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Abstract

We present a new approach to solve optimal control problems of the monotone
follower type. The key feature of our approach is that it allows to include an
arbitrary dynamic fuel constraint. Instead of dynamic programming, we use the
convexity of our cost functional to derive a first order characterization of optimal
policies based on the Snell envelope of the objective functional’s gradient at the
optimum. The optimal control policy is constructed explicitly in terms of the
solution to a representation theorem for stochastic processes obtained in Bank
and El Karoui (2004). As an illustration, we show how our methodology allows
to extend the scope of the explicit solutions obtained for the classical monotone
follower problem and for an irreversible investment problem arising in economics.

AMS 2000 subject classification. 49J55, 93E20, 60H30, 91B28

Key words and phrases. Monotone follower, Snell envelope, dynamic fuel constraint

∗ Humboldt University of Berlin and Columbia University in the City of New York. Support of Deutsche

Forschungsgemeinschaft through DFG-Research Center “Mathematics for Key Technologies” (FZT 86),

and grant BA 2276/1-1 is gratefully acknowledged.



Optimal Control under a Dynamic Fuel Constraint 1

Introduction

Many optimization problems involve so called finite fuel constraints on the allowable

control policies, i.e., upper bounds on the resources a control policy can use. The

usual methodology to address these optimization problems is to specify a Markovian

framework and to compute the problem’s value function either by PDE methods based

on the problem’s Hamilton-Jacobi-Bellman equation or by probabilistic methods and

the variational method of switching paths. In some special cases this leads to a more or

less explicit solution to the optimization problem.

In any case, the constraint has so far only been specified by a constant upper bound

for the over all amount of ‘fuel’ a control policy is allowed to use. Dynamic upper

bounds, by contrast, are difficult to take into account as their introduction increases the

dimensionality of the problem, making it typically impossible to solve the Hamilton-

Jacobi-Bellman equation explicitly. On the other hand, it is well-known that in some

problems the optimal policy for a (constant) finite fuel constraint can be derived from

the optimal policy obtained when disregarding the fuel constraint completely: one just

has to follow the unconstraint policy up to the moment when all fuel has been spent; see,

e.g., Chow, Menaldi, and Robin (1985), Karatzas (1985) and Fleming and Soner (1993).

It is thus natural to conjecture that a suitable variant of this principle should hold true

for situations where a dynamic finite fuel constraint is specified by an increasing adapted

process. The corroboration of this conjecture and the description of a general framework

where it holds true constitute the main results of the present paper.

We consider a convex minimization problem in which a policy θ incurs the costs

C(θ) = E
∫ ∞

0

c(t, θt)µ(dt) + E
∫ ∞

0

kt dθt (θ ∈ A ) ,

where c(t, .) describes the (convex) running costs and kt the control costs at time t ≥ 0.

Our approach is based on a characterization of optimal policies in terms of first order

conditions. More specifically, Theorem 1 shows that an optimal control policy will

exercise control whenever its impact is maximal as measured by the Snell envelope of

the cost functional’s subgradient at the optimum; it also shows that actually all available

fuel should be spent whenever this Snell envelope tends to decrease. The occurrence

of Snell envelopes in this characterization highlights the intimate relationship between

singular control and optimal stopping problems which has already been observed in

Karatzas and Shreve (1984, 1985) or El Karoui and Karatzas (1988, 1991).

The construction of an optimal policy is achieved in Theorem 2 which relates the

dynamic finite fuel problem with a stochastic representation theorem obtained in Bank
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and El Karoui (2004). This representation theorem has found a number of other ap-

plications ranging from utility maximization to optimal stopping; we refer to Bank and

Föllmer (2003) for an overview. Here it provides us with a lower bound which the opti-

mal control policy has to respect if enough fuel is available to do so. This lower bound

turns out to be independent from the fuel constraint, thus providing a universal signal

process which allows one to construct optimal policies for a whole class of finite fuel

problem at the same time.

As an application we provide an explicit solution to the monotone follower problem

for Lévy processes with quadratic cost functional in the spirit of Beneš, Shepp, and

Witsenhausen (1980/81). We also illustrate how explicit solutions obtained for singu-

lar control problems without any fuel constraint, as obtained, e.g., in Kobila (1993)

and Scheinkman and Zariphopoulou (2001), can actually be used to describe optimal

policies for problems with a dynamic fuel constraint.

