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1 The idea of DDG

Aim

DDG aims to develop discrete equivalents of the geometric notions and meth-
ods of classical differential geometry. The latter appears then as a limit of
refinement of the the discretization.

simplicial surface quad-surfacesmooth surface

Figure 1: Different kinds of surfaces.

One might suggest many different reasonable discretizations (with the same
smooth limit). Among these, which one is the best? DDG initially arose
from the observation that when a notion from smooth geometry (such as the
notion of a minimal surface) is discretized “properly”, the discrete objects
are not merely approximations of the smooth ones, but have special prop-
erties of their own, which make them form a coherent entity by themselves.

DDG versus Differential Geometry

In general

∙ DDG is more fundamental : The smooth theory can always be recovered
as a limit, while it is a nontrivial problem to find out which discretization
has the desired properties.
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∙ DDG is richer : The discrete theory uses some structures (such as combi-
natorics of the mesh) which are missing in the smooth theory.

∙ DDG is clarifying : Often a discretization clarifies the structures of the
smooth theory (for example unifies surfaces and their transformations,
cp. Fig. 2).

Figure 2: From the discrete master theory to the classical theory: surfaces
and their transformations appear by refining two of three net directions.

∙ DDG is simpler : It uses difference equations and elementary geometry
instead of calculus and analysis.

∙ DDG has (unexpected) connections to projective geometry and its sub-
geometries. In particular some theorems of differential geometry follow
from incidence theorems of projective geometry.

Applications

Current interest in DDG derives not only from its importance in pure math-
ematics, but also from its applications in other fields including:

∙ Computer graphics. CG deals with discrete objects (surfaces and curves
for instance) only.

Figure 3: A simplicial rabbit.
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Figure 4: Two examples from Berlin: The “Philologische Bibliothek der FU
Berlin” and an inside view of the DZ Bank at Pariser Platz.

∙ Architecture. Freeform architecture buildings have non-standard (curved)
geometry but are made out of planar pieces. Common examples are glass
an steel constructions.

∙ Numerics. “Proper” discretizations of differential equations are often ge-
ometric in order to preserve some important properties. There are many
examples and also recent progress in hydrodynamics, electrodynamics,
elasticity and so on.

∙ Mathematical physics. Discrete models are popular. DDG helps for ex-
ample to clarify the phenomenon of integrability.

History

Three big names in (different branches of) DDG are:

∙ R. Sauer (starting 1930’s)

Theory of quad-surfaces (build from quadrilateral) as an analogue of
parametrized surfaces. Important difference equations (related to inte-
grable systems), special classes of surfaces.

∙ A.D. Alexandrov (starting 1950’s)

Metric geometry of discrete surfaces. Approximation of smooth surfaces
by polyhedral surfaces.

∙ W. Thurston (1980’s)

Developed Koebe’s ideas of discrete complex analysis based on circle pat-
terns. Further development of this theory led in particular to construction
of surfaces from circles.
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Figure 5: A discrete version of the Sherk tower, made out of touching discs.

1.1 Discretization principles

Which discretization ist the best?

∙ Theoretical point of view. The one which preserves all the fundamental
properties of the smooth theory.

∙ Practical point of view (from Applications). The one which possesses good
convergence properties and represents a smooth shape by a discrete shape
with just a few elements very well.

Fortunately it turns out that in many cases a “natural” theoretical approx-
imation possesses remarkable approximation properties.

Two principles of geometric discretization

1) Transformation group principle: Smooth geometric objects and their
transformations should belong to the same geometry. In particular dis-
cretizations should be invariant with respect to the same transformation
group as the smooth objects are (projective, hyperbolic, Möbius etc.).
For example a discretization of a notion which belongs to Riemannian
geometry should be given in metric terms only.

Another discretization principle is more special, deals with parametrized
objects, and generalizes the observation from Fig. 2:

2) Consistency principle: Discretizations of surfaces, coordinate systems,
and other smooth parametrized objects should allow to be extended to
multidimensional consistent nets. All directions of such nets are indistin-
guishable.
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2 Discrete Curves
perhaps its
better to
define
regularity
as a
requirement
on the
angles,
since with
this
definition
the angle
might be
zero (for
non-
arclength
parametrized
curves)

Definition 2.1 (Discrete Curve). A discrete curve in ℝN is a map 
 : I →
ℝN of an interval I ⊆ ℤ. The interval I may be finite or infinite. A discrete
curve is called regular if any three successive points are pairwise different.
The length of a discrete curve is defined as

L(
) =
∑

k,k+1∈I
∥
k+1 − 
k∥.

A discrete curve is parametrized by arclength if

∥
k+1 − 
k∥ = 1 for all k, k + 1 ∈ I.

The tangent vector of a regular curve is defined as

Tk :=

k+1 − 
k
∥
k+1 − 
k∥

.

For an arc length parametrized curve one has Tk = 
k+1 − 
k.

Ti−1

Ti


i


i−1


i+1

Figure 6: A part of a discrete curve.

Remarks. ∙ We are mainly interested in the cases N = 2 of planar curves
and N = 3 of space curves. In the case of planar curves it is convenient to
identify ℝ2 ∼= ℂ.

∙ Even though the notation Ti suggests that the tangent vector is associated
with the vertex 
i, it should be thought of as belonging to the edge from 
i
to 
i+1.

Notation. We write 
k for 
(k) and Δ
k for the forward difference 
k+1−
k.
(Like the tangent vector, Δ
k should be thought of as associated with an
edge rather than a vertex.) Often we will drop the indices altogether and
use the following notation: We will write


 for 
k, 
1 for 
k+1, 
1̄ for 
k−1.

This notation may seem strange at first. It will become really useful when
we will deal with discrete surfaces fjk. Then we will write f1 for fj+1,k and
f2 for fj,k+1, etc.

Can one define a tangent vector at vertices? Yes, one can as we will see
next.



2 DISCRETE CURVES 7

2.1 Tangent flow for arclength parametrized discrete curves

A flow of a discrete curve 
 : ℤ→ ℝN is a continuous deformation


 : ℤ× ℝ ⊇ I × J → ℝN

(k, t) 7→ 
(k, t),

of the curve given by the evolution of the vertices


t :=
∂

∂t

 = v,

where
v : I × J → ℝN

is a vector field along the curve.

If one is looking for flows on discrete arclength parametrized curves in “tan-
gential” direction, it is natural to consider the flows of the form

v = �(T1̄, T )(
1 − 
1̄),

where � is a real function defined on the vertices.

Definition 2.2 (Tangential flow). A flow on a discrete arclength parametrized
curve is called tangential if it is parallel to 
1−
1̄ and preserves the arclength
parametrization.




T 
1


1̄

T1̄

v ∥ 
1 − 
1̄ = T + T1̄

Figure 7: Tangential flow.

Remark. For smooth curves, tangent vector fields v lead to tangent flows
which are curve reparametrizations. In particular, for an arclength parametrized
curve one simply has 
(s, t) = 
(s−t, 0) where s is the arclength parametrizia-
tion, i.e. the curve stays arclength parametrized.

Proposition 2.3. The tangential flow of an arclength parametrized discrete
curve is unique up to a multiplicative constant and given by


t =
T1̄ + T

1 + ⟨T1̄, T ⟩
.
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Proof. Let us compute � in 
t = �(T1̄, T )(T1̄ + T ) from the condition that
the arclength parametrization is preserved:

We have

Tt = (
1 − 
)t = �(T, T1)(T + T1)− �(T1̄, T )(T1̄ + T )

and therfore

0 = ⟨T, Tt⟩
⇔ �(T, T1)(1 + ⟨T, T1⟩) = �(T1̄, T )(1 + ⟨T1̄, T ⟩).

Since the left hand side is independent of T1̄ and the right hand side is
independent of T1 we have, up to a constant,

�(T, T1) =
1

1 + ⟨T, T1⟩
.

Remark. In the smooth case the straight line can be characterized by the
property that the tangential flow is a translation. In the discrete case this
is different:

Figure 8: A dicrete zig-zag curve evolves by parallel translation under the
tangential flow.

2.2 Curvature of planar discrete curves

In the smooth case, the curvature of a planar curve is defined as the inverse
radius of the osculating circle.

R
curvature � := 1

R


For discrete curves, the curvature may be defined in a similar way. We
discuss three possibilities.

