on Fg with only
one singularity, which is at the point R. Multiplying (65) and (73) we have

resR !j(P )

P∫
Ω

(N)
R = − 1

N
�N−1,j .

On the right hand side of (55) only the term with A′j = 2�i does not vanish, which yields
(74). The same calculation with ! = !j , !

′ = ΩRQ proves (75)

∫
∂Fg

ΩRQ(P )

P∫
P0

!j = 2�i

⎛⎝ R∫
P0

!j −
Q∫

P0

!j

⎞⎠ = 2�i

R∫
Q

!j = 2�i

∫
bj

ΩRQ.

At the end of this section we introduce two notions, which play a central role in the
studies of functions on compact Riemann surfaces.

Let Λ be the lattice
Λ = {2�iN +BM, N,M ∈ ℤg}

generated by the periods of ℛ. It defines an equivalence relation in ℂg : two points of
ℂg are equivalent if they differ by an element of Λ.

Definition 4.8 The complex torus

Jac(ℛ) = ℂg/Λ

is called the Jacobi variety (or Jacobian) of ℛ.

Definition 4.9 The map

A : ℛ → Jac(ℛ), A(P ) =

P∫
P0

!, (76)

where ! = (!1, . . . , !g) is the canonical basis of holomorphic differentials and P0 ∈ ℛ,
is called the Abel map.

4.4 Harmonic differentials and proof of existence theorems

As we mentioned in Section 1 angles between tangent vectors are well defined on Riemann
surfaces. In particular one can introduce rotation of tangent spaces on angle �/2. The
induced transformation of the differentials13 is called the conjugation operator

! = f dz + g dz̄ 7→ ∗! = −if dz + ig dz̄.

13For X + iY = Z ∈ TPℛ we defined ∗!(Z) = !(−iZ) or equivalently ∗!(X,Y ) = !(Y,−X).
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Clearly ∗∗ = −1. In terms of the conjugation operator the differentials of type (1, 0)
(resp. of type (0, 1)) can be characterized by the property ∗! = −i! (resp. ∗! = i!).

Let ℛ be a Riemann surface (not necessarily compact !). Consider the Hilbert space
L2(ℛ) of square integrable differentials with the scalar product

(!1, !2) =

∫
ℛ
!1 ∧ ∗!̄2. (77)

In local coordinate z : U ⊂ ℛ → V ⊂ ℂ one has∫
U
!1 ∧ ∗!̄2 = 2

∫
V

(f1f̄2 + g1ḡ2)dx ∧ dy.

One can easily see that formula (77) defines a Hermitian scalar product, i.e.

(!2, !1) = (!1, !2),

(!, !) ≥ 0 and (!, !) = 0⇔ ! = 0.

Introduce the subspaces E and E∗ of exact and co-exact differentials

E = {df ∣ f ∈ C∞0 (ℛ)},
E∗ = {∗df ∣ f ∈ C∞0 (ℛ)},

where C∞0 (ℛ) is the space of smooth functions on ℛ with compact support and the bar
denotes the closure in L2(ℛ). Consider the orthogonal complements E⊥ and E∗⊥ and
their intersection

H := E⊥ ∩ E∗⊥.

Let us note that E and E∗ are orthogonal. It is enough to check this statement for exact
and co-exact C∞-differentials

(df, ∗dg) =

∫
ℛ
df ∧ dḡ =

∫
ℛ
ḡ d(df) = 0.

Here we used the Stokes theorem for functions with compact support and d2 = 0. We
obtain the orthogonal decomposition

L2(ℛ) = E ⊕ E∗ ⊕H

shown in Fig. 22.

To get an idea of interpretation of these subspaces one should consider smooth differen-
tials. A C1-differential � is said to be closed (resp. co-closed) iff d� = 0 (resp. d∗� = 0).

Lemma 4.17 Let � ∈ L2(ℛ) be of class C1. Then � ∈ E⊥ (resp. � ∈ E∗⊥) iff � is
co-closed (resp. closed).

Proof follows directly from the Stokes theorem: � ∈ E∗⊥ is equivalent

0 = (�, ∗df) =

∫
ℛ
� ∧ df̄ =

∫
ℛ
f̄d�

for arbitrary f ∈ C∞0 (ℛ). This implies d� = 0.
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E (exact)(co-closed)
E⊥

H (harmonic)

E∗⊥ (closed)

E∗ (co-exact)

Figure 22: Orthogonal decomposition of L2(ℛ).

Corollary 4.18 Let � ∈ H be of class C1. Then locally � = f dz + g dz̄, where f is
holomorphic and g is antiholomorphic functions.

Definition 4.10 A differential ℎ is called harmonic if it is locally
(z : U ⊂ ℛ → V ⊂ ℂ) of the form

ℎ = dH

with H ∈ C∞(V ) a harmonic function, i.e. ∂2

∂z∂z̄H = 0.

Harmonic and holomorphic differentials are closely related.

Lemma 4.19 A differential ℎ is harmonic iff it is of the form

ℎ = !1 + !̄2, !1, !2 −holomorphic. (78)

A differential ! is holomorphic iff it is of the form

! = ℎ+ i ∗ ℎ, ℎ −harmonic. (79)

Proof Let ℎ be harmonic and locally ℎ = dH. Since Hzz̄ = 0 the differential Hzdz is
holomorphic and the differential Hz̄dz̄ is antiholomorphic. Conversely, ℎ = f dz + g dz̄
with holomorphic f and antiholomorphic g can be rewritten as ℎ = d(F + G) with
holomorphic F and antiholomorphic G defined by Fz = f,Gz̄ = g. The function F +G
is obviously harmonic. To prove the second part of the lemma note that for ℎ given by
(78) the sum

ℎ+ i ∗ ℎ = 2!1

is always holomorphic. Conversely, given holomorphic !,

ℎ =
! − !̄

2

is a harmonic differential satisfying (79).

To prove the next theorem we need an L2-characterization of holomorphic functions.
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Lemma 4.20 (Weil’s lemma). Let f be a square integrable function on the unit disc
D. Then f is holomorphic iff ∫

D
f�z̄ dz ∧ dz̄ = 0

for every � ∈ C∞0 (D) (with compact support).

Proof See [FarkasKra, Jost].

Theorem 4.21 The space H is the space of harmonic differentals.

Proof A harmonic differential ℎ is closed, co-closed and of class C1. Lemma 4.17 implies
ℎ ∈ H.

Conversely, suppose � ∈ H. For any � ∈ C∞0 (ℛ) we have

(�, d�) = (�, ∗d�) = 0. (80)

Take local coordinate z : U → V . For � = f dz + g dz̄ formulas (80) imply∫
V
f�z̄dz ∧ dz̄ =

∫
V
g�zdz ∧ dz̄ = 0.

for every � ∈ C∞0 (V ). Holomorphicity of f and ḡ follows from Weil’s lemma. Lemma
4.19 completes the proof.

Corollary 4.22 Every square integrable differential � on ℛ can be uniquely represented
as an orthogonal sum of its exact df , co-exact ∗dg and harmonic ℎ parts:

� = df + ∗dg + ℎ. (81)

Now let us show how to construct 2g linearly independent harmonic differentials on a
compact Riemann surface ℛ. Take a simple (without self-intersections) loop  on ℛ.
Consider a small strip Γ containing . It is an annulus and  splits it into two annuli
Γ+ and Γ−. Take a smaller strip Γ0 (with corresponding one-sided strips Γ±0 ) around 
in Γ (see Fig. 23). Construct a real-valued function F on ℛ satisfying

F∣Γ−0
= 1, F∣ℛ∖Γ− = 0, F ∈ C∞(ℛ ∖ ).

Define a smooth differential

� =

{
dF on Γ ∖ 
0 on (ℛ ∖ Γ) ∪ .

Consider now a simply connected model Fg of ℛ and take one of the basic cycles
a1, b1, . . . , ag, bg, say a1 as . The differential � we constructed has a non-vanishing
period along the cycle b1. Chosing properly the orientation we obtain∫

b1

� = 1
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whereas all other periods of � vanish. The differential � is closed and non-exact. It
can be decomposed into its exact df and harmonic ℎ components

� = df + ℎ .

Note that both parts are automatically smooth. The harmonic differential ℎ has the
same periods as the original differential � .

Chosing different cylces from a1, b1, . . . , ag, bg as  one constructs 2g linearly independent
harmonic differentials. For the dimension we obtain

dim H ≥ 2g. (82)

Consider again holomorphic and antiholomorphic differentials and denote their spaces
by ℋ = H1(ℛ,ℂ) and ℋ̄ respectively. These spaces are obviously orthogonal ℋ ⊥ ℋ̄.



Γ+Γ+
0Γ−

0Γ−

Figure 23: Consruction of a closed non-exact form.

Proposition 4.23 Let ℛ be a compact Riemann surface of genus g. Then

dim H1(ℛ,ℂ) ≥ g.

Proof The spaces ℋ and ℋ̄ are orthogonal and have the same dimension. On the other
hand due to Lemma 4.19

H ⊂ ℋ⊕ ℋ̄,

which implies dim H ≤ 2 dim ℋ. The inequality (82) completes the proof.

Theorem 4.9 follows from Proposition 4.23 and Corollary 4.8.

As a corollary of Theorem 4.9 we obtain dim H ≤ 2g, and finally dim H = 2g. This
observation combined with the construction of harmonic differentials ℎ above implies
the following

Proposition 4.24 Given a compact Riemann surface with a canonical basis of cycles
a1, b1, . . . , ag, bg there exist unique 2g harmonic differentials ℎ1, . . . , ℎ2g with the periods∫

aj

ℎi =

∫
bj

ℎg+i = �ij ,

∫
aj

ℎg+i =

∫
bj

ℎi = 0, i = 1, . . . , g.
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Let us now construct Abelian differentials of the second kind Ω
(N)
R . Consider nested

neighborhoods R ∈ U0 ⊂ U1 ⊂ ℛ of the point R and a smooth function � ∈ C∞(ℛ)
satisfying

� =

{
1 on U0

0 on ℛ ∖ U1.

Let z be be a local parameter in U1 with z(R) = 0. Take a differential

 := d
(
− �

NzN

)
=
(
− �z
NzN

+
�

zN+1

)
dz −

( �z̄
NzN

)
dz̄

with the same kind of singularity as the one of Ω
(N)
R . The (0, 1)-part of  is smooth on

ℛ and can be decomposed into its closed, co-closed and harmonic components14

 − i ∗  = df + ∗dg + ℎ ∈ E(ℛ)⊕ E∗(ℛ)⊕H(ℛ).