Acknowledgment. The author is greatly indebted to Thaleia Zariphopoulou for sug-

gesting this problem.

1 The General Control Problem

A well known problem in stochastic optimization is the problem to control the motion of

a particle so as to keep it as close to the origin as possible over some period of time. In

the formulation as a monotone follower problem suggested and analyzed by Karatzas and

Shreve (1984), one considers a model where the dynamics of the uncontrolled particle

is given by standard Brownian motion W and where the control θ is an increasing

adapted process θ which specifies the downward displacement of the particle caused

by the control. Hence, in this case, the controlled particle would follow the dynamics

Wt + θt (t ≥ 0). The cost incurred by a control policy θ can, for instance, be described

as

C(θ) = E
∫ ∞

0

δe−δt 1

2
(Wt − θt)

2 dt .

and one could start studying the optimization problem to minimize C subject to, e.g.,

a finite fuel constraint on the control θ.

More generally, let (Ω, (Ft)t≥0,P) be a filtered probability space satisfying the usual

conditions of right-continuity and completeness. Controls θ are given by increasing,

left-continuous adapted processes starting at θ0 = ϑ ∈ R. We shall impose a dynamic

finite fuel constraint, specified by an increasing adapted process ϑ with left continuous
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paths and values in [ϑ,+∞]. The class of admissible controls is therefore

A
∆
= {θ incr., left-cont., adapted with ϑ = θ0 ≤ θt ≤ ϑt for all t ≥ 0 P–a.s.} .

Remark 1.1 Note that the lower bound ϑ is assumed to be a real constant, not a process.

Assuming a dynamic lower bound would mean that a minimum amount of control must

have been exercised up to each point in time, a natural, yet much more demanding

extension which is beyond the scope of the present paper.

The costs incurred by a control policy will be composed by running costs and control

costs. The running costs are described by a measurable random field

c : Ω× [0,∞)× R → R

and a positive optional random measure µ = µ(ω, dt) on the time axis satisfying the

following convexity and regularity assumption.

Assumption 1 (i) The measure µ is atomless and has full support suppµ = [0,+∞)

almost surely.

(ii) For any (ω, t) ∈ Ω × [0,+∞), the mapping ϑ 7→ c(ω, t, ϑ) is strictly convex with

continuous derivative c′(ω, t, ϑ) = ∂
∂ϑ
c(ω, t, ϑ) increasing from c′(ω, t,−∞) = −∞

to c′(ω, t,+∞) = +∞.

(iii) For ϑ ∈ R fixed, (ω, t) 7→ c(ω, t, ϑ) is progressively measurable and P⊗µ-integrable.

(iv) The process (ω, t) 7→ inf
ϑ∈[ϑ,ϑt]

c(t, ϑ) is P⊗ µ-integrable.

The control costs are described by a stochastic process k with the following properties.

Assumption 2 The process k is optional and continuous in expectation with k∞ = 0.

Moreover, the family of random variables (
∫∞

0
k−t dθt, θ ∈ A ) is bounded in L1(P).

These assumptions allow us to consider the cost functional

C(θ) = E
∫ ∞

0

c(t, θt)µ(dt) + E
∫ ∞

0

kt dθt (θ ∈ A ) .
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Remark 1.2 Full support of µ ensures that strict convexity transfers from the random

field c to our cost functional C. Our assumptions on the derivative of c will be used

when applying a representation theorem obtained in Bank and El Karoui (2004); see

Section 3. Integrability of c(., ϑ) for ϑ ∈ R means that the decision not to intervene at

all will not cause infinite costs. Integrability of infϑ∈[ϑ,ϑ] c(., ϑ) ensures that our mini-

mization problem has a finite value. For the same reason we assume L1-boundedness

of (
∫∞

0
k−t dθt, θ ∈ A ), which amounts to requiring that the negative (!) ‘costs’ of

exercising control must not be ‘too large’.

The general optimization problem we shall be concerned with in this paper can now

be stated as follows:

(1) Minimize C(θ) over θ ∈ A .