1. Vertex osculating circle. The circle through 3 consecutive vertices. Its
center is the intersection of the perpendicular edge bisectors.
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k


k+1


k−1

This definition has a big disadvantage: The curvature of an arclength parametrized
curve cannot become larger than 2, which is strange.

2. Edge osculating circle. The circle which touches 3 consecutiv edges.
More precisely: The oriented circle that touches the lines through three
consecutive edges (which are oriented by the direction of the curve) in such
a way that at the points of contact the orientation of the circle coincides
with the orientation of the lines.

R



'
2


1

∣∣Δ
∣∣ '1

2

For the curvature one obtains

� =
1

R
=

cot '2 + cot '1

2

∥Δ
∥
.

Note that the above definition always gives a unique osculating circle, even
when the curve is non-convex.

⇝

3. Edge osculating circle for arclength parametrized curves (in general for
curves with constant edge length). One may define the osculating circle to
be the circle that touches two consecutive edges at their midpoints.
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1
2

1
2

'

1
2

1
2

R'
2

Figure 9: Osculating circle for discrete arclength parametrized curves.

With this definition of osculating circle, the curvature becomes

� =
1

R
= 2 tan

'

2
.

3 Tractrix and Darboux transform of a discrete
curve

We start with the theory of smooth planar curves.

Assume that a point moves along a curve 
 and pulls an interval (
, 
̂) so
that the distance ∥
̂ − 
∥ ist constant, and the velocity vector 
̂′ is parallel
to 
− 
̂. The curve 
̂ can be thought of as a trajectory of the second wheel
of a bicycle whose first wheel moves along the curve 
.

Definition 3.1 (Smooth tractrix). Let 
 : ℝ ⊇ I → ℝ2 be a smooth planar
curve. A curve 
̂ : I → ℝ2 is called a tractrix of 
, if the difference v := 
̂−

satisfies

∥v∥ = const. and 
̂′ ∥ v.

Lemma 3.2. Let 
 be arclength parameterized, let 
̂ be a tractrix of 
, and
let v = 
̂−
. Then the curve 
̃ := 
+2v is also arclength parametrized and

̂ is a tractrix of 
̃ as well.

Proof. We will show that ∥
̃′∥2 − ∥
′∥2 = 0. Note that

∥
̃′∥2 − ∥
′∥2 = ⟨
̃′ + 
′, 
̃′ − 
′⟩ = 2⟨
̃′ + 
′, v′⟩.

But 1
2(
̃ + 
) = 
 + v is the tractrix of 
. The derivative 
̃′ + 
′ is therefore

parallel to v. Now the claim follows from 0 = (∥v∥2)′ = 2⟨v, v′⟩.

Definition 3.3 (Smooth Darboux transform). Two arclength parameter-
ized curves 
, 
̃ are called Darboux transforms of each other if

∥
̃(s)− 
(s)∥ = const.,

and 
̃ is not just a translate of 
.
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v





̃


̂

Figure 10: A Traktrix and the corresponding Darboux transform of 
.

Theorem 3.4. Let 
 : I → ℝ2 be an arclength parametrized curve. Then
the following claims are equivalent:

(i) 
̃ is a Darboux transform of 


(ii) 
̂ := 1
2(
 + 
̃) is a tractrix of 
 (and of 
̃).

Proof. (ii) ⇒ (i): This is the statement of Lemma 3.2.

(i) ⇒ (ii): It is clear that v := 1
2(
̃ − 
) is of constant length. It remains to

show that 
̂′ ∥ v which is the same as 
̂′ ⊥ v′ in this case. This is true since

⟨
̂′, v′⟩ = ⟨1
2

(
′ + 
̃′),
1

2
(
̃′ − 
′)⟩ =

1

4
(1− 1) = 0.

For discrete curves the definition is the same:

Definition 3.5 (Discrete Darboux transform). Two discrete arclength pa-
rametrized curves 
, 
̃ : I → ℝ2 are called Darboux transforms of each other
if their corresponding points are at constant distance, ∥
̃k − 
k∥ = const,
and 
̃ is not a parallel translation of 
.





̃1


1


̃

Figure 11: An elementary quadrilateral of the Darboux transformation
(“Darboux butterfly”).
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Figure 12: A pair of discrete curves in Darboux relation to-
gether with the curve traced out by the midpoint of the assembly.
For this and other applications look at: http://www.math.tu-berlin.de/geometrie/lab/

There are two important generalizations of the Darboux transformation:

1. Möbius geometric (cross-ratio condition)

2. Space curves (non-commutative).

Next we will discuss the Möbius geometric generalization in detail.

3.1 Cross-ratio generalization and consistency

Definition 3.6 (Cross-ratio). The cross-ratio of four points z1, z2, z3, z4 ∈
ℂ̂ ∼= ℂℙ1 is defined as

cr(z1, z2, z3, z4) =
(z1 − z2)(z3 − z4)

(z2 − z3)(z4 − z1)
.

Important poperties:

1. The cross-ratio is preserved by fractional linear transformations

z 7→ az + b

cz + d
, ad− bc ∕= 0.

These are isomorphic to the group PSL(2,ℂ):

az + b

cz + d
↔

(
a b
c d

)
∈ PSL(2,ℂ),
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where
PSL(2,ℂ) == {A ∈ GL(2,ℂ) ∣ det(A) = 1}/{±I}.

Extended by the complex conjugation z 7→ z̄ these group expands to
the group of Möbius transformations of the plane. The real part and the
absolute value of the cross-ratio are preserved by Möbius transformations
since the complex conjugation z 7→ z̄ induces cr 7→ cr.

2. cr(z1, z2, z3, z4) ∈ ℝ ⇔ the points z1, z2, z3, z4 are concircular. More-
over cross-ratios of embedded circular quads are negative, and of non-
embedded ones are positive.

cr

( )
< 0, cr

( )
> 0.

3. Möbius transformations map circles and straight lines to circles and
straight lines

Lemma 3.7. Assume 
, 
1, 
̃ satisfying ∣
1 − 
∣ = Δ and ∣
̃ − 
∣ = l are
given. Let 
̃1 be the point determined from the condition

cr(
, 
1, 
̃1, 
̃) =
Δ2

l2
.

Δ

l


̃


1


̃1




Then [
̃1, 
̃] is the Darboux transform of [
1, 
].

Proof. The Darboux transform 
̃1 is geometrically uniquely determined by

, 
1 and 
̃. From the definition of the cross-ratio follows

cr(
, 
1, 
̃1, 
̃) =
Δ2

l2

(the value of the cross-ratio is greater 0 since the quadrilateral is not embed-
ded). Since the cross-ratio for three fixed points and one variable argument
is a bijective function, the former equation also determines 
̃1 uniquely.

This leads to the following Möbius generalization of the Darboux transfor-
mation.

Definition 3.8 (Möbius Darboux transform). Let 
 : I → ℂ be a discrete
curve, and let �i ∈ ℝ (or ℂ) associated to the edges [
i, 
i+1]. A curve

̃ : I → ℂ is called a Möbius Darboux transform of 
 with parameter � ∈ ℝ
(or ℂ), if

cr(
i, 
i+1, 
̃i+1, 
̃i) =
�i
�
.
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Lemma 3.7 shows that the standard Euclidean definition 3.5 of the Dar-
boux transformation corresponds to � = 1

l2
and �i = 1 ∀i in the Möbius

generalization, where l = ∣
̃ − 
∣ is the constant distance.

Note that the cross-ratio condition can also be applied to non-arclength
parametrized curves.

Now consider a three dimensional combinatorial cube and assume that all
edges of the cube parallel to the axis j carry a label �j . Suppose that the
values z, z1, z2, z3 ∈ ℂ are given at a vertex and its three neighbours. Then
the cross-ratio equation

cr(z, zi, zij , zj) =
�i
�j

applied to the three faces intersecting at z uniquely determines the values define all
this in
general for
quad-
equations?

z12, z13, z23.

z123

z1

z12

z13

�3

�1z

z2

z3

�2

z23

After that the cross-ratio equation delivers three a priori different values
for z123, coming from the three different faces containing z123 on which the
equation can be imposed.

In general, if for such a system these values, which can be computed in
several ways, coincide for any choice of the initial data z, z1, z2, z3, then the
system is called 3D-consistent.

It is not difficult to show that any 3D-consistent system is ND-consistent
for any N ≥ 3, thus can be consistently defined on a ℤN -lattice.

Theorem 3.9. The cross-ratio equation is 3D-consistent.