Consider
� :=  − df.

Lemma 4.25 The differential � is harmonic on ℛ ∖R and the differential �− dz
zN+1 is

harmonic on U0.

Proof Chose a closed Ū ⊂ U0. For � we have

� = d
(
− �

NzN+1

)
− df,

which implies � ⊥ E∗(ℛ ∖ Ū). On the other hand

� = i ∗  + ∗dg + ℎ,

which implies � ⊥ E(ℛ∖ Ū). Combining these two observations we obtain � ∈ H(ℛ∖ Ū)
for arbitrary U ∋ R. Concerning the representation of � in U0 let us observe that
 − dz

zN+1 ∣U0≡ 0. On U0 this implies:

�− dz

zN+1
= −df = ∗dg + ℎ.

As above �− dz
zN+1 must be orthogonal to both E(U0) and E∗(U0) and therefore belongs

to H(U0).

As a direct corollary of Lemmas 4.19, 4.25 we obtain the following

Proposition 4.26 The differential

Ω :=
1

2
(�+ i ∗ �)

is holomorphic on ℛ ∖R and the differential Ω− dz
zN+1 is holomorphic on U0.

14We have incorporated ℛ into the notations of the spaces E(ℛ), E∗(ℛ) and H(ℛ) since we will
consider spaces corresponding to various Riemann surfaces.
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The existence of the normalized differential of the second kind Ω
(N)
R claimed in Theorem

4.12 follows from Proposition 4.26.

To prove existence of differentials of the third kind one should start with the differential

 P1P2 = d

(
� log

z − z1

z − z2

)
,

where z1 = z(P1) and z2 = z(P2) are local coordinates of two points P1, P2 ∈ U0.
Applying the same technique as above one obtains an Abelian differential of the third
kind ΩP1P2 with

resP1ΩP1P2 = −resP2ΩP1P2 = 1.

Finally, any Abelian differential of the third kind ΩRQ on a compact Riemann surface
can be obtained as a finite sum of these basic differentials ΩP1P2 .
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5 Meromorphic functions on compact Riemann surfaces

5.1 Divisors and the Abel theorem

Analyzing functions and differentials on Riemann surfaces one characterizes them in
terms of their zeros and poles. It is convenient to consider formal sums of points on ℛ.
(Later these points will become zeros and poles of functions and differentials).

Definition 5.1 The formal linear combination

D =

N∑
j=1

njPj , nj ∈ ℤ, Pj ∈ ℛ (83)

is called a divisor on the Riemann surface ℛ. The sum

deg D =

N∑
j=1

nj

is called the degree of D.

The set of all divisors with the obviously defined group operations

n1P + n2P = (n1 + n2)P, −D =

N∑
j=1

(−nj)Pj

forms an Abelian group Div(ℛ). A divisor (83) with all nj ≥ 0 is called positive (or
integral, or effective). This notion allows us to define a partial ordering in Div(ℛ)

D ≤ D′ ⇐⇒ D′ −D ≥ 0.

Definition 5.2 Let f be a meromorphic function on ℛ and P1, . . . , PM be its zeros
with the multiplicities p1, . . . , pM > 0 and Q1, . . . , QN be its poles with the multiplicities
q1, . . . , qN > 0. The divisor

D = p1P1 + . . .+ pMPM − q1Q1 − . . .− qNQN = (f)

is called the divisor of f and is denoted by (f) . A divisor D is called principal if there
exists a function with (f) = D.

Obviously we have
(fg) = (f) + (g), (const ∕= 0) = 0,

where f and g are two meromorphic functions on ℛ.

Definition 5.3 Two divisors D and D′ are called linearly equivalent if the divisor D−D′
is principal. The corresponding equivalence class is called the divisor class.
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We denote linearly equivalent divisors by D ≡ D′. Divisors of Abelian differentials are
also well-defined. We have seen already, that the order of the point N(P ) defined by (61)
is independent of the choice of a local parameter and is a characteristic of the Abelian
differential. The set of points P ∈ ℛ with N(P ) ∕= 0 is finite.

Definition 5.4 The divisor of an Abelian differential Ω is

(Ω) =
∑
P∈ℛ

N(P )P,

where N(P ) is the order of the point P of Ω.

Since the quotient of two Abelian differentials

Ω1/Ω2

is a meromorphic function any two divisors of Abelian differentials are linearly equivalent.
The corresponding class is called canonical. We will denote it by C.
Any principal divisor can be represented as the difference of two positive linearly equiv-
alent divisors

(f) = D0 −D∞, D0 ≡ D∞,

where D0 is the zero divisor and D∞ is the pole divisor of f . Corollary 2.7 implies that

deg(f) = 0,

i.e. all principal divisors have zero degree. Also all canonical divisors have equal degrees.

The Abel map is defined for divisors in a natural way

A(D) =

N∑
j=1

nj

Pj∫
P0

!. (84)

If the divisor D is of degree zero, then A(D) is independent of P0

D = P1 + . . .+ PN −Q1 − . . .−QN ,

A(D) =
N∑
i=1

Pi∫
Qi

!. (85)

Theorem 5.1 (Abel)
The divisor D ∈ Div (ℛ) is principal if and only if:

1) deg D = 0,

2) A(D) ≡ 0.
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Proof The necessity of the first condition is already proven. Let f be a meromorphic
function with the divisor

(f) = P1 + . . .+ PN −Q1 − . . .−QN

(these points are not necessarily assumed to be different). Then

Ω =
df

f
= d(log f)

is an Abelian differential of the third kind. All periods of Ω are integer multiples of 2�i:∫
ak

Ω = 2�i nk,

∫
bk

Ω = 2�imk; nk,mk ∈ ℤ.

Applying the Riemann bilinear identity (55) with ! = !j , !
′ = Ω (compare with the

proof of formula (75)) one obtains

N∑
k=1

Qk∫
Pk

!j =
∑
P

res Ω(P)

P∫
P0

!j =
1

2�i

∫
∂Fg

Ω(P)

P∫
P0

!j

= 2�imj −
N∑
k=1

nk

∫
bk

!j ≡ 0

and finally
A(D) ≡ 0. (86)

Conversely, if (86) is fulfilled, let us choose [Pi, Qi], which do not intersect the cycles, and
consider the normalized Abelian differentials of the third kind ΩPiQi . The differential

Ω̂ =

N∑
i=1

ΩPiQi

has all zero a-periods, and its b-periods belong to the Jacobian lattice (because of (75))∫
b

Ω̂ =

N∑
i=1

∫
b

ΩPiQi =

N∑
i=1

Pi∫
Qi

! = 2�iN +BM, N,M ∈ ℤg.

Then all the periods of the differential

Ω̂−
g∑
j=1

!jMj , M = (M1, . . . ,Mg)

are multiples of 2�i. Finally, the meromorphic function

f(P ) = exp

⎛⎝ P∫ ( N∑
i=1

ΩPiQi −
g∑
j=1

!jMj

)⎞⎠
has the divisor D.
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Corollary 5.2 All linearly equivalent divisors are mapped by the Abel map to the same
point of the Jacobian.

Proof
A((f) +D) = A((f)) +A(D) = A(D).

Remark The Abel theorem can be formulated in terms of any basis !̃ = (!̃1, . . . , !̃g)
of holomorphic differentials. In this case the second condition of the theorem reads

N∑
i=1

Pi∫
Qi

!̃ ≡ 0 (mod periods of !̃).

5.2 The Riemann-Roch theorem

Let D∞ be a positive divisor on ℛ. A natural problem is to describe the vector space
of meromorphic functions with poles at D∞ only. More generally, let D be a divisor on
ℛ. Let us consider the vector space

L(D) = {f meromorphic functions on ℛ ∣ (f) ≥ D or f ≡ 0}.

Let us split
D = D0 −D∞

into negative and positive parts

D0 =
∑

niPi, D∞ =
∑

mkQk,

where both D0 and D∞ are positive. The space L(D) of dimension

l(D) = dim L(D)

is comprised by the meromorphic functions with zeros of order at least ni at Pi and with
poles of order at most mk at Qk.

Similarly, let us denote by

H(D) = {Ω Abelian differential on ℛ ∣ (Ω) ≥ D or Ω ≡ 0}

the corresponding vector space of differentials, and by

i(D) = dim H(D)

its dimension, which is called the index of speciality of D.

Remark The following properties are obvious:

1. D1 ≥ D2 implies L(D1) ⊂ L(D2) and l(D1) ≤ l(D2)
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2. The space L(0) consists of constants, l(0) = 1

3. degD ≥ 0, D ∕= 0 implies l(D) = 0.

4. i(0) = g since H(0) is the space of holomorphic differentials.

Lemma 5.3 l(D) and i(D) depend only on the divisor class of D, and

i(D) = l(D − C), (87)

where C is the canonical divisor class.

Proof The existence of ℎ with (ℎ) = D1 − D2 is equivalent to D1 ≡ D2. The map
L(D2)→ L(D1) defined by the multiplication

L(D2) ∋ f −→ ℎf ∈ L(D1)

is an isomorphism, which proves l(D2) = l(D1).

Let Ω0 be a non-zero Abelian differential and C = (Ω0) be its divisor. The map H(D)→
L(D − C) defined by

H(D) ∋ Ω −→ Ω

Ω0
∈ L(D − C)

is an isomorphism of linear spaces, which proves i(D) = l(D − C).

Theorem 5.4 (Riemann-Roch)
Let ℛ be a compact Riemann surface of genus g and D a divisor on ℛ. Then

l(−D) = deg D − g + 1 + i(D). (88)

We prove the Riemann-Roch theorem in several steps.

Lemma 5.5 The Riemann-Roch theorem holds for positive divisors D.

Proof Due to the Remark, formula (88) holds for D = 0. Let D be positive and D ∕= 0.
We give a proof for the case when all points of the divisor have multiplicity one

D = P1 + . . .+ Pk.