Remark 1.3 Observe that our introductory example would be accommodated in this

setting by choosing

c(ω, t, ϑ)
∆
=

1

2
(Wt(ω)− ϑ)2 , µ(dt) = δe−δt dt and k ≡ 0 .

Observe furthermore that this setting can also accommodate the monotone follower prob-

lems studied in Chow, Menaldi, and Robin (1985), Karatzas (1985), Karatzas and Shreve

(1984), as well as the irreversible investment problems solved in Kobila (1993) (see their

Criterion (3.2) and Condition (5.1)), Scheinkman and Zariphopoulou (2001) (see Sec-

tion 4.2), and Karatzas and Baldursson (1997). Settings not covered by our framework

include Chiarolla (1997) and Jacka (1999, 2002) since their cost functional is specified

in terms of the controlled system instead of the cumulatively exercised control. We also

do not cover the ‘cheap monotone follower’ of Chiarolla and Haussmann (1994) as they

allow for two-dimensional controls, as well as the finite fuel problem of Beneš, Shepp,

and Witsenhausen (1980/81) and Karatzas and Shreve (1985) who consider two-sided

controls.

Notation and Conventions. All (in)equalities between random variables are meant

to hold true in the P–a.s.-sense. We shall let T denote the set of all stopping times and

we use T (I) to denote the class of stopping times almost surely taking values in a given

random set I such as, e.g., I = [S,+∞] with S ∈ T . A supremum over an empty set is

defined to be sup ∅ ∆
= −∞. Intervals [a, b] with b < a are interpreted as the empty set.

We also put x+ ∆
=x ∨ 0 = max{x, 0} and x−

∆
= (−x)+.
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2 First Order Conditions for Optimality

In this section, we are going to provide a first order characterization of optimal control

policies for Problem (1). While the main avenue of approach to achieve this character-

ization is classical, we need to be a little bit careful to ensure that our Assumptions 1

and 2 suffice to deduce all the integrability requirements we need along the way.

Our first step is to note that the convex functional C is supported by the subgradients

(2) ∇C(θ)S
∆
= E

[∫ ∞

S

c′(t, θt)µ(dt)

∣∣∣∣ FS

]
+ kS (S ∈ T )

in the following sense:

Lemma 2.1 For any θ ∈ A , the optional process ∇C(θ) of (2) is well-defined and

∇C(θ)− is P⊗dθ-integrable. If θ satisfies C(θ) < +∞, also ∇C(θ)+ is P⊗dθ integrable

and ∇C(θ) satisfies the subgradient property

C(θ′)− C(θ) ≥ E
∫ ∞

0

∇C(θ)s d(θ
′
s − θs) for any θ′ ∈ A with C(θ′) < +∞ .

Proof :

(i) As c′(t, θt) ≥ c′(t, ϑ) ∈ L1(P⊗µ) by convexity and P⊗µ-integrability of c(t, ϑ) for

ϑ ∈ R, the conditional expectation appearing in (2) is well-defined as a random

variable taking values in (−∞,+∞]. As for P ⊗ dθ-integrability of ∇C(θ)−, we

note that

c′(t, θt)
−(θt − ϑ) ≤ c(t, ϑ)− inf

ϑ∈[ϑ,ϑt]
c(t, ϑ) ∈ L1(P⊗ µ)

by Assumption 1 (iii) and (iv), and this yields

E
∫ ∞

0

∫ ∞

s

c′(t, θt)
− µ(dt) dθs = E

∫ ∞

0

c′(t, θt)
−(θt − ϑ)µ(dt) < +∞ .

by Fubini’s theorem. By Assumption 2,

E
∫ ∞

0

k−s dθs < +∞ ,

and it follows that

∇C(θ)−s ≤ E
[∫ ∞

s

c′(t, θt)
− µ(dt)

∣∣∣∣ Fs

]
+ ks

is P⊗ dθs integrable.
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(ii) We next prove P⊗dθ-integrability of ∇C(θ) for θ with C(θ) < +∞. By convexity

of c(t, .), we have

c′(t, θt)(θt − ϑ) ≤ c(t, θt)− c(t, ϑ) .