Proof. cr(z, z1, z13, z3) = �1
�3

can be rewritten as

�1

�3

z13 − z1

z1 − z
=
z13 − z3

z3 − z

⇔ �1

�3
(z13 − z1)

z3 − z1

z1 − z
= (z13 − z1) + (z1 − z3)

⇔ (z13 − z1)

(
1 +

�1

�3

z3 − z
z − z1

)
= z3 − z1 = z3 − z + z − z1.
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Thus (z13 − z1) is a Möbius transformation of (z3 − z):

z13 − z1 = L(z1, z, �1, �3)[z3 − z],

where

L(z1, z, �1, �3) =

(
1 z − z1
�1

�3(z−z1) 1

)
.

is its matrix representation and

z̃ =

(
a b
c d

)
z :⇔ z̃ =

az + b

cz + d
.

Going arround the cube once, we have

z123 − z12 = L(z12, z1, �2, �3)[z13 − z1]

z123 − z12 = L(z12, z2, �1, �3)[z23 − z2].

This equality of these two values of z123 follows from the stronger claim

L(z12, z1, �2, �3)L(z1, z, �1, �3) = L(z12, z2, �1, �3)L(z2, z, �2, �3).

which shall be checked as an exercise.

The last equation (on the top face) then follows from symmetry.

Now we will show that the Darboux butterflies can be put to all the faces
of a combinatorial cube consistently.

Corollary 3.10 (Consistency of the 2D Darboux transformation). Given a
point z and its three neighbours z1, z2, z3 ∈ ℂ, let zij be the Darboux trans-
forms associated to the faces of a cube. Then there exists a unique z123 ∈ ℂ
such that the faces (z1, z13, z123, z12), (z2, z23, z123, z12), and (z3, z13, z123, z23)
are Darboux butterflies.

z123

z23

z13

z1
z3z2

z12

z

z3

l2

z z1

z2
l3

l1

z12

z13

z23 z123

Figure 13: The combinatorial Darboux cube for the given data and the two
dimensional embeding of the corresponding Darboux butterflies together
with the unique consistent completion.
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Proof. This follows from the previous Theorem 3.9 if one sets �i = l2i , where
li = ∣z − zi∣.

The idea of consistency (or compatibility) is in the core of the theory of
integrable systems. One is faced with it already in the very beginning when
defining complete integrability of a Hamiltonian flow in the Liouville-Arnold
sence, which means exactly that the flow may be included into a complete
family of commuting (compatible) Hamiltonian flows. The 3D-consistency is
an example of this phenomenon in the discrete setup. Moreover, the consis-
tency phenomenon has developed into one of the fundamental principles of
discrete differential geometry, the consistency principle already mentioned
in Section 1.

Next we give a simple example to show how this principle implies some facts
from the corresponding smooth theory.

3.2 Darboux transformation and tangent flow

The tangent flow can be seen as an infinitesimal Darboux transformation.
This observation is based upon a simple

Lemma 3.11 (Tangent flow as infinitesimal Darboux transformation). Let

k−1, 
k, 
k+1 be three consecutive vertices of an arclength parametrized curve.
A Darboux transform of this curve is determined by choosing a vertex �k cor-
responding to the vertex 
k infinitesimally close to 
k−1:

�k = 
k−1 + "w + o("), "→ 0

with some w ∈ ℂ. Then the next vertex of the Darboux transform is given
by

�k+1 = 
k + "vk⟨w, Tk−1⟩+ o("), (1)

where vk is the tangent flow at 
k:

vk =
Tk + Tk−1

1 + ⟨Tk, Tk−1⟩
.

In particular, if w = vk−1 then also �k+1 = 
k + "vk + o(").

Proof. The distance between 
 and its Darboux transform � is given by

l2 = ∥
 − �∥2 = ∥Tk−1 − "w + o(")∥2 = 1− 2"⟨w, Tk−1⟩+ o(").

For the cross-ratio this implies

q := cr(
k−1, 
k, �k, �k−1) =
1

l2
= 1 + 2"⟨w, Tk−1⟩+ o(").
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Resolving the cross-ratio formula q = cr(
k, 
k+1, �k+1, �k) for �k+1 we ob-
tain

�k+1 − 
k =
(1− q)(
k − 
k+1)(�k − 
k)

k − 
k+1 + q(�k − 
k)

.

In the limit "→ 0 this yields

�k+1 − 
k = "⟨w, Tk−1⟩
Tk ⋅ Tk−1

Tk + Tk−1
+ o("),

which is equivalent to (1).

If we apply such a Darboux transformation to the left end vertex of 
0 of a
discrete curve 
 : {0, .., N} → ℝ2 we obtain an infinitesimal tangent flow of
all vertices (except maybe 
0).

Theorem 3.12. The Darboux tranformation of discrete arclength parame-
trized curves is compatible with its tangent flow. This means:
Given two discrete arclength parametrized curves 
, 
̃ : I → ℝ2 evolving
under the tangential flow t 7→ 
(t, ⋅), t 7→ 
̃(t, ⋅). If the curves are in Darboux
correspondence at some t = t0, then they are Darboux transforms of each
other for all t.

Proof. This fact can be derived from the permutability of the Darboux trans-
formations. The three directions of the compatibility cube for Darboux
transformations get three different interpretations:

Let 
 and 
̃ be a Darboux pair. Let � be an infinitesimal Darboux transform
of 
 as in Lemma 3.11, i.e. with �k → 
k−1. The Darboux condition
determines vertices �̃k and �̃k+1, as in the picture, uniquely (from Corollary
3.10 we know that everything is consistent).

From the cross-ratio cr(
k, �k, �̃k, 
̃k) it is easy to see that the vertex �̃k of
the Darboux cube also satisfies �̃k → 
̃k−1 and therefore, due to Lemma
3.11, the curve �̃ is given by the tangent flow of 
̃.

Passing to the limit "→ 0 we obtain the claim of the theorem.

Remark. (Möbius geometry tangent flow).
For the Möbius Darboux transformation the corresponding construction
leads to the flow


t =
Δ
 ⋅Δ
1̄

Δ
 + Δ
1̄





1̄

1


t

which is tangent to the circle through 
1̄, 
 and 
.
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k+1

�̃k+1


̃k

�k+1


k
curve

�k

�̃k


̃k+1

tangent flow as
infinitesimal Dar-
boux transform

Darboux transformation

Figure 14: The Darboux compatibility cube with different interpretations
of the three dimensions.

Remark. (Generalization to space curves).
There exists also a generalization of the Darboux transformation to a con-
sistent system in an associative algebra A. The case of quaternions, A = ℍ,
leads to a Darboux transformation for space curves (with twist).

Figure 15: A Darboux butterfly for space curves is not planar.

4 Discrete elastica

Consider variations 
 of a (space) curve of length L which preserve:

∙ the length of the curve

∙ the endpoints

∙ the tangent directions at the endpoints.

Parametrizing by arclength we get mappings 
 : [0, L] → ℝ3 and T = 
′ :
[0, L]→ S2 with constant

∙ 
(0), 
(L) ∈ ℝ3 ⇒ 
(L)− 
(0) =
L∫
0

T (s)ds

∙ T (0), T (L)
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(0)

T (0)

T (L)

(L)

Figure 16: One admissible variation under given boundary conditions.

Definition 4.1 (Smooth Elastica, Bernoulli’s elastica). Elastica are ex-
tremals (critical points) of the bending energy

E =

∫ L

0
�2(s)ds.

Here �2 = ∥T ′∥2 is the curvature of a curve.

Basic fact from the calculus of variations. The critical points (ex-
tremals) of the functional

S =

∫ L

0
ℒ(q, q′)ds

under the variations preserving the constraints

Fi :=

∫ L

0
fi(q, q

′)ds = ci ∈ ℝ i = 1, .., N

are also critical points of the unconstraint functional

S� = S +

N∑
i=1

�iFi

with some constants �i ∈ ℝ. These constants are determined by the condi-
tions Fi = ci ∀ i and are called Lagrange multipliers.

Basic fact from Lagrangian mechanics. The trajectory q(t) of a me-
chanical system with the potential energy P and the kinetic energy K is
critical for the action functional

S =

∫ t2

t1

ℒ(q, q′)dt

with the Lagrangian ℒ = K − P .