Treatment of the general case requires no essential additional work, but complicates
notations. If f ∈ L(−D) then its differential df lies in the space of differentials

df ∈ H(−D(+1)),

where
D(+1) = 2D = 2P1 + . . .+ 2Pk.
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Moreover, df lies in the subspace H0(−D(+1)) ⊂ H(−D(+1))

H0(−D(+1)) = {Ω Abelian differentials on ℛ ∣ (Ω) ≥ −D(+1);

resPjΩ = 0 ∀j ;
∫
ai

Ω = 0 ∀i or Ω ≡ 0}.

The normalized differentials of the second kind Ω
(1)
Pj
, j = 1, . . . , k form a basis for

H0(−D(+1)),
dim H0(−D(+1)) = k = degD.

Let us denote the linear operator f → df by

d : L(−D) −→ H0(−D(+1)).

Since only constant functions lie in the kernel of d

l(−D) = 1 + dim Image d. (89)

The image of d can be described explicitly

df =
k∑
j=1

fjΩ
(1)
Pj
, (90)

where fj are constants such that all the b-periods of df vanish∫
bj

df = 0, i = 1, . . . , g. (91)

The conditions (91) is a system of g linear equations for degD variables fj . This obser-
vation immediately implies

dim Image d ≥ deg D − g.

Theorem 5.6 (Riemann’s inequality)
For any positive divisor D

l(−D) ≥ deg D + 1− g.

We interrupt the proof of Lemma 5.5 for two simple corollaries of Riemann’s inequality.

Corollary 5.7 For any positive divisor D with deg D = g+ 1 there exists a non-trivial
meromorphic function in L(−D).

Corollary 5.8 Any Riemann surface of genus 0 is conformally equivalent to the complex
sphere ℂ̂.
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Proof Let us consider a divisor which consists of one pointD = P . Riemann’s inequality
implies l(−P ) ≥ 2. There exists a non-trivial function f with 1 pole on ℛ. It is a
holomorphic covering f : ℛ → ℂ̂. Since f has only one pole, every value is assumed
once (Corollary 2.7), therefore ℛ and ℂ̂ are conformally equivalent.

Due to (74) the system (90), (91) can be rewritten as

k∑
j=1

fj�0,i(Pj) = 0, i = 1, . . . , g.

In the matrix form this reads as

(f1, . . . , fk)H = 0, (92)

where H is the matrix

H =

⎛⎜⎝�0,1(P1) . . . �0,g(P1)
...

...
�0,1(Pk) . . . �0,g(Pk)

⎞⎟⎠
This is a linear map H : ℂg → ℂdegD, and due to (92)

dim Image d = dim ker HT = degD − rankH. (93)

Near the points Pj the normalized holomorphic differentials !i have the following asymp-
totics

!i = (�0,i(Pj) + o(1))dzj .

This shows that the linear spaces ker H and H(D) are isomorphic

(�1, . . . , �g) ∈ ker H ⇐⇒
g∑
i=1

�i!i ∈ H(D).

This observation implies

i(D) = dim H(D) = dim ker H = g − rankH,

which combined with (89, 93) completes the proof of Lemma 5.5.

Corollary 5.9 The degree of the canonical class is

deg C = 2g − 2.

Proof The differential dz on the complex sphere has a double pole at z =∞

dz = − 1

�2
d�, � =

1

z
.

Since the degree is a characteristics of a divisor class, this proves the statement for g = 0.
If g > 0 then there exists a non-trivial holomorphic differential !. Its divisor (!) = C is
positive. Lemma 5.5 yields

l(−C) = degC − g + 1 + i(C).
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Remarks 5.2 and Lemma 5.3 imply

l(−C) = i(0) = g, i(C) = l(0) = 1,

which completes the proof of the corollary.

Corollary 5.10 On a compact Riemann surface there is no point where all holomorphic
differentials vanish simultaneously.

Proof Suppose there exists a point P ∈ ℛ where all holomorphic differentials vanish,
i.e. i(P ) = g. Applying the Riemann-Roch theorem for the divisor D = P one obtains
l(−P ) = 2, i.e. there exists a non-constant meromorphic function f with the only pole.
Due to Corollary 2.7 f : ℛ → ℂ̂ is bi-holomorphic, which implies g = 0. Due to Corollary
5.9 there are no holomorphic differentials on a Riemann surface of genus g = 0.

Lemma 5.11 The Riemann-Roch theorem holds for the divisors D, if D or C −D are
linearly equivalent to a positive divisor.

Proof If D is linearly equivalent to a positive divisor the statement is trivial, since both
l(−D) and i(D) depend on the divisor class only. Applying Lemma 5.5 to the positive
divisor C −D one gets

l(D − C) = deg (C −D)− g + 1 + i(C −D)

or using Lemma 5.3, Corollary 5.9 and formula (88) for D

i(D) = 2g − 2− deg D − g + 1 + l(−D).

Lemma 5.12

l(−D) > 0 ⇐⇒ D ≡ D+ ≥ 0,

i(D) > 0 ⇐⇒ C −D ≡ D+ ≥ 0.

Proof l(−D) > 0 implies the existence of f ∈ L(−D). Since (f) ≥ −D we get that the
divisor (f) +D ≥ 0 is positive. Similarly i(D) > 0 is equivalent to l(D − C) > 0. This
implies (f) + C −D ≥ 0, where f ∈ L(D − C).

Finishing of the proof of Theorem 5.4. Due to Lemma 5.11 and Lemma 5.12 only one
case remains to consider. We should prove that i(D) = l(−D) = 0 implies deg D = g−1.
Represent D as a difference of two positive divisors

D = D1 −D2, D2 ∕= 0.

Then Riemann’s inequality implies

l(−D1) ≥ deg D1 − g + 1 = deg D + deg D2 − g + 1.
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Let us suppose that deg D ≥ g. Then

l(−D1) ≥ deg D2 + 1

and there exists a function in L(−D1) with the zero divisor ≥ D2. This yields l(−D) > 0,
which contradicts our assumption. We have proven that deg D ≤ g − 1.

In the same way using i(D) = l(D − C) = 0 one gets

deg (C −D) ≤ g − 1.

Combined with Corollary 5.9 this implies deg D ≥ g − 1, and finally

deg D = g − 1,

which completes the proof of the Riemann-Roch theorem.

5.3 Special divisors and Weierstrass points

Definition 5.5 A positive divisor D of degree deg D = g is called special if i(D) > 0,
i. e. there exists a holomorphic differential ! with

(!) ≥ D. (94)

The Riemann-Roch theorem implies that (94) is equivalent to the existence of a non-
constant function f with (f) ≥ −D. Since the space of holomorphic differentials is
g-dimensional, (94) is a homogeneous linear system of g equations in g variables. This
shows that most of the positive divisors of degree g are non-special.

Proposition 5.13 Let the divisor

D = P1 + . . .+ Pg

be non-special. There exist neighborhoods U1, . . . , Ug of the points of the divisor Pj ∈
Uj , j = 1, . . . , g such that any divisor

D′ = P ′1 + . . .+ Pg′

with P ′j ∈ Uj , j = 1, . . . , g is non-special. Arbitrary close to any special divisor D there
exists a non-special positive divisor of degree g.

This proposition will be proved later (see Lemma 5.14) for divisors which are multiples
of a point D = gP . The proof of the general case is analogous. Note that special divisors
may be ”non-rigid”. In particular, if l(−D1) ≥ 2 for some D1 > 0, degD1 < g then the
divisor D = D1 +D2 is special with arbitrary D2 > 0,degD2 = g − degD1.

Definition 5.6 A point P ∈ ℛ is called the Weierstrass point if the divisor D = gP is
special.
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The Weierstrass points are special points of ℛ. We prove that these points exist and
estimate their number.

Remark There are no Weierstrass points on Riemann surfaces of genus g = 0 or g = 1.

Lemma 5.14 Let !k = ℎk(z)dz, k = 1, . . . , g be the local representation of a basis of
holomorphic differentials in a neighborhood of P0. The point P0 is a Weierstrass point
if and only if

Δ[ℎ1, . . . , ℎg] ≡ det

⎛⎜⎜⎜⎝
ℎ1 . . . ℎg
ℎ′1 . . . ℎ′g
...

...

ℎ
(g−1)
1 . . . ℎ

(g−1)
g

⎞⎟⎟⎟⎠ (95)

vanishes at P0.

Proof Δ vanishes at P0 iff the matrix in (95) has a non-trivial kernel vector (�1, . . . , �g)
T .

In this case the differential
∑g

k=1 �kℎk has a zero of order g at P0, which implies
i(gP0) > 0.

Since Δ is holomorphic in a neighborhood of P0 the Weierstrass points are isolated.
Moreover their number is finite due to compactness of ℛ.

Definition 5.7 Let P0 be a Weierstrass point on ℛ and z a local parameter at P0, with
z(P0) = 0. The order �(P0) of the zero of Δ at P0

Δ = z�(P0)O(1) (96)

is called the weight of the Weierstrass point P0.

It turns out that Δ is well defined on ℛ globally.

Definition 5.8 If to every local coordinate z : U ⊂ ℛ → V ⊂ ℂ there assigned a
holomorphic function r(z) such that

r = r(z)dzq, q ∈ ℤ (97)

is invariant under holomorphic coordinate changes (49) one says that the holomorphic
q-differential r is defined on ℛ.

In the same way as for the Abelian differentials one defines the divisor (r) of the q-
differentials.

Lemma 5.15 deg (r) = (2g − 2)q

Proof Let ! be an Abelian differential. Then

f =
r

!q
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is a meromorphic function on ℛ, which implies deg (f) = 0 and

deg (r) = deg (!q) = qdeg (!) = q(2g − 2).

Theorem 5.16 Δ[ℎ1, . . . , ℎg] defined by (95) is a (non-trivial) holomorphic q-differential
on ℛ with

q =
g(g + 1)

2
.

Proof We have to check that ℎk(z)dz = ℎ̃k(z̃)dz̃ implies Δdzq = Δ̃dz̃q. It is easy to
verify that

Δ̃ = det

⎛⎜⎜⎜⎝
ℎ̃1 . . . ℎ̃g
d
dz̃ ℎ̃1 . . . d

dz̃ ℎ̃g
...

...
dg−1

dz̃g−1 ℎ̃1 . . . dg−1

dz̃g−1 ℎ̃g

⎞⎟⎟⎟⎠

=

(
dz

dz̃

)g(g−1)/2

det

⎛⎜⎜⎜⎝
ℎ̃1 . . . ℎ̃g
d
dz ℎ̃1 . . . d

dz ℎ̃g
...