The latter difference is P⊗ µ-integrable for θ with C(θ) < +∞ by Assumption 1,

and therefore

E
∫ ∞

0

∫ ∞

s

c′(t, θt)
+ µ(dt) dθs = E

∫ ∞

0

c′(t, θt)
+(θt − ϑ)µ(dt) < +∞ .

(iii) Let us now prove the subgradient estimate for θ′ with C(θ′) < +∞. It follows

that the left side in the convexity estimate

c(t, θ′t)− c(t, θt) ≥ c′(t, θt)(θ
′
t − θt) = c′(t, θt)(θ

′
t − ϑ)− c′(t, θt)(θt − ϑ)

is P ⊗ µ-integrable. By (i) the same is true for the last term c′(t, θt)(θt − ϑ). It

follows as in (ii) that
∫∞

.
c′(t, θ′t)

+ µ(dt) is P⊗dθ′-integrable, and so the expectation

E
{∫ ∞

0

∫ ∞

s

c′(t, θt)µ(dt) + ks

}
d(θ′s−θs) = E

∫ ∞

0

∇C(θ)s d(θ
′
s−θs) ∈ [−∞,+∞)

is well-defined and indeed not larger than C(θ′)− C(θ).

2

Let us denote by S(θ) the lower Snell envelope

S(θ)S = ess inf
T∈T ([S,∞])

E [∇C(θ)T |FS] (S ∈ T )

of ∇C(θ). This is an optional process taking values in (−∞, 0] since ∇C(θ)∞ = 0 by

definition and

inf
T∈T

E∇C(θ)T ≥ E
∫ ∞

0

c′(t, ϑ) ∧ 0µ(dt) > −∞ .

We shall use M(θ) and A(θ) to denote the martingale and predictable increasing part

in the Doob-Meyer decomposition S(θ) = M(θ) + A(θ) of the submartingale S(θ).

After these preliminaries, we now can give the following characterization of optimal

policies in terms of first order conditions:

Theorem 1 Under Assumptions 1 and 2, a control policy θ∗ ∈ A is optimal for Prob-

lem (1) iff

(i) θ∗ is flat off {∇C(θ∗) = S(θ∗)} and
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(ii) A(θ∗) is flat off {θ∗ = ϑ} .

Remark 2.2 Condition (i) requires that control should be exercised only when its

marginal impact on future costs is maximal. Condition (ii) reveals that all fuel should

be spent at moments where the maximal expected marginal impact tends to decrease.

The proof of this theorem uses the following two lemmata and will be given at the

end of this section.

Lemma 2.3 A plan θ∗ ∈ A is optimal for Problem (1) iff for any θ ∈ A the process

∇C(θ∗)− is P⊗ dθ-integrable and we have

E
∫ ∞

0

∇C(θ∗)s dθ
∗
s ≤ E

∫ ∞

0

∇C(θ∗)s dθs .

In particular, ∇C(θ∗) is P⊗ dθ∗-integrable in this case.

Proof : Sufficiency of the first order condition follows as usual from the subgradient

estimate C(θ) − C(θ∗) ≥ E
∫∞

0
∇C(θ∗)s d(θ − θ∗)s provided by Lemma 2.1. To ensure

that this lemma is indeed applicable we need to prove that C(θ∗) < +∞. So let us

introduce the passage times T ϑ ∆
= inf{t ≥ 0 | θ∗t ≥ ϑ} and note that the corresponding

stopped control policies (θ∗
t∧T ϑ)t≥0 are contained in A . By convexity of c(t.), we have

E
∫ T ϑ

0

c(t, θ∗t )µ(dt) + E
∫ T ϑ

0

ks dθ
∗
s(3)

≤ E
∫ T ϑ

0

c(t, ϑ)µ(dt) + E
∫ T ϑ

0

c′(t, θ∗t )(θ
∗
t − ϑ)µ(dt) + E

∫ T ϑ

0

ks dθ
∗
s .