Theorem 4.2. An arclength parametrized curve 
 : [0, L] → ℝ3 is elastica
if and only if its tangent vector T = 
′ : [0, L]→ S2 describes the evolution
of the axis of a spherical pendulum.
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Proof. The extrema of the functional

S =

∫ L

0

(
1

2
⟨T ′, T ′⟩ − ⟨a, T ⟩

)
ds, a ∈ ℝ3, T : [0, L]→ S2,

can be equivalently seen as:

1. extrema of the functional
L∫
0

⟨T ′, T ′⟩ds with the constraints
L∫
0

Tds = c ∈

ℝ3, i.e. elastica.

2. extrema of the Lagrangian of a spherical pendulum with the kinetic en-
ergy 1

2⟨T
′, T ′⟩ and the gravitational energy ⟨a, T ⟩ (cp. second basic fact).

a
T

The constant vector a ∈ ℝ3 is interpreted as gravitation vector in the pen-
dulum case and as Lagrange multipliers for the elastica variational prob-
lem.

Remarks. ∙ The spherical pendulum in Sn and elastica in ℝn always lie
in 3-dimensional euclidean spaces spanned by the initial resp. boundary
conditions

T (0), T ′(0), a (or 
(L)− 
(0), T (0), T (L)).

∙ Planar elastica were classified by Euler (cp. Fig. 17)

Figure 17: Examples of planar elastica, among them the two only closed
ones: circle and Euler’s elastic eight.

∙ These curves correspond to the classical mathematical pendulum in the
plane.

Now what is a proper bending energy for a discrete arclength parametrized
curve 
 : I → ℝ3, T : I → S2 ?

As we will see later, there are deep mathematical arguments to define the
bending energy of a discrete curve at vertex 
i as

ℰi := log

(
1 +

�2
i

4

)
.
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Here ' is the bending angle and � = 2 tan '
2 is the curvature of the osculating

circle touching two neighbouring edges at the midpoints (cp. Fig. 9). For
now we just check that this definition agrees with physical intuition:

∙ In the smooth limit 'i → 0 we have � → 0 and ℰi → 1
4�

2
i , which agrees

with the definition in the smooth case.

∙ For singular curves 'i → � the energy becomes infinite.

∙ One gets this bending energy assuming that the bending force is propor-
tional to the curvature. For the bending energy this implies∫ '

0
�( )d =

∫ '

0
2 tan

 

2
d = −4 log

(
cos

'

2

)
= −2 log

(
cos2 '

2

)
= 2 log

(
1 + tan2 '

2

)
.

 

F ( )

'

Figure 18: The bending energy as the integral of the bending force.

Definition 4.3 (Discrete Elastica). A discrete arclength parametrized curve

 : I → ℝ3 with the tangent vectors T : I → S2 is called discrete elastica if
it is critical for the functional

S =
∑
i

log

(
1 +

�2
i

4

)
∼=
∑
i

log(1 + ⟨Ti, Ti−1⟩) ∼=
∑
i

log ∥Ti−1 + Ti∥.

Here �i = tan 'i
2 is the curvature and ∼= means that the functionals are

equivalent (i.e. have the same critical points). The permissible variations
should preserve the end points and the end edges 
0, 
n, T0, Tn−1; I =
[0, n] ⊂ ℤ.

A special case of boundary conditions is the case of closed discrete elastica.
The conditions 
n−1 = 
0, 
n = 
1 imply T0 = Tn−1. Without loss of
generality one can assume that 
0 and 
1 are fixed.


n = 
1


n−1 = 
0

Tn−1 = T0
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Theorem 4.4 (Euler-Lagrange equations for discrete elastica). A discrete
arclength parametrized curve 
 : I → ℝ3 is a discrete elastica if and only if
there exist vectors a, b ∈ ℝ3 such that

Tk × Tk−1

1 + ⟨Tk, Tk−1⟩
= a× 
k + b, where Tk = 
k+1 − 
k. (2)

Proof. Let us derive the equations for critical points of the functional

S =
∑
k

log (1 + ⟨Tk−1, Tk⟩) .

The constraints
∑n−1

k=0 Tk = const and ⟨Tk, Tk⟩ = 1 ∀k can be taken into
account by Lagrange multipliers. This leads to the functional

S� =
∑
k

(log (1 + ⟨Tk−1, Tk⟩)− ck⟨Tk, Tk⟩ − ⟨a, Tk⟩) .

Here ck ∈ ℝ and a ∈ ℝ3 are Lagrange multipliers.

The equation for critical points

∂S�
∂Tk

= 0 ∀k

reads
Tk−1

1 + ⟨Tk, Tk−1⟩
+

Tk+1

1 + ⟨Tk, Tk+1⟩
= a+ 2ckTk.

The cross product with Tk implies

Tk+1 × Tk
1 + ⟨Tk, Tk+1⟩

− Tk × Tk−1

1 + ⟨Tk, Tk−1⟩
= a× Tk = a× (
k+1 − 
k) ,

which is equivalent to (2).

In the smooth limit ⟨Tk, Tk+1⟩ we get

Tk × Tk−1 = (Tk − Tk−1)× Tk−1 → T ′ × T,

and thus the equation (2) yields the Euler-Lagrange equation


′′ × 
 = a× 
 + b (3)

for smooth elastica.
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Definition 4.5 (Discrete spherical pendulum). A discrete spherical pendu-
lum is a map T : I → S2 which is critical for the Lagrangian

ℒ = log (1 + ⟨Tk, Tk−1⟩)− ⟨a, Tk⟩.

Here the terms log(1 + ⟨Tk, Tk−1⟩) and ⟨a, Tk⟩ are interpreted as the kinetic
and the potential energies of the pendulum with the gravitation vector a ∈
ℝ3.

Imediately one obtains a discrete version of Theorem 4.2:

Theorem 4.6. A discrete arclength parametrized curve 
 : I → ℝ3 is a
discrete elastica if and only if its tangent vector Tk = 
k+1−
k, T : I → S2,
describes the evolution of a discrete spherical pendulum.

Proof. Analogous to the proof of Theorem 4.2

4.1 Discrete Heisenberg flow and elastica

Definition 4.7 (Discrete Heisenberg flow). The flow


t =
Tk × Tk−1

1 + ⟨Tk, Tk−1⟩
(4)

on discrete arclength parametrized curves is called Heisenberg flow.

In the smooth case the Heisenberg flow on arclength parametrized curves is
given by 
t = T ′ × T . Differentiation one obtains Tt = T ′′ × T which is an
equation for the Heisenberg magnetic.

There is the following important relation between the discrete Heisenberg
flow and the tangential flow we discussed earlier: going to be

adopted for
general
discrete
curves

Lemma 4.8. The Heisenberg flow is the only local flow in the binormal
direction which commutes with the tangent flow on discrete arclength para-
metrized curves.

Proof. to be completed (direct long computation).

The discrete Heisenberg flow allows another characterization of discrete elas-
tica as follows:

Theorem 4.9. A discrete arclength parametrized curve is a discrete elastica
if and only if the Heisenberg flow preserves its form, i.e. under the action
of this flow the curve evolves by an Euclidean motion.

For the proof of this theorem we need a convenient analytic description
of rigid (Euclidean) motions. Therefore we will now give a quaternionic
description of these, which will be also convenient for treatment of other
problems in these lectures.
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4.1.1 Quaternions

The quaternion algebra ℍ is a real-4-dimensional generalization of complex
numbers. Let {1, i, j, k} be the standard basis of ℍ for which holds

ij = k, jk = i, ki = j and ii = jj = kk = −1.

A quaternion
q = q0 ⋅ 1 + q1 ⋅ i + q2 ⋅ j + q3 ⋅ k

is decomposed in its real and imaginary parts

Re(q) := q0 ∈ ℝ, Im(q) := q1i + q2j + q3k ∈ Imℍ.

The conjugated quaternion q̄ and the absolute value ∣q∣ are given by

q̄ := q0 − q1i− q2j− q3k, ∣q∣2 = q2
0 + q2

1 + q2
2 + q2

3.

Then for any q, p ∈ ℍ one has

qp = p̄ ⋅ q̄

and the inverse quaternion is given by

q−1 =
q̄

∣q∣2
.

We identify vectors in ℝ3 with imaginary quaternions

v = (v1, v2, v3) ∈ ℝ3 ←→ v = v1i + v2j + v3k ∈ Imℍ.

For the quaternionic product of imaginary quaternions this implies

vw = −⟨v, w⟩+ v × w (5)

where ⟨v, w⟩ and v × w are the scalar and vector product in ℝ3.