...
dg−1

dzg−1 ℎ̃1 . . . dg−1

dzg−1 ℎ̃g

⎞⎟⎟⎟⎠
=

(
dz

dz̃

)g(g−1)/2

Δ

[
ℎ1
dz

dz̃
, . . . , ℎg

dz

dz̃

]
. (98)

On the other hand algebraic properties of determinant imply also

Δ[fℎ1, . . . , fℎg] = fgΔ[ℎ1, . . . , ℎg], (99)

where f is an arbitrary holomorphic function. Combined with (98) for f = dz
dz̃ this yields

Δ̃ =

(
dz

dz̃

)g(g+1)/2

Δ.

Since the differentials !i are linearly independent Δ ∕≡ 0.

Lemma 5.15 and Theorem 5.16 imply

Corollary 5.17 The number N of the Weierstrass points on a Riemann surface ℛ of
genus g is less or equal then

NW ≤ g3 − g.

Moreover ∑
�(Pk) = g3 − g (100)

holds, where the sum is taken over all the Weierstrass points of ℛ.
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5.4 Jacobi inversion problem

Now we are in a position to prove more complicated properties of the Abel map. Let us
fix a point P0 ∈ ℛ.

Proposition 5.18 The Abel map

A : ℛ → Jac(ℛ)

P 7→
∫ P

P0

! (101)

is an embedding, i.e. the mapping (101) is an injective immersion (the differential
vanishes nowhere on ℛ).

Proof From corollary 5.10 of the Riemann-Roch theorem we know, that not all holo-
morphic differentials can vanish simultaniously at a point P . Therefore dA(P) = !(P) ∕=
0, which shows that the Abel map is an immersion.
Now suppose there exist P1, P2 ∈ ℛ with A(P1) = A(P2). According to the Abel theo-
rem the divisor P1−P2 is principal. A function with one pole does not exist for Riemann
surfaces of genus g > 0, thus the points must coincide P1 = P2.

Although the next theorem looks technical it is an important result often used in the
theory of Riemann surfaces and its applications.

Theorem 5.19 (Jacobi inversion)
Let Dg be the set of positive divisors of degree g. The Abel map on this set

A : Dg → Jac(ℛ)

is surjective, i.e. for any � ∈ Jac(ℛ) there exist a degree g positive divisor P1+. . .+Pg ∈
Dg (Pi are not necessarily different) satisfying

g∑
i=1

∫ Pi

P0

! = �. (102)

Proof Start with a non-special divisor DR = R1 + . . . + Rg. In a neighborhood U
of DR the differential of the Abel map does not vanish and all divisors are non-special
(Proposition 5.13). Choosing sufficiently large N ∈ ℕ one can achieve that A(DR)+�/N
lies in A(U) and therefore can be represented as

A(DQ) = A(DR) + �/N, DQ = Q1 + . . .+Qg ∈ U .

The problem (102) is equivalent to

A(P1 + . . .+ Pg) = N(A(DQ)−A(DR)).

Applying the Riemann inequality to the divisor N(DQ −DR) + gP0 we get

l(−N(DQ −DR)− gP0) ≥ 1,
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i.e. there exists a function f with (f) ≥ N(−DQ + DR) − gP0. Applying the Abel
theorem one obtains for the rest g zeros P1, . . . , Pg of this function

A(P1 + . . .+ Pg) = NA(DQ −DR) = �,

which coincides with (102).
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6 Hyperelliptic Riemann surfaces

6.1 Classification of hyperelliptic Riemann surfaces

Let us investigate in more detail hyperelliptic Riemann surfaces, which are the simplest
Riemann surfaces existing for arbitrary genus. We give a new definition of these surfaces.
The equivalence of this definition with the one of Section 1.1 will be proven.

Definition 6.1 A compact Riemann surface ℛ of genus g ≥ 2 is called hyperellyptic
provided there exists a positive divisor D on ℛ with

deg D = 2, l(−D) ≥ 2.

Equivalently, ℛ is hyperellyptic if and only if there exists a non-constant meromorphic
function Λ on ℛ with precisely 2 poles counting multiplicities. If ℛ carries such a
function, it defines a two-sheeted covering of the complex sphere

Λ : ℛ → ℂ̂. (103)

All the ramification points of this covering have branch numbers 1. The Riemann-
Hutwitz formula (41) gives the number of these points

NB = 2g + 2.

Let Pk be one the branch points of the covering (103). Λ(P )−Λ(Pk) has a zero of order
2 at Pk and no other zeros. This implies Λ(Pk) ∕= Λ(Pm) for k ∕= m. The function

W (P ) =
1

Λ(P )− Λ(Pk)
(104)

has the only pole at the point Pk and this pole is of order 2. This proves that all the
branch points of (103) are the Weierstrass points of ℛ.

Lemma 6.1 The Weierstrass points of the hyperellyptic surface ℛ are of the weight
g(g − 1)/2 and coincide with the branch points of the covering (103).

Proof Let Pk be one of the branch points of the covering (103). The functions
1,W (P ),W 2(P ), . . . ,W g−1(P ) have the pole divisors 0, 2Pk, 4Pk, . . . , 2(g − 1)Pk. re-
spectively. For the vector spaces L(−2nPk) we have

1,W (P ), . . . ,Wn(P ) ∈ L(−2nPk),

which implies for their dimensions

l(−2nPk) ≥ n+ 1.

For the dimensions of the corresponding spaces of holomorphic differentials this yields
due to the Riemann-Roch theorem

i(2nPk) ≥ g − n. (105)
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One can choose a basis !1, . . . , !g of holomorphic differentials !n = ℎn(z)dz, z(Pk) = 0
such that

ℎn = zmngn(z), gn(z) ∕= 0

with
0 ≤ m1 < m2 < . . . < mg, mn ∈ ℤ.

and
mn ≥ 2(n− 1) (106)

because of (105). This observation allows us to estimate the weight of the Weierstrass
point Pk. Using (99) we get

Δ[ℎ1, . . . , ℎg] = Δ[zm1g1, . . . , z
mggg] =

= (zm1g1)gΔ[1, zm2−m1 g2
g1
, . . . , zmg−m1 gg

g1
] =

= (zm1g1)gΔg−1[(zm2−m1 g2
g1

)′, . . . , (zmg−m1 gg
g1

)′] =

= (zm1g1)gΔg−1[zm2−m1−1g̃1, . . . , z
mg−m1−1g̃g−1],

where g̃k(z) defined by

zmk−m1−1g̃k =

(
zmk+1−m1

gk+1

g1

)′
are holomorphic near z = 0 and g̃k(z) ∕= 0. Proceeding futher we get for the order of the
zero of Δ at Pk

ord ≥ gm1 + (g − 1)(m2 −m1 − 1) + (g − 2)(m3 −m2 − 1) + . . .

+(mg −mg−1 − 1) =
∑g

n=1(mn − n+ 1).

Combined with (106) this yields

�(Pk) ≥
g∑

n=1

(n− 1) =
g(g − 1)

2
.

But there are 2g+ 2 branch points of the covering (103) and the sum of their weights is
≤ g(g − 1)(g + 1). Applying identity (100) we obtain

�(Pk) =
g(g − 1)

2
.

Moreover the points Pk, k = 1, . . . , 2g + 2 are the only Weierstrass points of ℛ.

Lemma 6.2 Let ℛ be a hyperellyptic Riemann surface in the sence of Definition 6.1.
Then the above mentioned (103) function Λ : ℛ → ℂ̂ is unique up to fractional linear
transformations.
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Proof Let Λ : ℛ → ℂ̂ and Λ̃ : ℛ → ℂ̂ be two hyperelliptic covering as in Definition
6.1. We know that their branch points coincide and are the Weierstrass points of ℛ.
Consider the functions Λ and Λ̃ on ℛ. Their polar divisors are Q1 + Q2 and Q̃1 + Q̃2

respectively. Let Pk be one of the Weierstrass points with Λ(Pk) ∕= ∞, Λ̃(Pk) ∕= ∞
(one can always find such a point from 2g + 2 Weierstrass points). The existence of the
functions

1

Λ(P )− Λ(Pk)
,

1

Λ̃(P )− Λ̃(Pk)

shows that the divisors Q1 +Q2 and Q̃1 + Q̃2 are equivalent

Q1 +Q2 ∼ 2Pk ∼ Q̃1 + Q̃2.

There exists a meromorphic function � with the divisor (�) = Q1 + Q2 − Q̃1 − Q̃2,
establishing the isomorphism of L(−Q1 −Q2) and L(−Q̃1 − Q̃2)

�L(−Q1 −Q2) = L(−Q̃1 − Q̃2).

Since {1,Λ} and {1, Λ̃} form the basises of L(−Q1−Q2) and L(−Q̃1− Q̃2) respectively
we get

Λ̃ = ��Λ + ��1

1 = �Λ + ��1,

and finally eliminating �

Λ̃ =
�Λ + �

Λ + �
.

Remark It is not difficult to prove [FarkasKra] that the hyperelliptic surfaces give the
lower bound for the number of the Weierstrass points

2g + 2 ≤ NW ≤ g3 − g.

Theorem 6.3 Definition 6.1 is equivalent to the definition of the compact Riemann
surface of hyperelliptic curve in Section 1.1.

Proof Let Ĉ be a compact Riemann surface of hyperelliptic curve as in Theorem 1.2.
For any �0 the pole divisor of the function

Λ =
1

�− �0

provides us the divisor D of Definition 6.1. On the other hand, let � : ℛ → ℂ̂ be a
meromorphic function with 2 poles as in Definition 6.1. Let �k = �(Pk), k = 1, . . . , 2g−2
be the values of � at the Weierstrass points. We have seen above that all of them are
different �k ∕= �m for k ∕= m. At this point it is easy to check that the complex structure
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of ℛ coincides with the complex structure of the compactification Ĉ of the hyperellyptic
curve

�2 =

2g+2∏
k=1

(�− �k),

described in Section 1.1

Theorem 6.3 and Lemma 6.2 imply the following

Corollary 6.4 Two hyperelliptic Riemann surfaces are conformally equivalent if and
only if their branch points differ by fractional linear transformation.