For ϑ ↑ ∞, the first term on the right side of (3) converges to C(ϑ) by dominated

convergence. The remaining two terms sum up to

E
∫ ∞

0

∇C(θ∗)s dθ
∗
s∧T ϑ = E

∫ T ϑ

0

∇C(θ∗)s ∧ 0 dθ∗s −→ E
∫ ∞

0

∇C(θ∗)s ∧ 0 dθ∗s < +∞

since condition (ii) entails in particular that the measure dθ∗ must be concentrated on

the set {∇C(θ∗) ≤ 0} almost surely. It follows that the right side is uniformly bounded

from above in ϑ.

As for the left side of (3), note that for ϑ ↑ ∞ we have∫ T ϑ

0

k−s dθ
∗
s =

∫ ∞

0

k−s dθ
∗
s∧T ϑ −→

∫ ∞

0

k−s dθ
∗
s P–a.s. and in L1(P)



Optimal Control under a Dynamic Fuel Constraint 8

by L1-boundedness of the family (
∫∞

0
k−s dθs, θ ∈ A ). This allows us to use monotone

convergence to conclude that

∃ lim
ϑ↑∞

E
∫ T ϑ

0

ks dθ
∗
s = E

∫ ∞

0

ks dθ
∗
s > −∞ .

Similarly, c(t, θ∗t ) ≥ infϑ∈[ϑ,ϑt]
c(t, ϑ) ∈ L1(P⊗ µ) yields

∃ lim
ϑ↑∞

E
∫ T ϑ

0

c(t, θ∗t )µ(dt) = E
∫ ∞

0

c(t, θ∗t )µ(dt) > −∞ .

It thus follows that the left side of (3) converges to C(θ∗) ∈ R.

Necessity could be derived using arguments from the calculus of variations. We shall

pursue an alternative approach here and verify the validity of the first order conditions ex

post, i.e., directly from our construction of the unique optimal policy. This construction

will not use the necessity part of this lemma. 2

The preceding lemma shows that an optimal policy for our convex optimization

problem (1) is also a solution to some linear minimization problem. Solutions to this

kind of problem are characterized by the following result:

Lemma 2.4 Let φ ≤ 0 be an optional process of class (D) which is continuous in

expectation with φ∞ = 0. Let ψ denote its lower Snell envelope

ψS = ess inf
T∈T ([S,∞])

E [φT |FS] (S ∈ T )

and consider the corresponding Doob-Meyer decomposition ψ = M +A into a uniformly

integrable martingale M and an increasing, predictable process A with A0 = 0.

Then the solutions θ∗ to the linear optimization problem

Minimize E
∫ ∞

0

φs dθs subject to θ ∈ A

are characterized by the properties

(i) θ∗ is flat off {φ = ψ} and

(ii) A is flat off {θ∗ = ϑ} .
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Proof : As φ is continuous in expectation, so is its Snell envelope ψ. In particular,

ψ is an RCLL process and its predictable compensator A has continuous paths almost

surely. For any control policy θ ∈ A , we thus can derive the following estimate:

E
∫

[0,∞)

φt dθt ≥ E
∫

[0,∞)

ψt dθt = E
∫

[0,∞)

Mt dθt + E
∫

[0,∞)

At dθt

= E− A∞θ∞ +

∫
[0,∞)

At dθt = −E
∫

(0,∞]

(θt − ϑ) dAt(4)

≥ −E
∫

(0,∞]

(ϑt − ϑ) dAt .

Indeed, the first estimate follows from φ ≥ ψ and the third equality is due to the

martingale property of M and due to our assumption φ∞ = 0 which implies 0 = ψ∞ =

M∞ + A∞. The last equality follows by partial integration and the last estimate holds

true because dA ≥ 0 and θ ≤ ϑ by admissibility of θ.

It is easy to see that any θ∗ satisfying (i) and (ii) will yield equality everywhere in the

above estimate. On the other hand, these two conditions are also necessary for a plan

θ∗ to minimize E
∫∞

0
φs dθs over θ ∈ A . This follows readily from the above estimate in

conjunction with the identity

(5) inf
θ∈A

E
∫ ∞

0

φs dθs = −E
∫ ∞

0

(ϑt − ϑ) dAt .