Unitary quaternions
ℍ1 = {q ∈ ℍ ∣ ∣q∣ = 1}

can be parametrized as q = cos�+ sin�w, where � ∈ [0, �] and w ∈ Imℍ is
a unitary vector ∣w∣ = 1.

Proposition 4.10. The map Rq : ℝ3 → ℝ3 induced by the quaternionic
mapping v 7→ qvq−1 with q = cos�+ sin�w ∈ ℍ1 (w ∈ Imℍ, ∣w∣ = 1) is the
rotation about the vector w by the angle 2�.
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Proof. Let v ∈ Imℍ. Decompose v = v∥ + v⊥ with v∥ ∥ w, v⊥ ⊥ w. From
(5) follows

v∥w = −⟨v∥, w⟩ = w v∥ (6)

and
v⊥w = v⊥ × w = −w v⊥. (7)

Since ∣q∣ = 1 we have q−1 = q̄ = cos�− sin�w and therefore

q v∥ q
−1 = (cos�+ sin�w) v∥ (cos�− sin�w)

(6)
= (cos�+ sin�w)(cos�− sin�w) v∥

= qq−1v∥ = v∥

as well as

q v⊥ q
−1 = (cos�+ sin�w) v⊥ (cos�− sin�w)

(7)
= (cos�+ sin�w)(cos�+ sin�w) v⊥

= (cos2 �− sin2 �+ 2 cos� sin�w) v⊥

= cos(2�) v⊥ + sin(2�)w × v⊥.

Hence Rq is a rotation about w of amount 2� since the parallel ratio of v is
preserved and the perpendicular one is rotated by 2� in a plane perpendic-
ular to w.

v∥ 2�

v⊥

v

w × v⊥

w

Rq(v) = qvq−1

Remark. Since for any axis of rotation one finds a unit vector w, all rota-
tions of ℝ3 can be described in the above way. Moreover for each rotation
Rq there are exactly two unitary quaternions which describe this rotation,
namely q and −q, which means that unitary quaternions are a double cov-
ering of SO(3), the rotation group of ℝ3.
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As mentioned before an Euclidean motion is a composition of a rotation and
a translation and therefore can be described as

v 7→ qvq−1 + p, q ∈ ℍ1, p ∈ Imℍ

in the quaternionic setup.

Let t 7→ (q(t), p(t)) be a one parameter family of Euclidean motions (here t
is interpreted as time). The derivative of this flow is a vector field called an
infinitesimal Euclidean motion.

Corollary 4.11. Infinitesimal Euclidean motions are vector fields of the
form

vt = a× v + b, a, b ∈ Imℍ. (8)

Here a, b ∈ ℝ3 are called angular velocity and (translation) velocity of the
motion.

Proof. Differentiating v(t) = q(t)v0q
−1(t) + p(t) we get

vt = [q′q−1, v] + p′.

The quaternions q′q−1 and p′ are imaginary and are identified with vectors
in ℝ3. Indeed qq̄ = 1 implies q′q̄ + qq̄′, which is the imaginarity condition
for the quaternion q′q−1 = q′q̄. The Euclidean motion flow corresponding
to the vector field (8) is given by

q(t) = eat, p(t) = bt.

This leads to an easy

Proof of Theorem 4.9. The claim follows immediately from Theorem 4.4
and Corollary 4.11.

what about
generaliza-
tions and
problems
from
lecture
notes p.30?

5 Discrete surfaces

many different views of discrete surfaces, general definitions

beeing
adapted
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6 Curvatures of polyhedral surfaces

In the smooth case the Gaussian curvature of a surface at a point p is defined
as the quotient of oriented areas

K(p) = lim
"→0

A (N (U"(p)))

A (U"(p))
,

where U"(p) is an "-neighborhood of p on the surface, and N(U"(p)) ⊂ S2 is
its image under the Gauss map.

For a polyhedral surface the curvature concentrates at vertices: the area
N(U"(p)) vanishes for all internal points of faces and edges. For a vertex it
is equal to the area of the corresponding geodesic spherical polygon, which is
2�−

∑
i �i. Here �i are the external angles of the spherical polygon, which

conincide with the angles of the different faces of the polyhedral surface at
vertex p (cp. Fig. 19). Thus

∑
�i is the total vertex angle at p. picture p.

36a

Figure 19: �2 is the angle between n2 and m2. Rotating by �
2 about N2 we

get �2 as the angle between N1 ×N2 and N3 ×N2.

Definition 6.1 (Discrete Gaussian curvature). For a polyhedral surface S
the angle defect

K(p) := 2� −
∑
i

�i

at a vertex p is called the Gaussian curvature of S at p. The total Gaussian
curvature is defined as the sum

K(S) :=
∑
p∈V

K(p).

The points with K(p) > 0, K(p) = 0 and K(p) < 0 are called spherical,
euclidean, and hyperbolic respectively.

Remark. Since the discrete Gaussian curvature is defined intrinsically (the
normals are not involved) it is preserved by isometries as in the smooth case
(Gauss’ Theorema Egregium).

Theorem 6.2 (Polyhedral Gauss-Bonnet). The total Gaussian curvature
of a compact, closed polyhedral surface S is given by

K(S) = 2��(S).
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Proof. We have

K(S) =
∑
p∈V

K(p) = 2�∣V ∣ −
∑

all angles of S

�i.

The angles �−�i are the (oriented) external angles of a polygon. Their sum
is ∑

all angles of the polygon

(� − �i) = 2�.

Therefore the sum over all faces gives∑
all angles of S

(� − �i) = 2�∣F ∣

which leads to
2�∣E∣ −

∑
all angles of S

�i = 2�∣F ∣.

Here we used the following: In the sum each angle gives � and the number
of angles is equal to 2∣E∣ (each edge is associated with 4 attached angles but
each angle comes with two edges). Together we have

K(S) = 2�(∣V ∣ − ∣E∣+ ∣F ∣) = 2��(S).

Example 6.3 (Gaussian curvature of a cube). The Gaussian curvature of
every vertex of a cube is �

2 .

�
2

�
2

�
2

K = 2� − 3�
2 = �

2

6.1 Principal curvatures

Extrinsic curvatures of a smooth surface are defined as follows. Consider
a one parameter family of spheres S(�) of signed curvature � touching the
surface at a point p (� is positive if the sphere lies at the same side of the
tangent plane as the normal and negative otherwise). Let M be the set of
tangent spheres intersecting any neighborhood U ⊂ p in more than just the
point p. The values

�1 = inf
S∈M

�(S), �2 = sup
S∈M

�(S)
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N

p

�1 < 0

�2 > 0

Figure 20: The curvature spheres touching the surface in p.

are called the principal curvatures of the surface at p (cp. Fig. 20).

The spheres S(�1) and S(�2) have a second order contact with the surface.
The contact directions are orthogonal (curvature directions). The mean
curvature is defined as

H =
1

2
(�1 + �2) .

For the Gaussian curvature one has

K = �1�2.

Definition 6.4 (Discrete mean curvature). The discrete mean curvature of
a polyhedral surface S is a function on edges e ∈ E given by

H(e) :=
1

2
�(e)l(e),

where l(e) is the length of e, and �(e) is the oriented angle between the
normals of the adjacent faces sharing the edge e (the angle is considered
positive in the convex case and negative otherwise).

e n2

n1

�
n2

n1

The total mean curvature again is defined as the sum over all edges

H(S) :=
∑
e∈E

H(e) =
1

2

∑
e∈E

�(e)l(e).
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This definition can be motivated by Steiner’s formulas for polyheder and
smooth surfaces:

Theorem 6.5 (Steiner’s theorem for polyheder). Let P be a convex poly-
hedron and P� its parallel body at the distance �

P� :=
{
p ∈ ℝ3 ∣ d(p,P) ≤ �

}
.

The volume of the convex body P� is a cubic polynomial in � given by

V (P�) = V (P) +A(∂P)�+H(∂P)�2 +
4�

3
�3, (9)

where ∂P is the boundary surface of P and A(∂P) is its area. The area of
the boundary surface ∂P� is given by

A(∂P�) = A(∂P) + 2H(∂P)�+ 4��2. (10)

Proof. The area of ∂P� consists of three parts:

Plane pieces congruent to the faces of ∂P, cylindrical pieces of radius �,
angle � and length l(e) along the edges of ∂P and spherical pieces at the
vertices of P.

∂P�

∂P

Merged together by parallel translation the spherical pieces comprise a round
sphere of radius �. The formula for the volume follows by integration in
�.