Proposition 6.5 Let ℛ be a hyperelliptic Riemann surface and � : ℛ → ℂ̂ the corre-
sponding two-sheeted covering. A positive divisor D of degree g is singular if and only
if it contains a paar of points

(�0, �0), (−�0, �0)

with the same �-coordinate or a double branch point

2(0, �k).

Proof i(D) > 0 implies that there exists a differential ! with (!) ≥ D. The differential
! is holomorphic and due to Theorem 4.10 can be represented as

! =
Pg−1(�)

�
d�,

where Pg−1(�) is a polynominal of degree g − 1. The differential ! has g − 1 pairs of
zeros

(�n, �n), (−�n, �n), n = 1, . . . , g − 1, Pg−1(�n) = 0.

Since D is of degree g it must contain at least one of these pairs.

6.2 Riemann surfaces of genus one and two

As it was proven in Corollary 5.8 there exists only one Riemann surface of genus zero,
it is the Riemann sphere ℂ̂. In this section we classify Riemann surfaces of genus one
and two.

Let ℛ be a Riemann surface of genus one and ! a holomorphic differential on it. Take
a point P0 ∈ ℛ. Due to Corollary 5.9 ! does not vanish on ℛ, therefore by ! = dz it
defines a local parameter z : U → ℂ, z(P0) = 0 in a neighbourhood of P0 ∈ U . The
Riemann-Roch theorem implies l(−2P0) = 2, thus there exists a non-constant function
g with a double pole in P0. Normalizing we have the following asymptotics of g at z = 0:

g(z) =
1

z2
+ o(1), z → 0.
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This asymptotics can be further detalized using the fact that g! and g2! are Abelian
differentials on ℛ. Indeed, these differentials are singular at P0 only and therefore must
have vanishing residues at this point (Lemma 4.11)

resP0 g! = resP0 g
2! = resP0 g

3! = 0.

For the asymptotics of g this implies

g(z) =
1

z2
+ az2 + bz4 + o(z4).

Define another function ℎ := dg/! on ℛ. It is holomorphic on ℛ ∖ P0 with a pole at P0

ℎ(z) = − 2

z3
+ 2az + 4bz3 + o(z3).

A direct computation shows that the function ℎ2− 4g3 + 20ag+ 28b vanishes at P0. On
the other hand this function is holomorphic on ℛ and therefore must vanish identically

ℎ2 = 4g3 − 20ag − 28b. (107)

Lemma 6.6 The zeros of the cubic polynomial

P3(x) := 4x3 − 20ax− 28b

are all different.

Proof Suppose P3(x) has a double zero at x0, i.e.

ℎ2 = 4(g − x0)2(g + 2x0)

or equivalently

4(g + 2x0) =

(
ℎ

g − x0

)2

.

Since g + 2x0 is of degree 2 the meromorphic function ℎ/(g − x0) has only one pole on
ℛ and must establish a holomorphic isomorphism ℛ = ℂ̂. This contradiction proves the
lemma.

By an appropriate affine coordinate change � = �ℎ, � = �g +  we can reduce (107) to

�2 = �(�− 1)(�−A)

with some A ∈ ℂ ∖ {0, 1} which can be explicitly computed in terms of a and b.

Proposition 6.7 Every compact Riemann surface of genus one is the compactification
Ĉ of an elliptic curve C

�2 = �(�− 1)(�−A), A ∈ ℂ ∖ {0, 1}.
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Proof Consider the elliptic curve C and its compactification Ĉ = C ∪{∞} (see Section
1.1). The holomorphic covering

f : ℛ ∖ P0
(�,�)−→ C

can be extended to P0 by f(P0) =∞. So defined holomorphic covering f : ℛ → Ĉ is an
isomorphism of Riemann surfaces. Indeed f−1(∞) = P0 and f is unramified at P0 (the
local parameter �/� on Ĉ at ∞ is equivalent to z).

As we have shown in Section 6.1 the branch points are parameters in the module space
of hyperelliptic curves. The complex dimension of this space is 2g − 1. Indeed, there
are 2g + 2 branch points and three of them can be normalized to 0, 1,∞ by a fractional
linear transformation. We see that for g = 2 this dimension coincides with the complex
dimension 3g − 3 of the space of Riemann surfaces of genus g.

This simple observation gives a hint that there exist non-hyperellyptic Riemann surfaces
with g ≥ 3 and that all Riemann surfaces of genus g = 2 are hyperelliptic.

Theorem 6.8 Any Riemann surface of genus g = 2 is hyperelliptic.

Proof Let ! be a holomorphic differential on ℛ and P1 + P2 its zero divisor (of degree
2g − 2). Since i(P1 + P2) > 0, the Riemann-Roch theorem implies

l(−P1 − P2) ≥ 2.

There exists a non-constant function � with the pole divisor P1 + P2 and ℛ is hyperel-
liptic.

In Section 6.1 it was shown that the values �k of the function � at the branch points
of � : ℛ → ℂ̂ are all different. Normalizing three of them by affine transformations of
coordinates to 0, 1 and ∞ we prove the following proposition.

Proposition 6.9 Every compact Riemann surface of genus two is the compactification
Ĉ of a hyperelliptic curve C

�2 = �(�− 1)(�−A1)(�−A2)(�−A3), Ai ∈ ℂ ∖ {0, 1}, Ai ∕= Aj .

Riemann surfaces of genus one can be also classified using the Abel map. Let us fix a
point P0 ∈ ℛ. In Section 5.4 it was shown that the Abel map is an embedding.

Proposition 6.10 A Riemann surface of genus one is conformally equivalent to its
Jacobi variety.

Proof The Jacobi variety of a Riemann surface of genus one is a one-dimensional
complex torus, which is itself a Riemann surface of genus one (see Section 1.2). The
Abel map (101) is obviously an unramified holomorphic covering (it is holomorphic with
non-vanishing derivative). The surjectivity of (101) follows from the Jacobi inversion
Theorem 5.19. The injectivity is a simple corollary of the Abel theorem proved in
Proposition 5.18.
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Theorem 6.11 Every Riemann surface of genus one is conformally equivalent to a one-
dimensional complex torus ℂ/Λ� , where Λ� is the lattice

Λ� = {n+ �m ∣ n,m ∈ ℤ}, Im � > 0.

Every torus ℂ/Λ� is a Riemann surface of genus one. The tori corresponding to dif-
ferent � are conformally equivalent ℂ/Λ� ∼= ℂ/Λ�̃ iff � and �̃ are related by a modular
transformation

�̃ =
c+ d�

a+ b�
,

(
a b
c d

)
∈ SL(2,ℤ). (108)

Proof The first statement follows from Proposition 6.10 if one uses another normaliza-
tion of the Abel map

P 7→ z =
1

2�i

∫ P

P0

!.

In this normalization the period lattice is generated by 1 and � = B/2�i, where B is the
period of the Riemann surface. The conditions Im � > 0 and Re B < 0 are equivalent.
Chosing another canonical homology basis of ℛ one obtains a period which differs by the
modular transformation (48) described in Lemma 4.15. In terms of � this is equivalent
to (108) since Sp(1,ℤ) = SL(2,ℤ).

On the other hand a bi-holomorphic map f : ℂ/Λ� → ℂ/Λ�̃ can be lifted to the corre-
sponding (unramified) covering

z ∈ ℂ F→ ℂ ∋ w
↓ ↓

ℂ/Λ�
f→ ℂ/Λ�̃ .

Any conformal automorphism F : ℂ→ ℂ is of the form (see for example [Beardon])

w = �z + �, �, � ∈ ℂ, � ∕= 0.

For the corresponding lattices this implies Λ�̃ = �Λ� . Basises 1, �̃ and �, �� of the
lattice Λ�̃ are related by a modular transformation(

1
�̃

)
=

(
a b
c d

)(
�
��

)
,

(
a b
c d

)
∈ SL(2,ℤ),

which proves (108).

We see that the theory of meromorphic functions on Riemann surfaces of genus one
is equivalent to the theory of elliptic functions, i.e. of doubly periodic meromorphic
functions.
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7 Theta functions

7.1 Definition and simplest properties

We start with a notion of an Abelian torus which is a natural generalization of the Jacobi
variety. Consider a g-dimensional complex torus ℂg/Λ where Λ is a lattice of full rank:

Λ = AN +BM, A,B ∈ gl(g,ℂ), N,M ∈ ℤg, (109)

and all 2g columns of A,B are ℝ-linearly independent. Non-constant meromorphic
functions on ℂg/Λ exist only (see, for example, [Siegel]) if the complex torus is an
Abelian torus, i.e. after an appropriate linear choice of coordinates in ℂg/Λ it is as
described in the following

Definition 7.1 Let B be a symmetric g × g matrix with negative real part15 and A a
diagonal matrix of the form

A = 2�i diag(a1 = 1, . . . , ag), ak ∈ ℕ, ak ∣ ak+1.

The complex torus ℂg/Λ with the lattice (109) is called an Abelian torus.

An Abelian torus with a1 = . . . = ag = 1 is called principally polarized. Jacobi varieties
of Riemann surfaces are principally polarized Abelian tori. Meromorphic functions on
Abelian tori are constructed in terms of theta functions, which are defined by their
Fourier series.

Definition 7.2 Let B be a symmetric g × g matrix with negative real part. The theta
function is defined by the following series

�(z) =
∑
m∈ℤg

exp{1

2
(Bm,m) + (z,m)}, z ∈ ℂ.

Here
(Bm,m) =

∑
ij

Bijmimj , (z,m) =
∑
j

zjmj .

Since ReB < 0 the series converge absolutely and defines an entire function on ℂg.

Proposition 7.1 The theta function is even

�(−z) = �(z)

and possesses the following periodicity property:

�(z + 2�iN +BM) = exp{−1

2
(BM,M)− (z,M)}�(z), N,M ∈ ℤg. (110)

15Note that B is not necessarily a period matrix of a Riemann surface.
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Proof is a direct computation

�(z + 2�iN +BM) = �(z +BM) =∑
m∈ℤg exp{1

2(B(m+M), (m+M)) + (z,m+M)− (z,M)− 1
2(BM,M)} =∑

m∈ℤg exp{−1
2(BM,M)− (z,M)}�(z).