To prove this identity, we introduce for n = 1, 2, . . . the sequence of stopping times

T n
0

∆
= inf{t ≥ 0 | φt = ψt},

T n
j

∆
= inf{t ≥ T n

j−1 | φt = ψt, ϑt > ϑT n
j−1

+ 1/n} (j = 1, 2, . . .)

and consider the admissible control policy

θn
t

∆
=

∞∑
j=0

ϑT n
j +1(T n

j ,T n
j+1](t) (t ≥ 0) .

For θ = θn we have equality in the first part of estimate (4) and so we obtain

E
∫ ∞

0

φs dθ
n
s = −E

∫
(0,∞]

(θn
t − ϑ) dAt .

It follows from general results on optimal stopping, that dA is supported by the set

{t ≥ 0 | φt = ψt} almost surely. By definition of the stopping times T n
j (j = 0, 1, . . .)

this entails that almost surely θn
t ≥ ϑt − 1/n for dA-a.e. t. We thus can conclude that

E
∫ ∞

0

φs dθ
n
s = −E

∫
(0,∞]

(θn
t − ϑ) dAt ≤ −E

∫
(0,∞]

(ϑt − ϑ) dAt +
1

n
EA∞ .

For n ↑ ∞ this establishes the desired identity (5), accomplishing our proof. 2
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It is now easy to give the

Proof of Theorem 1 Let θ∗ ∈ A be a policy such that θ∗ is flat off {∇C(θ)∗ = ψ(θ∗)}
and A(θ∗) is flat off {θ∗ = ϑ}. Then ∇C(θ∗)− is P⊗ dθ∗-integrable by Lemma 2.1 and

θ∗ satisfies the conditions of Lemma 2.4 with φ
∆
=∇C(θ∗) ∧ 0. It follows that

−∞ < E
∫ ∞

0

∇C(θ∗) dθ∗ = E
∫ ∞

0

∇C(θ∗) ∧ 0 dθ∗ ≤ E
∫ ∞

0

∇C(θ∗) ∧ 0 dθ

for all θ ∈ A . In particular, ∇C(θ∗)− is P ⊗ dθ-integrable for all θ ∈ A , and we can

use Lemma 2.3 to conclude optimality of the policy θ∗ in Problem (1). Hence, our first

order conditions are indeed sufficient.

Necessity of the first order conditions also follows from combining Lemmas 2.3

and 2.4. We merely need to note that ∇C(θ∗)− is of class (D) by P⊗ µ-integrability of

c′(t, ϑ) ≤ c′(t, θ∗t ) and Assumption 2. 2

Remark 2.5 For problems without fuel constraint (ϑ ≡ +∞), the integrability assertion

in Lemma 2.3 implies in particular that for an optimal policy θ∗ ∈ A the gradient

∇C(θ∗) has to be non-negative, i.e.,

kS ≥ −E
[∫ +∞

S

c′(t, θt)µ(dt)

∣∣∣∣ FS

]
.

Moreover, condition (i) in Theorem 1 implies that equality must hold true in the above

relation whenever S is a time of intervention. This is in accordance with the first

order characterizations obtained for such problems in Bertola (1998) or Bank and Riedel

(2001).

3 Construction of an Optimal Policy

In this section, we shall show how to use the first order characterization of the optimal

policy provided by Theorem 1 in order to construct the solution to the finite fuel prob-

lem (1). The construction will be given in terms of a progressively measurable random

process κ specifying a lower bound which the optimal control should respect granted

enough fuel is left to do so. This lower bound is characterized as the optional solution

κ to the representation problem

(6) kS = −E

[∫ ∞

S

c′(t, sup
s∈[S,t)

κs)µ(dt)

∣∣∣∣∣ FS

]
for any S ∈ T .

Assumptions 1 and 2 ensure existence of a solution to this problem; see Theorem 3 in

Bank and El Karoui (2004).
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Theorem 2 Under Assumptions 1 and 2, the unique minimizer for Problem (1) is given

by

θ∗t
∆
= sup

s∈[0,t)

{κs ∧ ϑs} ∨ ϑ (t ≥ 0) ,

where κ is the optional process solving the representation problem (6).

Remark 3.1 Note that the process κ does not depend on the bounds ϑ, ϑ describing

the set of admissible policies. As a consequence, the solution κ to the representation

problem (6) can be viewed as a universal signal yielding optimal policies for a whole

class of finite fuel problems.