In the smooth case things look like follows:

The normal shift of a smooth surface S with the normal map N is defined
as

S� := S + �N.

For sufficiently small � the surface S� is also smooth. Interpreting S as an
enveloping surface of the principal sphere congruences one can show that
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the centers of the principal curavature spheres of S and S� coincide. The
radii change by �

1

�1�
=

1

�1
+ �,

1

�2�
=

1

�2
+ �.

N
S

S�

Theorem 6.6. Let S be a smooth surface and S� its smooth normal shift
for sufficiently small �. Then the area of S� is a quadratic polynomial in �.

A(S�) = A(S) + 2H(S)�+K(S)�2,

where H(S) =
∫
S H and K(S) =

∫
SK are the total mean and Gaussian

curvatures of S.

Proof. Let !S and !S� be the area forms of S and S�. The normal shift
preserves the Gauss map, therefore for these area forms one has

K!S = K�!S� ,

where K and K� are the corresponding Gaussian curvatures. For the area
this implies

A(S�) =

∫
S�

!S� =

∫
S

K

K�
!S =

∫
S
�1�2(

1

�1
+ �)(

1

�2
+ �)!S

=

∫
S

(
1 + (�1 + �2)�+ �1�2�

2
)
!S = A(S) + 2H(S)�+K(S)�2.

Comparing the above equations with (10) justifies Definition 6.4.

7 Curvatures of line congruence nets

Since line congruence nets come with a one parameter family of parallel
polyhedral surfaces it is natural to use Steiner’s formula (10) to define cur-
vatures. Observe that the faces of parallel surfaces in this case are polygons
with parallel edges, therfore we first deal with polygons with parallel edges
and their properties.
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Definition 7.1 (Oriented Area). The oriented area of a triangle Δ =
(p0, p1, p2), is defined as

A(Δ) =
1

2
([p0, p1] + [p1, p2] + [p2, p0]) .

Here the vertices p0, p1, p2 are given as vectors and [⋅, ⋅] denotes the area
form of the plane

[x, y] = ⟨x× y, n⟩ = det(x, y, n)

where n is the unit normal of the plane.

Lemma 7.2. For a triangle Δ = (p0, p1, p2) with oriented edges a = p1 −
p0, b = p2 − p1, c = p0 − p2 holds

A(Δ) =
1

2
[a, b] =

1

2
[b, c] =

1

2
[c, a].

A < 0

p2

b
c

a

p1

p0

A > 0

Proof.

2A(Δ) = [p0, p1] + [p1, p2] + [p2, p0]

= [p0, p0 + a] + [p0 + a, p0 + a+ b] + [p0 − c, p0]

= [p0 + a, a] + [p0 + a, b]− [c, p0]

= [p0 + a, a+ b] + [p0, c]

= [p0, a+ b] + [a, a+ b] + [p0, c]
a+b+c=0

= [a, b].

Since we chose p0 as starting point arbitrary one has [a, b] = [b, c] = [c, a].

Lemma 7.3 (and Definition). The oriented area of a k-gon in a plane with
vertices p0, .., pk = p0 is equal

A(P ) =
1

2

k−1∑
i=0

[pi, pi+1] .
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Proof. The generalization for k-gons follows from the decomposition like in
the following figure.

1
2 [p0, p1] > 0

1
2 [p3, p4] < 0

0

this part cancels

p1

p2

p3

p0

Lemma 7.4. For a quadrilateral Q = (p0, p1, p2, p3) with oriented edges
a = p1 − p0, b = p2 − p1, c = p3 − p2, d = p0 − p3 holds

A(Q) =
1

2
([a, b] + [c, d]) .

Proof. Decompose Q in two triangles (p0, p1, p2), (p0, p2, p3) and use Lemma
7.2.

7.1 Space of polygons with parallel edges and mixed areas

Polygons with parallel edges (not nescessarily convex nor embedded) build
a vector space. This will be explained in little more detail in 7.1.1.

c∗

d∗ b∗

a∗q1 q2

q3
q4

b

a

d

c

p1 p2

p3
p4

quadrilaterals with parallel edges: a ∥ a∗ etc.

Definition 7.5 (Mixed area). Let P and Q be two polygons with the
vertices p0, . . . , pk = p0 and q0, . . . , qk = q0 which have parallel edges,
(pi, pi+1) ∥ (qi, qi+1). The sum

A(P,Q) :=
1

4

k−1∑
i=0

([pi, qi+1] + [qi, pi+1]) (11)
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is called the mixed area of P and Q.

By a direct computation we get:

Proposition 7.6. Let P and Q be two polygons with parallel edges. Then the
oriented area of their linear combination is given by a quadratic polynomial

A(P + tQ) = A(P ) + 2tA(P,Q) + t2A(Q).

7.1.1 The spaces P(t) and P̃(t)

The sequence of tangent vectors (considered as lines)

t1, . . . , tk ∈ ℝP 1 = S1/{±I}

or equivalently of the normals

n1, . . . , nk ∈ ℝP 1 = S1/{±I}

uniquely specifies the space of polygons p0, . . . , pk = p0 with parallel edges
(pi, pi+1 ∥ ti).

0

ti

qi

pi

ni

pi+1

Figure 21: A polygon as a sequence of oriented edges parallel to the given
set of tangent vectors and the corresponding normals.

Let us choose representatives t1, . . . , tk ∈ S1 and n1, . . . , nk ∈ S1 such that
each corresponding pair (ni, ti) builds a positively oriented basis. The ori-
ented lengths li are uniquely defined by

pi+1 − pi = liti.

Let ℎi be the oriented hights from the the origin to the edges of the polygon,
i.e.

0⃗qi = ℎini,
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where qi is the the vertical projection of 0 to the line containing the edge
(cp. Fig. 21).

Denote P(t), t = (t1, . . . , tk) the vector space of polygons, for which hold
that the i-th edge is parallel to the corresponding ti. This is an k-dimensional
vector space with the coordinates ℎ = (ℎ1, . . . , ℎk). If one factorizes this
space by translations, one gets the (k-2)-dimensional vector space P̃(t), for
which one has natural coordinates l = (l1, . . . , lk) satisfying the condition

k∑
i=1

liti = 0 (12)

which means that each polygon has to be closed.

7.1.2 Properties of the mixed area

Proposition 7.7. A(P,Q) is a symmetric bilinear form on the spaces P(t)
and P̃(t).

Proof. ∙ Obviously A(P,Q) = A(Q,P )

∙ A(P,Q) is linear in coordinates of the points and therefore also linear in
ℎ

∙ A(P,Q) is invariant with respect to translations and therefore well defined
on P̃(t) and linear in l.

Corollary 7.8. A(P ) = A(P, P ) is a quadratic form on P(t) and P̃(t).

A useful geometric representation of the mixed area is given by

Proposition 7.9.

A(P,Q) =
1

2

k∑
i=1

ℎi(P )li(Q) =
1

2

k∑
i=1

ℎi(Q)li(P ).

Proof. Since A(P,Q) is symmetric one has

A(P,Q) =
∑
i,j

aijℎi(P )ℎj(Q)

with a symmetric matrix (aij). Algebra gives

∂A(Q,Q)

∂ℎi
= 2

∑
j

aijℎj(Q)
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and from geometric consideration follows

∂A(Q,Q)

∂ℎi
= li(Q).

Combining both formulas one ends up with

A(P,Q) =
∑
i

ℎi(P )
∑
j

aijℎj(Q) =
1

2

k∑
i=1

ℎi(P )li(Q).

Remark. Usually we take an advantage of the translational invariance and
therefore will deal with the space P̃(t).

7.1.3 Dual quadrilaterals

Definition 7.10 (Dual quadrilaterals). Two quadrilaterals P,Q with par-
allel edges are called dual to each other if their mixed area vanishes,

A(P,Q) = 0.

Proposition 7.11. Two quadrilaterals P = (p1, p2, p3, p4) and Q = (q1, q2, q3, q4)
with parallel edges are dual if and only if their diagonals are antiparallel,
i.e.

(p1, p3) ∥ (q2, q4), (p2, p4) ∥ (q1, q3).

p1 p2

p3p4

q1
q2

q3 q4

b

c

d

c∗

d∗

a∗a

b∗

Figure 22: Dual quadrilaterals.