It is useful also to introduce the theta functions with characteristics [�, �]

�

[
�
�

]
(z) =

∑
m∈ℤg

exp

{
1

2
(B(m+ �),m+ �) + (z + 2�i�,m+ �)

}
= (111)

�(z + 2�i� +B�) exp

{
1

2
(B�,�) + (z + 2�i�, �)

}
, z ∈ ℂg, �, � ∈ ℝg.

with the corresponding transformation laws

�

[
�
�

]
(z + 2�iN +BM) = (112)

exp
{
−1

2(BM,M)− (z,M) + 2�i((�,N)− (�,M))
}
�

[
�
�

]
(z)

Theta functions with half-integer characteristics �k, �k ∈ {0, 1/2}, ∀k are most useful. A
half-integer characteristic is called even (resp. odd) according to the parity of 4(�, �) =
4
∑
�k�k. The corresponding theta functions with these characteristics are even (resp.

odd) with respect to z. There are 4g half-integer characteristics, 2g−1(2g − 1) of which
are odd and 2g−1(2g + 1) are even.

7.2 Theta functions of Riemann surfaces

From now on we consider the case of an Abelian torus being a Jacobi variety ℂ/Λ =
Jac(ℛ) and theta functions generated by Riemann surfaces. In this case combining
the theta function with the Abel map one obtains the following useful mapping on a
Riemann surface

Θ(P ) := �(AP0(P )− d), AP0(P ) =

∫ P

P0

!. (113)

Here we incorporated the based point P0 ∈ ℛ in the notation of the Abel map, and the
parameter d ∈ ℂg is arbitrary. The periodicity properties of the theta function (110)
imply the following

Proposition 7.2 Θ(P ) is an entire function on the universal covering ℛ̃ of ℛ. Under
analytical continuation along a- and b-cycles on the Riemann surface it is transformed
as follows:

ℳak Θ(P ) = Θ(P ),

ℳbk Θ(P ) = exp{−1
2Bkk −

∫ P
P0
!k + dk} Θ(P ). (114)

The zero divisor (Θ) of Θ(P ) on ℛ is well defined.
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Theorem 7.3 The theta function Θ(P ) either vanishes identically on ℛ or has exactly
g zeros (counting multiplicities):

deg(Θ) = g.

Proof Suppose Θ ∕≡ 0. As in Section 4 consider the simply connected model Fg of the
Riemann surface. The differential d log Θ is well defined on Fg and the number of zeros
of Θ is equal

deg(Θ) =
1

2�i

∫
∂Fg

d log Θ(P ).

using the periodicity properties of Θ we get16 for the values of d log Θ at the correspond-
ing points

d log Θ(Q′j) = d log Θ(Qj),

d log Θ(P ′j) = d log Θ(Pj)− !j(Pj). (115)

For the number of zeros of the theta function this implies

deg(Θ) =
1

2�i

g∑
j=1

∫
aj

!j = g.

The location of the zeros of Θ can be described by the following Jacobi inversion problem,
which is important for further study of theta functions in Section 7.3.

Proposition 7.4 Let Θ ∕≡ 0. Then its g zeros P1, . . . , Pg satisfy17

g∑
i=1

∫ Pi

P0

! = d−K, (116)

where K is the vector of Riemann constants

Kk = �i+
Bkk

2
− 1

2�i

∑
j ∕=k

∫
aj

!j

∫ P

P0

!k. (117)

Proof Consider the integral

Ik =
1

2�i

∫
∂Fg

d log Θ(P )

∫ P

P0

!k.

along the boundary of the simply connected model Fg of ℛ ∋ P0. Note that the Riemann
bilinear identity can not be applied in this case since d log Θ is not a differential on ℛ.
The integral Ik can be computed by residues

Ik =

g∑
i=1

∫ P

P0

!k.

16For notations see Section 4.1 and in particular Theorem 4.4.
17The identities are, of course, in Jac(R), i.e. modulo periods.
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On the other hand, comparing again the integrand in the corresponding points Pj ≡ P ′j
and Qj ≡ Q′j (which coincide on ℛ, see Fig. 21) one has∫ Q′j

P0

!k =

∫ Qj

P0

!k − 2�i�jk,

∫ P ′j

P0

!k =

∫ Pj

P0

!k +Bjk,

which combined with (115) implies

1

2�i

∫
aj+a

−1
j

d log Θ(P )

∫ P

P0

!k =
1

2�i

∫
aj

{d log Θ(P )

∫ P

P0

!k −

(d log Θ(P )− !j(P ))(

∫ P

P0

!k +Bjk)} =
1

2�i

∫
aj

!j(P )

∫ P

P0

!k.

Note that we compute Ik modulo periods which allowed us to cancel the additional term

Bjk −Bjk
1

2�i

∫
aj

d log Θ(P )

in the last identity. The same computation for the b-periods is shorter

1

2�i

∫
bj+b

−1
j

d log Θ(P )

∫ P

P0

!k = �jk

∫
bj

d log Θ(P ).

For Ik this implies

Ik =
1

2�i

g∑
j=1

∫
aj

!j(P )

∫ P

P0

!k +

∫
bk

d log Θ(P ). (118)

This expression can be simplified further. Let R1, R2, R3 be the vertices of Fg (on ℛ
these three points correspond to the same point R) connected by the cycles ak and bk
as in Fig. 24.

Using the periodicity (114) one obtains∫
bk

d log Θ(P ) = log Θ(R3)− log Θ(R2) = −1

2
Bkk + dk −

∫ R2

P0

!k.

This integral should be combined with one of the integrals in the sum in (118)

1

2�i

∫
ak

!k(P )

∫ P

P0

!k =
1

4�i

∫
ak

d

(∫ P

P0

!k

)2

=

1

4�i

((∫ R2

P0

!k

)2

−
(∫ R1

P0

!k

)2
)

=

∫ R2

P0

!k − �i,

where one uses that R1 differs from R2 by the period ak. Finally comparing of the
derived expressions for Ik completes the proof.

One can easily check that K ∈ Jac(ℛ) is well defined by (117), i.e. is independent of the
integration path. On the other hand K depends on the choice of the canonical homology
basis and the base point P0. To emphasize the last dependence we denote it by

KP0 .
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bk

R1

ak R3

R2

Figure 24: To the proof of Proposition 7.4.

7.3 Theta divisor

Let us denote by Jk the set of equivalence classes (of linear equivalent divisors, see
Section 6.1) of divisors of degree k. The Abel theorem and the Jacobi inversion allow us
to identify Jg with the Jacobi variety

D ∈ Jg ←→ A(D) ∈ Jac(ℛ).

The zero set of the theta function of a Riemann surface, which is called theta divisor can
also be characterized in terms of divisors on ℛ.

Theorem 7.5 The theta divisor is isomorphic to the set Jg−1 of equivalence classes of
positive divisors of degree g − 1:

�(e) = 0⇔ ∃D ∈ Jg−1, D ≥ 0 : e = A(D) +K.

Proof Suppose �(e) = 0. Then there exists s ∈ ℕ and positive divisors D1, D2 ∈ Js
such that

�(AP0(D1)−AP0(D2)− e) ∕= 0

and for all positive divisors D̃1, D̃2 ∈ Jk of lower degree k = 0, . . . , s − 1 the theta
function

�(AP0(D̃1)−AP0(D̃2)− e) = 0

vanishes. The existence of such an s ≤ g follows from the Jacobi inversion (see Section
5.4). Take now two points P1 in D1 and P2 in D2

D1 = P1 +D′1, D2 = P2 +D′2, D
′
1, D

′
2 ≥ 0, D′1, D

′
2 ∈ Js−1

and consider the theta-function

f(P ) = �

(∫ P

P2

! +A(D′1)−A(D′2)− e
)

on ℛ. Due to our assumption f vanishes at the divisor D2

(f) ≥ D2

and does not vanish identically. Proposition 7.4 implies for the zero divisor D3 := (f)

AP2(D3) = e−AP2(D′1) +AP2(D′2)−KP2 . (119)
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Since D3 can be decomposed into the sum (degD3 = g)

D3 = D2 +D′, D′ ≥ 0, degD′ = g − s,

one obtains from (119)
e = AP2(D′1 +D′) +KP2 .

The divisor D′1 +D′ is of degree g − 1.

Conversely, let D = P0 + D′, degD′ = g − 1, D′ ≥ 0 be a non-special divisor of degree
g. Take

e = AP0(D) +KP0

and consider
Θ(P ) = �(AP0(P )− e).

If Θ(P ) does not vanish identically its zero divisor DΘ := (Θ) is of degree g. Proposition
7.4 implies

AP0(DΘ) = e−KP0 = AP0(D).

Since the divisor D is non-special we get D = DΘ and Θ(P0) = 0, i.e.

�(AP0(D′) +KP0) = 0. (120)

On the other hand if Θ(P ) vanishes identically it vanishes also at P0 and thus again
(120) holds. The claim is proven for the dense set and therefore for any positive divisor
of degree g − 1.

Remark For any D ∈ Jg−1 the expression AP0(D) + KP0 ∈ Jac(ℛ) is independent of
the choice of P0 and therefore P0 can be omitted in the formulation of Theorem 7.5.

Using the characterization of the theta divisor one can complete the description of Propo-
sition 7.4 of the divisor of the function Θ

Theorem 7.6 Let Θ(P ) = �(AP0(P ) − d) be the theta function (113) on a Riemann
surface and the divisor D ∈ Jg, D ≥ 0 a Jacobi inversion (102) of d−K

d = A(D) +K.

Then the following alternative holds:

(i) Θ ≡ 0 iff i(D) > 0, i.e. the divisor D is special,

(ii) Θ ∕≡ 0 iff i(D) = 0 i.e. the divisor D is non-special. In the last case D is precisely
the zero divisor of Θ.

Proof Evenness of theta function and Theorem 7.5 imply that �(d − A(P )) ≡ 0 is
equivalent to existence (for any P ) of a positive divisor DP of degree g − 1 satisfying
A(D)+K−A(P ) = A(DP )+K. Due to the Abel theorem the last identity holds if and
only if the divisors D and DP + P are linearly equivalent, i.e. there exists a function in
L(−D) vanishing at (arbitrary) point P . In terms of the dimension of L(−D) the last
property can be formulated as l(−D) > 1, which is equivalent to i(D) > 0.
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Suppose now thatD is non-special. Then as we have proven above Θ ∕≡ 0 and Proposition
7.4 implies for the zero divisor of Θ

A((Θ)) = A(D).

Non-speciality of D implies D = (Θ).

Although the vector of Riemann constants K appeared in Proposition 7.4 just as a
result of computation K plays an important role in the theory of theta functions. The
geometrical nature of K is partially clarified by the following

Proposition 7.7
2K = −A(C),

where C is a canonical divisor.

The proof of this proposition is based on the following lemma

Lemma 7.8 Let D be a positive divisor of degree 2g − 2 such that for any D1 ≥
0, degD1 = g − 1 there exists D2 ≥ 0, degD2 = g − 1 such that D ≡ D1 + D2.
Then l(−D) ≥ g, or equivalently i(D) > 0.

Proof Suppose l(−D) = s < g and f1, . . . , fs is a basis of L(−D). Choose Ps ∈ ℛ such
that fs(Ps) ∕= 0. The functions

�k(P ) = fk(P )fs(Ps)− fs(P )fk(Ps), k = 1, . . . , s− 1,

form a basis of L(−D + Ps). Proceeding further this way we find s ≤ g − 1 points
P1, . . . , Ps with l(−D + P1 + . . . + Ps) = 0, which contradicts to the assumption of the
lemma.

Proof of Proposition 7.7. Take an arbitrary D1 ∈ Jg−1, D1 ≥ 0. Due to Theorem 7.5
theta function vanishes at

e = A(D1) +K.

Theorem 7.5 applied to �(−e) = 0 implies the existence of a divisor D2 ∈ Jg−1, D2 ≥ 0
with

−e = A(D2) +K.

For 2K this gives
2K = A(D1 +D2)

with an arbitrary D1 ∈ Jg−1, D1 ≥ 0. Applying Lemma 7.8 to the divisor D1 +D2 we
get i(D1 +D2) > 0, i.e. D1 +D2 = (!) for some holomorphic differential !.

Vanishing of theta functions at some points follows from their algebraic properties.
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Definition 7.3 Half-periods of the period lattice

Δ = 2�i�+B�, � = (�1, . . . , �g), � = (�1, . . . , �g), �k, �k ∈ {0,
1

2
}.

are called half periods or theta characteristics. A half period is called even (resp. odd)
according to the parity of 4(�, �) = 4

∑
�k�k.

We denote the theta characteristics by Δ = [�, �]. A simple calculation

�(Δ) = �(−Δ + 4�i�+ 2B�) = �(−Δ) exp(−4�i(�, �))

shows that theta function �(z) vanishes in all odd theta characteristics.

Corollary 7.9 To any odd theta characteristic Δ there corresponds

Δ = A(DΔ) +K (121)

a positive divisor DΔ of degree g − 1 such that

2DΔ ≡ C.

Proof The existence of DΔ follows from �(Δ) = 0. Since 2Δ belongs to the lattice of
Jac(ℛ) doubling of (121) yields

A(2DΔ) = −2K = A(C).

The claim of the next corollary follows from the Abel theorem.

Corollary 7.10 For any odd theta characteristic Δ there exists a holomorphic differ-
ential !Δ with18

(!Δ) = 2DΔ. (122)

In particular all zeros of !Δ are of even multiplicity.

The differential !Δ of Corollary 7.10 can be described explicitly in theta functions.

To any point z of the Abelian torus on can associate a number s(z) determined by the
condition that all partial derivatives of � up to order s(z)−1 vanish at z and there exists
a non-vanishing at z partial derivative of order s(z). For most of the points s = 0. The
points of the theta divisor are precisely those with s > 0, in particular s(Δ) > 0 for any
odd theta characteristics Δ. An odd theta characteristics Δ is called non-singular iff
s(Δ) = 1.

Proposition 7.11 Let Δ be a non-singular odd theta characteristics and DΔ the cor-
responding (121) positive divisor of degree g − 1. Then the holomorphic differential !Δ

of Corollary 7.10 is given by the expression

!Δ =

g∑
i=1

∂�

∂zi
(Δ)!i,

where !i are normalized holomorphic differentials.

18Note, that identity (122) is an identity on divisors and not only on equivalence classes of divisors.
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Proof Let D = P1 + . . . + Pg−1 be a positive divisor of degree g − 1. Consider the
function f(P1, . . . , Pg−1) = �(A(D) +K) of g− 1 variables. Since f vanishes identically
differentiating it with respect to Pk one obtains∑

i

∂�

∂zi
(A(D) +K)!i(Pk) = 0

for all points Pk. The holomorphic differential

ℎ =
∑
i

∂�

∂zi
(e)!i

with e given by e = A(D) + K vanishes at all points Pk. Note that we have proven
(ℎ) ≥ D only in the case when all the points of D have multiplicity one.

Let Δ be an odd non-singular theta characteristics. Define DΔ ∈ Jg−1 by (121). Let us
show that DΔ is uniquely determined by the identity (121), i.e. i(DΔ) = 1. Suppose
i(DΔ) > 1, i.e. there exists a non-constant function f ∈ L(−DΔ). The divisor of
f − f(P0) is P0 + DP0 − DΔ with some DP0 ∈ Jg−2, DP0 ≥ 0, and P0 is arbitrary.
Consider

ℎΔ :=
∑
i

∂�

∂zi
(Δ)!i.

As it was shown above ℎΔ vanishes in all points of the divisor DΔ and in the same way
of the divisor P0 +DP0 . Thus we obtain ℎΔ(P0) = 0 for arbitrary P0 ∈ ℛ which implies
ℎΔ(P0) ≡ 0 and contradicts to non-singularity of Δ. Assume19 that all points of DΔ

are different. As we have shown above (ℎΔ) ≥ DΔ. On the other hand the differential
!Δ of Corollary 7.10 also vanishes at DΔ. Since the space of holomorphic differentials
vanishing at DΔ is one-dimensional (i(DΔ) = 1) the differentials !Δ and ℎΔ coincide up
to a constant.

We finish this Section with the complete description of the theta divisor by Riemann.
The proof of this classical theorem can be found for example in [FarkasKra, Lewittes].
It is based on considerations similar to the ones in the present Section.

Theorem 7.12 The following two characterizations of a point e ∈ Jac(ℛ) are equiva-
lent:

∙ Theta function and all its partial derivatives up to order s− 1 vanish in e and there
exists a non-vanishing in e partial derivative of order s.

∙ e = A(D) +K where D is a positive divisor of degree g and i(D) = s.

19Proof for the case of multiple points in D is more technically involved.
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8 Holomorphic line bundles

In this section we reformulate results of the previous sections in the language of holo-
morphic line bundles. This language is useful for generalizations to manifolds of higher
dimension, where one does not have so concrete tools as in the case of Riemann surfaces
and should rely on more abstract geometric constructions.

8.1 Holomorphic line bundles and divisors

Let (U�, z�) be coordinate charts of an open cover ∪�∈AU� = ℛ of a Riemann surface.
The geometric idea behind the concept of the holomorphic line bundle is the following.
One takes the union U�×ℂ over all � ∈ A and ”glue” them together identifying (P, ��) ∈
U�×ℂ with (P, ��) ∈ U�×ℂ for P ∈ U�∩U� linearly holomorphically, i.e. �� = g(P )��
where g(P ) is holomorphic.

Let us make this ”constructive” definition rigorous. Denote by

O∗(U) ⊂ O(U) ⊂ℳ(U)

the sets of nowhere vanishing holomorphic, holomorphic and meromorphic functions on
U ⊂ ℛ respectively. A holomorphic line bundle is given by its transition functions,
which are holomorphic non-vanishing functions g�� ∈ O∗(U� ∩ U�) satisfying

g��(P )g�(P ) = g�(P ) ∀P ∈ U� ∩ U� ∩ U . (123)

Remark Identity (123) implies in particular

g�� = 1, g��g�� = 1.

Introduce on triples [P,U�, �], P ∈ U�, � ∈ A, � ∈ ℂ the following equivalence relation20:

[P,U�, �] ∼ [Q,U�, �]⇔ P = Q ∈ U� ∩ U�, � = g���. (124)

Definition 8.1 The union of U�×ℂ identified by the equivalence relation (124) is called
a holomorphic line bundle L = L(ℛ). The mapping � : L→ ℛ defined by [P,U�, �] 7→ P
is called the canonical projection. The linear space LP := �−1(P ) ∼= P × ℂ is called a
fibre of L.

The line bundle with all g�� = 1 is called trivial.

A set of meromorphic functions �� ∈ ℳ(U�), ∀� ∈ A such that ��/�� ∈ O∗(U� ∩
U�) ∀�, � is called a meromorphic section � of a line bundle L(ℛ) defined by the tran-
sition functions21

g�� = ��/��.

20The condition (123) implies that the relation (124) is indeed an equivalence relation.
21The bundle condition (123) is automatically satisfied.
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Note that the divisor (�) of the meromorphic section � is well defined by

(�)
∣∣∣
U�

= (��)
∣∣∣
U�
.

In the same way one defines a line bundle L(U) and its sections on an open subset
U ⊂ ℛ. Bundles are locally trivializable, i.e. there always exist local sections: a local
holomorphic section over U� can be given simply by

U� ∋ P 7→ [P,U�, 1]. (125)

One immediately recognizes that holomorphic (Abelian) differentials (see Definitions
4.2, 4.4) are holomorphic (meromorphic) sections of a holomorphic line bundle. This
line bundle given by the transition functions

g��(P ) =
dz�
dz�

(P )

is called canonical and denoted by K.

Note that obviosly a line bundle is completely determined by its meromorphic section. In
Sections 4,6 we deal with meromorphic sections directly and formulate results in terms
of sections without using the bundle language.

The following proposition can be used as an alternative (”descriptive”) definition of
holomorphic line bundles.

Proposition 8.1 A holomorphic line bundle � : L→ ℛ is holomorphic projection � of a
two-dimensional complex manifold L with a ℂ-linear structure on each fibre �−1(P ), such
that for any point P ∈ ℛ there exists an open U ∋ P with a bi-holomorphic trivialization
�U : L(U) = �−1(U) → U × ℂ preserving the linear structure of fibres. Holomorphic
(meromorphic) sections of L are holomorphic (meromorphic) mappings s : ℛ → L with
� ∘ s = id.

Proof Local coordinates on L can be introduced using local coordinates z� on ℛ

Z� : U� × ℂ→ z�(U�)× ℂ ⊂ ℂ2, [P,U�, �] 7→ (z�(P ), �).