Proof. Denote the edges of the quadrilaterals P and Q as in Fig. 22. From
Lemma 7.4 follows that the area of the quadrilateral P + tQ is given by

A(P + tQ) =
1

2
([a+ ta∗, b+ tb∗] + [c+ tc∗, d+ td∗])
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and from Proposition 7.6 we know that twice the mixed area A(P,Q) comes
as coefficient of the linear term in the equation for the area A(P + tQ).
Hence comparison of coefficients leads to

A(P,Q) = 0 ⇔ [a, b∗] + [a∗, b] + [c, d∗] + [c∗, d] = 0
a∥a∗...⇔ [a+ b, b∗] + [a∗, a+ b] + [c+ d, d∗] + [c∗, c+ d] = 0

a+b=−(c+d)⇔ [a+ b, b∗ − a∗ − d∗ + c∗] = 0.

Now the last of the above equations is equivalent to the anti-parallelity of
the diagonals, (a+ b) ∥ (b∗ + c∗).

Lemma 7.12 (Existence and uniqueness of the dual quadrilateral). For
every planar quadrilateral a dual one exists and is unique up to scaling and
translation.

Proof. First we show the existence:

Let (A,B,C,D) be the given quadrilateral and denote with e1 and e2 some
vectors along the diagonals which gives

M⃗A = �e1, M⃗B = �e2, M⃗C = 
e1, M⃗D = �e2.

Then for the edges holds

A⃗B = �e2 − �e1, B⃗C = 
e1 − �e2, C⃗D = �e2 − 
e1, D⃗A = �e1 − �e2.

Take an arbitrary M∗ as intersection point of the diagonals of the quadri-
lateral (A∗, B∗, C∗, D∗) to be constructed as follows:

⃗M∗A∗ = −e2

�
, ⃗M∗B∗ = −e1

�
, ⃗M∗C∗ = −e2



, ⃗M∗D∗ = −e1

�
.

D C

BA

e1

e2

A∗
B∗

C∗ D∗

M

M∗

e2
e1

The diagonals of the quadrilaterals are obviously parallel. For the edges
parallelity can easily be checked:

⃗A∗B∗ =
e2

�
− e1

�
=

1

��
A⃗B

⃗B∗C∗ =
e1

�
− e2



=

1

�

B⃗C

⃗C∗D∗ =
e2



− e1

�
=

1


�
C⃗D

⃗D∗A∗ =
e1

�
− e2

�
=

1

��
D⃗A.
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From Proposition 7.11 follws that the two quadrilaterals are dual.

Uniqueness of the dual quadrilateral follows from the geometric construc-
tion: choose two diagonals and one vertex. This determines a quadrilateral
with parallel edges uniquely if it closes. Since resulting quadrilaterals would
only differ by scaling, the closeness condition is independent from the choice
of the initial vertex. Hence the existence of the above constructed closed
quadrilateral implies that the construction always closes.

Let P be a quadrilateral and denote P̃(P ) the space of quadrilaterals with
parallel edges, factorized by translations. Since one has two degrees of free-
dom this is a 2-dimensional vector space.

Proposition 7.13. Let P be a quadrilateral with non-vanishing oriented
area, A(P ) ∕= 0. Then P and P ∗ build an orthogonal basis of the space P̃(P )
(with respect to A(P,Q)). Moreover A(�P + �P ∗) = �2A(P ) + �2A(P ∗).

Proof. The space is 2-dimensional and P and P ∗ are linearily independent.
The orthogonality follows from the definition.

Corollary 7.14. The quadratic form A : P̃(P )→ ℝ is definite (indefinite)
if A(P )A(P ∗) > 0 (A(P )A(P ∗) < 0 respectively).

With this background we will now go back to line congruence nets.

7.2 Curvatures of line congruence nets

Consider a line congruence net (S,N) : S → ℝ3+3. Here S is a discrete
surface with planar faces comprized by the vertices of the line congruence
net, and N is its normal map, normalized by the condition that S+tN build
a family of surfaces parallel to S (i.e. in general the normals are not of the
same length). Note that for a given line congruence net N is fixed as soon
as the length of the normal at one vertex is prescribed.

Theorem 7.15. The surface area of the parallel surface St = S + tN obeys
the law

A(St) =
∑
f∈F

(
1− 2tHf + t2Kf

)
A(f) (13)

where

Hf = −A(f,N(f))

A(f)
, Kf =

A(N(f))

A(f)
. (14)

Here f and N(f) are the corresponding faces of S and N .

Proof. The corresponding faces of S and N are parallel, which implies the
parallelity of the corresponding edges. Then the claim follows from Propo-
sition 7.6.
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Definition 7.16 (Mean and Gaussian curvature for line congruence nets).
Let (S,N) be a line congruence net with the normal map N : S → ℝ3

normalized as above. Its mean and Gaussian curvatures are defined by the
formulas (14).

Remark. Although the values of the curvatures at faces are defined up
to a multiplication by a common constant, discrete surfaces with constant
curvature are well defined.

Now we can use what we have learned in 7.1 to define principal curvatures
of a quadrilateral face of a line congruence net.

Consider a face f and its parallel face f t. The desired formulas H = 1
2(�1 +

�2) and K = �1�2 imply the factorization

A(f t) =
(
1− 2tH + t2K

)
A(f) = (1− t�1)(1− t�2)A(f).

Real valued �1 ∕= �2 in this formula exist if and only if the form A : P̃(f)→
ℝ is indefinite. If A is semidefinite, �1 = �2. If they are real, we call
�1, �2 ∈ ℝ the principal curvatures of the quadrilateral f .

Example 7.17. Wheather A(f) is definite or indefinite depends on the
structure of f :

non-convex fconvex f

A(f∗) > 0A(f) > 0A(f∗) < 0A(f) > 0

1 2

34

1
2

3
4

2
1

3

4

1

2

3

4

Exercise: Classify all quadrilaterals with indefinite A (consider also non-
embedded quadrilaterals).
Note that this is a property of the set {t1, t2, t3, t4} ⊂ ℝP 1.

8 Line congruence nets with constant curvatures.
Elementary properties.

We consider quad-surfaces of line congruence nets. Let S be an abstract
quad-graph and (f,N) : S → ℝ3+3 a line congruence net. f : S → ℝ3

and N : S → ℝ3 are discrete surfaces with parallel planar quad faces. The
discrete surfaces f + tN, t ∈ ℝ are parallel surfaces of f .
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Definition 8.1 (Dual quad-surfaces). Two quad-surfaces f, f∗ : S → ℝ3

with planar faces are called dual to each other if any elementary quadrilateral
of the net f∗ is dual to the corresponding quadrilateral of the net f .

It is easy to characterize minimal line congruence nets, i.e. those with
vanishing mean curvature.

Proposition 8.2 (Minimal line congruence nets). A line congruence net
(f,N) : S→ ℝ6 has zero mean curvature, H ≡ 0, if and only if N = f∗.

Proof. This is a statement about each face, so let Q be a face of S. We have

H = 0⇔ A(f(Q), N(Q)) = 0⇔ N(Q) = f∗(Q).

Proposition 8.3 (Line congruence nets with constant mean curvature).
A line congruence net (f,N) : S→ ℝ6 has constant mean curvature H0 ∕= 0
if and only if there exists a parallel surface f + dN at constant distance
d ∈ R, which is dual to f , i.e. f∗ = f + dN .

The line congruence net (f∗, N) has constant mean curvature −H0 and the
mid-surface 1

2(f + f∗) is a discrete surface with constant positive Gaussian
curvature 4H2

0 . For the distance holds d = 1
H0

. picture?

Proof. The condition

A(f(Q), N(Q)) = −H0A(f(Q))

can be rewritten as

A(f(Q), f(Q) +
1

H0
N(Q)) = 0

which is equivalent to

f∗(Q) = f(Q) +
1

H0
N(Q).

Interpreting f as a parallel surface of f + dN , we get the statement about
the mean curvature of (f + dN,N) (since N has the same orientation for
both nets, the shifts, and therefore the curvatures, need to have different
signs). For the Gaussian curvature of the mid-surface f + d

2N we get what about
the
A(f, f)-
term?

K

(
f(Q) +

d

2
N(Q)

)
=

A(N(Q))

A(f(Q) + d
2N(Q))

=
A(N(Q))

A(f(Q) + dN(Q), f(Q)) + d2

4 A(N(Q))
= 4H2

0 .
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Proposition 8.4. Let (f,N) be a line congruence net with constant mean
curvature. Then its parallel surfaces (f + tN,N) are linar Weingarten, i.e.
their mean and Gaussian curvatures stisfy a linear condition for each

face?
CMC ⇔
CGC ?

�H(t) + �K(t) = 1 (15)

with constant coefficients �, � ∈ ℝ.

Proof. Compute the curvatures H(t) and K(t) of the parallel surface f+ tN
of a CMC line congruence net. Let H and K be the curvatures of the basic
surface f . Then we have

A((f + (t+ �)N)(Q))

A((f + tN)(Q))

(13)
=

1− 2H(t+ �) +K(t+ �)2

1− 2Ht+Kt2

= 1− 2�
H −Kt

1− 2Ht+Kt2
+ �2 K

1− 2Ht+Kt2
.

Finally, considering f + (t+ �)N as a parallel surface of f + tN , from (13)
follows

H(t) =
H −Kt

1− 2Ht+Kt2
, K(t) =

K

1− 2Ht+Kt2
.

Note that H is independent of the face, whereas K is varying. Therfore, cp. last
commentwith the above values for H(t) and K(t), the condition (15) is equivalent to

�H

1− 2Ht
=
� − �t
t2

= 1,

which implies

� =
1

H
− 2t, � =

t

H
− t2.

8.1 Discrete Gauss maps

We see that any dualizable discrete surface can be extended to a minimal
line congruence net (i.e. H ≡ 0), or a one with constant mean curvature,
by an appropiate choice of the “normals”. Indeed,

(f,N = f∗) is minimal, and
(f,N = f∗ − f) has constant mean curvature.

However, so defined N : S → ℝ3 in such generality can hardly interpreted
as a discrete Gauss map. One can (and should) put additional requirements
on N which bring it closer to a Gauss map of a surface. In the smooth case
N is a map to the unit sphere. It is natural to suggest the following three
dicrete versions of this fact:
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1. N(S) has to be a polyhedral surface with all vertices on the unit sphere
S2. Obviously this implies that all faces of N(S) are circular. This
condition holds thus for any parallel surface. In particular this implies
that all faces of f(S) are also circular. We call such nets circular. pictures?

2. N(S) has to be a polyhedral surface with all faces touching the unit
sphere S2. This implies that for any vertex p there is a cone of revolution
with the tip at p touching all faces of N(S) which are incident to p.
Obviously this property holds true for any parallel surface, in particular
for f(S). We call such nets conical.

3. N(S) has to be a polyhedral surface with all edges touching the unit
sphere S2 (such polyhedra are called Koebe polyhedra). For any vertex
p all edges incident to p lie on a cone of revolution with the tip at p.
Obviously this property holds true for any parallel surface, in particular
for f(S). Equivalently one can characterize them by the condition that at
each vertex ther exists a sphere touching all edges incident to the vertex.
We call such nets of Koebe type.

These additional requirements turn out to be compatible with the theory
developed, and make it more complicated. can’t read

lecture
notes. . . pictures?

9 Koenigs nets

In this section we forget about the additional structure of line congruence
nets and simply characterize dualizible discrete surfaces f : S → ℝ3, where
S is a simply connected quad-graph.

Definition 9.1 (Discrete Koenigs net). A quad-surface f : S → ℝ3 with
planar faces is called a discrete Koenigs net if it admits a dual net f∗ : S→
ℝ3.

Since we assume S to be simply connected, it is bipartite. Therefore we can
color its vertices black and white such that two vertices sharing an edge are
colored differently. Diagonals of the quadrilaterals connect vertices of the
same color, i.e. we have two sub nets (black and white) of diagonals. Denote
E⃗d the set of all oriented diagonals and define a function q : E⃗d → ℝ by

q(A⃗C) =
M⃗C

M⃗A
, (16)

where M is the intersection point of the diagonals of the quad-face ABCD
of f(S). Note that q(C⃗A) = − 1

q(A⃗C)
, and for convex quadrilaterals one has

q < 0.
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Theorem 9.2 (Algebraic characterization of Koenigs nets). A quad-surface
f : S→ ℝ3 is a discrete Koenigs net if and only if for any cycle of directed
diagonals (white or black) the product of all quantities q along the cycle is
equal to 1.

Proof. Let us try to dualize a quad-surface starting with an arbitrary quadri-
lateral. It is easy to see that obstructions may apperal when running along
closed chains of elementary quadrilaterals in which any two subsequent
quadrilaterals share an edge. Consider a vertex of value 4 and apply Lemma
7.12 to the four quadrilaterals incident to this vertex. Let the diagonals be picture &

referencedivided by their intersection points in the relations 
k : �k and �k : �k (as
in Fig. *). The dual quadrilaterals are determined up to scaling factors
�k (k = 1, . . . , 4).

Matching the edge shared by the dual quadrilaterals 1 and 2, we find for
their scaling factors

�1

�1�1
=

�2

�2�2
⇔ �1

�2
=
�1�1

�2�2
.

Similarly one finds

�2

�3
=
�2�2

�3�3
,

�3

�4
=
�3�3

�4�4
,

�4

�1
=
�4�4

�1�1
.

The compatibility condition reads

�1

�1

�2

�2

�3

�3

�4

�4
= 1,

which is the statement of the theorem. The same proof holds for vertices of
other valence. Finally any cycle on a simply connected discrete surface can
be decomposed to a combination of elementary cycles arround vertices.

Let us consider the special case S = ℤ2.
white &
black
subnets
non-
planar. . .

Theorem 9.3 (Geometric characterization of discrete Koenigs nets). A
discrete surface f : ℤ2 → ℝN with planar faces and non-planar vertices is
a discrete Koenigs net if and only if the intersection points of diagonals of
any four quadrilaterals sharing a vertex are co-planar.

Proof. Let Q1, Q2, Q3, Q4 be four neighbouring quadrilaterals meeting at P
and P1, P2, P3, P4 the intersection points of their diagonals. Denote P the picture with

Pplane through P1, P2, P3. Now consider the 3-dimensional space W gener-
ated by the neighbours A1, . . . , A4 of P . Let ℎi, i = 1, . . . , 4 be the distances
of the correspondig vertices Ai to the plane P. Obviously one has

q( ⃗AiAi+1) =
ℎi+1

ℎi
, i = 1, 2, 3.
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This implies that P4 ∈ P is equivalent to

q( ⃗A1A2)q( ⃗A2A3)q( ⃗A3A4)q( ⃗A4A1) = 1.

picture

Theorem 9.4 (Geometric characterization of generic Koenigs nets in terms
of vertices). Let f : ℤ2 → ℝN , N ≥ 4 be a discrete surface with planar
faces and vertices of full dimension (i.e. four edges meeting at a vertex
are linearly independent). Then f is a discrete Koenigs net if and only if
any vertex f and its next-neighbours f±1,±2 lie in a 3-dimensional subspace
V ⊂ ℝN , not containing any of the four points f±1, f±2 (either none or any
point is contained in this space).

Proof. Theorem 9.3 implies that if f : ℤ2 → ℝN is Koenigs, then the five
points f, f±1,±2 lie in a 3-dimensional subspace.

On the other hand, let V be the 3-dimensional space of f, f±1,±2 and W
the 3-dimensonal space of f±1, f±2. Both lie in a (by assumption) common
4-dimensional space of f, f±1, f±2. The intersection points of the diagonals
lie in V ∩W which is generically two dimensional.

Remarks. ∙ In the case of a vertex of valence 3 the Koenigs condition picture &
label

⃗P1A2

⃗A1P1

⋅
⃗P2A3

⃗A2P2

⋅
⃗P3A1

⃗A3P3

= −1 (17)

is equivalent to the co-linearity of P1, P2, P3, due to Menelaus’ theorem.

∙ The Koenigs condition of Theorem 9.2 in the generic case can be inter-
preted geometrically using the generalized Menelaus’ theorem:

Consider a vertex of valence k and assume that its edges are linearly
independent. The net is discrete Koenigs if and only if the intersection
points of the diagonals of the k neighbouring quadrilaterals lie in an (k-
1)-dimensional space.

∙ An embedded picture of three quadrilaterals like in Fig. * can also be reference

dualized in the case of the multiratio equals 1. This is the case of the
Ceva’s theorem:

P1, P2, P3 are generated by three intersecting lines in a triangle. This net picture

should be considered as a double cover, and the dual net consists of six
neighbouring quadrilaterals.

∙ It is important that exactly in the same way one can define and consider
multidimensional Koenigs nets f : ℤm → ℝN . It is non-trivial but true
that multidimensional nets can be dualized consistently. Here we see the
consistency discretization principle at work.
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