The transition functions Z� ∘ Z−1
� are obviously holomorphic. All other claims of the

proposition can also be easily checked

Let L be a holomorphic line bundle (124) with trivializations (125) on U�. Local sections

U� ∋ P 7→ [P,U�, ℎ�(P )],

where ℎ� ∈ O∗(U�) define another holomorphic line bundle L′ which is called (holomor-
phically) isomorphic to L. We see that fibres of isomorphic holomorphic line bundles can
be holomorphically identified ℎ� : L(U�) → L′(U�). This is equivalent to the following
homological definition22.

22Refining the coverings of L and L′ if necessary one may assume that the line bundles are defined
through the same open covering.
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Definition 8.2 Two holomorphic line bundles L and L′ are isomorphic if their transi-
tion functions are related by

g′�� = g��
ℎ�
ℎ�

(126)

with some ℎ� ∈ O∗(U�).

We have seen that holomorphic line bundles can be described through their meromorphic
sections. Therefore it is not suprising that holomorphic line bundles and divisors are
intimately related. To each divisor one can naturally associate a class of isomorphic
holomorphic line bundles. Let D be a divisor on ℛ. Consider a covering {U�} such
that each point of the divisor belongs to only one U�. Take �� ∈ ℳ(U�) such that the
divisor of �� is presicely the part of D lying in U�

(��) = D� := D ∣U� .

One can take for example �� = zni� , where z� is a local parameter vanishing at the point
Pi ∈ U� of the divisor D =

∑
niPi. The meromorphic section � determines a line bundle

L associated with D. If �′� ∈ ℳ(U�) are different local sections with the same divisor
D = (�′), then ℎ� = �′�/�� ∈ O∗(U�) and �′ determines a line bundle L′ isomorphic
to L. We see that a divisor D determines not a particular line bundle but a class of
isomorphic line bundles together with corresponding meromorphic sections � such that
(�) = D. This relation is clearly an isomorphism. Let us denote by L[D] isomorphic
line bundles determined by D. The degree degD is called the degree of the line bundle
L[D].

It is natural to get rid of sections in this relation and to describe line bundles in terms
of divisors.

Lemma 8.2 Divisors D and D′ are linearly equivalent iff the holomorphic line bundles
L[D] and L[D′] are isomorphic.

Proof Chose a covering {U�} such that each point of D and D′ belongs to only one U�.
Take ℎ ∈ℳ(ℛ) with (ℎ) = D−D′. This function is holomorphic on each U�∩U�, � ∕= �.
If � is a meromorphic section of L[D] then ℎ� is a meromorphic section of L[D′], which
implies (126) for the transition functions. Conversely, let � and �′ be meromorphic
sections of isomorphic line bundles L[D] and L[D′] respectively, (�) = D, (�′) = D′.
Identity (126) implies that ��ℎ�/�

′
� is a meromorphic finction on ℛ. The divisor of this

function is D −D′, which yields D ≡ D′.

Lemma 8.2 clarifies in particular why equivalent divisors are called linearly equivalent.

It turnes out that Lemma 8.2 provides us a complete classification of holomorphic line
bundles. Namely every holomorphic line bundle L comes as a bundle associated to the
divisor L = L[(�)] of its meromorphic section �, provided the last one exists.

Lemma 8.3 Every holomorphic line bundle possesses a meromorphic section.
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I do not know an analytic proof of this lemma. Proofs based on homological methods
are rather involved [GriffithsHarris, Gunning, Springer].

The following fundamental classification theorem follows immediately from Lemmas
8.2,8.3.

Theorem 8.4 There is a one to one correspondence between classes of isomorphic holo-
morphic line bundles and classes of linearly equivalent divisors.

Thus, holomorphic line bundles are classified by elements of Jn (see Section 7.3), where n
is the degree of the bundle n = degL. Due to the Abel theorem and the Jacobi inversion
elements of Jn can be identified with the points of the Jacobi variety. Namely, chose
some D0 ∈ Jn as a reference point. Then due to the Abel theorem the class of divisor
D ∈ Jn is given by the point

A(D −D0) =

∫ D

D0

! ∈ Jac(ℛ).

Conversely, due to the Jacobi inversion, given some D0 ∈ Jn to any point d ∈ Jac(ℛ)
there corresponds D ∈ Jn satisfying A(D −D0) = d.

¿From now on we do not distinguish isomorphic line bundles and denote by L[D] iso-
morphic line bundles associated with the divisor class D.

8.2 Picard group. Holomorphic spin bundle.

The set of line bundles can be equiped with an Abelian group structure. If L and L′ are
bundles with transition functions g�� and g′�� respectively, then the line bundle23 L′L−1

is defined by the transition functions g′��g
−1
�� .

Definition 8.3 The Abelian group of line bundles on ℛ is called the Picard group of ℛ
and denoted by Pic(ℛ)

Using the classification of Section 8.1 of holomorphic line bundles in terms of divisors
one immediately obtains the following result.

Theorem 8.5 The Picard group Pic(ℛ) is isomorphic to the group of divisors Div(ℛ)
modulo linear equivalence.

Proof Take meromorphic sections � and �′ of L and L′ respectively. Then �′/� is
a meromorphic section of L′L−1. For the divisors of the sections one has (�′/�) =
(�′)−(�). The claim of the theorem for bundles follows from passing to the corresponding
equivalence classes of the divisors.

Holomorphic q-differentials of Definition 5.8 are holomorphic sections of the bundle Kq.

23This is a special case of the tensor product L′ ⊗ L∗ defined for vector bundles.
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Corollary 8.6 The holomorphic line bundles L1, L2, L3 satisfy

L3 = L2L
−1
1

if and only if

degL3 = degL2 − degL1 and A(D3 −D2 +D1) = 0,

where Di are the divisors corresponding to Li = L[Di].

For the proof one uses the characterization of line bundles through their meromorphic
sections �1, �2, �3 and applies the Abel theorem to the meromorphic function �3�1/�2.

Since the canonical bundle K is of even degree one can define a ”square root” of it.

Definition 8.4 A holomorphic line bundle S satisfying

SS = K

is called holomorphic spin bundle. Holomorphic (meromorphic) sections of S are called
holomorphic (meromorphic) spinors.

Spinors are differentials of order 1/2 and their local description s(z)
√
dz is not familiar

from the standard course of complex analysis.

Proposition 8.7 There exist exactly 4g non-isomorphic spin bundles on a Riemann
surface of genus g.

Proof Fix a reference point P0 ∈ ℛ. As it was already mentioned at the end of Section
8.1 the classes of linear equivalend divisors are isomorphic to points of the Jacobi variety

D ∈ Jn ↔ d = AP0(D) = A(D − nP0) ∈ Jac(ℛ).

For the divisor class DS of a holomorphic spin bundle Corollary 8.6 implies

degDS = g − 1 and 2AP0(DS) = AP0(C),

where C is the canonical divisor. Proposition 7.7 provides us with general solution to
this problem

AP0(DS) = −KP0 + Δ,

whereKP0 is the vector of Riemann constants and Δ is one of 4g half-periods of Definition
7.3. Due to the Jacobi inversion the last equation is solvable (the divisor DS ∈ Jg−1 is not
necessarily positive) for any Δ. We denote by DΔ ∈ Jg−1 the divisor class corresponding
to the half-period Δ and by SΔ the corresponding holomorphic spin bundle SΔ := L[DΔ].
The line bundles with different half-periods can not be isomorphic since the images of
their divisors in the Jacobi variety are different.

Note that we obtained a geometrical interpretation for the vector of Riemann constants.
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Corollary 8.8 Up to a sign the vector of Riemann constants is the Abel map of the
divisor of the holomorphic spin bundle with the zero theta characteristic

KP0 = −A(D[0,0] − (g − 1)P0).

This corollary clarifies the dependence of KP0 on the base point and on the choice of
canonical homology basis.

Remark In the same way one can show that for a given line bundle L which degree is
a multiple of n ∈ ℕ, degL = nm there exist exactly n2g different ”n-th roots” of L, i.e.
line bindles L1/n satisfying (L1/n)n = L.

Finally, let us give a geometric interpretation of the Riemann-Roch theorem. Denote by
ℎ0(L) the dimension of the space of holomorphic sections of the line bundle L.

Theorem 8.9 (Riemann-Roch)
For any holomorphic line bundle � : L→ ℛ over a Riemann surface of genus g holds

ℎ0(L) = degL− g + 1 + ℎ0(KL−1). (127)

Proof This theorem is just a reformulation of Theorem 5.4. Indeed, let D = (�) be the
divisor of a meromorphic section of the line bundle L = L[D] and let ℎ be a holomorphic
section of L. The quotient ℎ/� is a meromorphic function with the divisor (ℎ/�) ≥ −D.
On the other hand, given f ∈ ℳ(ℛ) with (f) ≥ −D the product f� is a holomorphic
section of L. We see that the space of holomorphic sections of L can be identified with the
space of meromorphic functions L(−D) defined in Section 5.2. Similarly, holomorphic
sections of KL−1 can be identified with Abelian differentials with divisors (Ω) ≥ D.
This is the space H(D) of Section 5.2 and its dimension is i(D). Now the claim follows
from (88).

The Riemann-Roch theorem does not help to compute the number of holomorphic sec-
tions of a spin bundle. The identity (127) implies only trivial degS = g−1. Computation
of ℎ0(S) is a rather delicate problem. It turnes out that the dimension of the space of
holomorphic sections of SΔ depends on the theta-characteristics Δ and is even for even
theta-characteristics and odd for odd theta-characteristics [Atiah]. Spin bundles with
non-singular theta-characteristics have no holomorphic sections if the characteristic is
even and have a unique holomorphic section if the characteristic is odd.

Results of Section 7.3 allow us to prove this easily for odd theta-characteristics.

Proposition 8.10 Spin bundles SΔ with odd theta-characteristics Δ possess global holo-
morphic sections.

Proof Take the differential !Δ of Corollary 7.10. The square root of it
√
!Δ is a

holomorphic section of SΔ.

If Δ is a non-singular theta-characteristic then the corresponding positive divisor DΔ of
degree g − 1 is unique (see the proof of Proposition 7.11). This implies the uniqueness
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of the differential with (!) = DΔ and ℎ0(SΔ) = 1. This holomorphic section is given by√√√⎷ g∑
i=1

∂�

∂zi
(Δ)!i.
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