Proof : Let us verify that the policy θ∗ ∈ A satisfies the first order conditions derived

in Theorem 1.

We first compute the lower Snell envelope S(θ∗) of ∇C(θ∗). To this end, consider

S, T ∈ T with S ≤ T and note that by definition of θ∗ and (6) we have

E [∇C(θ∗)T |FS] = E

[∫ ∞

T

{c′(t, sup
s∈[0,t)

{κs ∧ ϑs} ∨ ϑ)− c′(t, sup
s∈[T,t)

κs)}µ(dt)

∣∣∣∣∣ FS

]

≥ E

[∫ ∞

T

{c′(t, sup
s∈[0,t)

{κs ∧ ϑs})− c′(t, sup
s∈[T,t)

κs)}µ(dt)

∣∣∣∣∣ FS

]

≥ E

[∫ ∞

T

{c′(t, sup
s∈[0,t)

{κs ∧ ϑs})− c′(t, sup
s∈[S,t)

κs)}µ(dt)

∣∣∣∣∣ FS

]

≥ E

[∫ ∞

S

{c′(t, sup
s∈[0,t)

{κs ∧ ϑs})− c′(t, sup
s∈[S,t)

κs)} ∧ 0µ(dt)

∣∣∣∣∣ FS

]
.

Note that the last expression does no longer depend on T ≥ S, thus providing a lower

bound for the Snell envelope S(θ∗). In fact, it coincides with this envelope since we have

equality in any of the above estimates for T = TS
∆
= inf{t ≥ S | κt > ϑt+}. This is easy to

see for the first of these estimates as, by definition of TS, sups∈[0,TS ]{κs∧ϑs} ≥ ϑTS+ ≥ 0,

whence sups∈[0,t){κs ∧ ϑs} ≥ 0 for t > TS. Equality for the second estimate can be

deduced from the observation that TS is a point of increase for sups∈[S,t) κs which yields

sups∈[S,t) κs = sups∈[TS ,t) κs for t ∈ (TS,∞]. Finally, equality for the third estimate holds

true as

c′(t, sup
s∈[0,t)

{κs ∧ ϑs})− c′(t, sup
s∈[S,t)

κs) is

≥ 0 for t ∈ (S, TS] ,

≤ 0 for t ∈ (TS,+∞] ,

again by definition of TS. For later use, let us also note here that the stop-

ping time TS is actually the largest stopping time which attains S(θ∗)S =
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ess infT∈T ([S,∞]) E [∇C(θ∗)T |FS] since the above difference is always non-positive and

actually strictly negative on some non–trivial time interval starting at TS whenever

TS < +∞.

Let us now verify the flat off conditions characterizing optimal plans as described in

Theorem 1. If S is point of increase for θ∗, we have κS ≥ θ∗S+ = sups∈[0,TS ]{κs ∧ ϑs} ≥ 0

and so sups∈[S,t) κs ≥ sups∈[0,t){κs ∧ ϑs} ≥ 0 for t ∈ (S,∞]. This allows us to conclude

S(θ∗)S = E

[∫ ∞

S

{c′(t, sup
s∈[0,t)

{κs ∧ ϑs})− c′(t, sup
s∈[S,t)

κs)} ∧ 0µ(dt)

∣∣∣∣∣ FS

]

= E

[∫ ∞

S

{c′(t, sup
s∈[0,t)

{κs ∧ ϑs})− c′(t, sup
s∈[S,t)

κs)}µ(dt)

∣∣∣∣∣ FS

]

= E

[∫ ∞

S

c′(t, sup
s∈[0,t)

{κs ∧ ϑs} ∨ ϑ)µ(dt)

∣∣∣∣∣ FS

]
= ∇C(θ∗)S .

So, θ∗ is indeed flat off {S(θ∗) = ∇C(θ∗)}.
If, on the other hand, S is a point of increase for the predictable compensator

A(θ∗) of S(θ∗) then, by classical results on optimal stopping, the only stopping time in

T ([S,+∞]) attaining S(θ∗)S is S itself. In particular, the maximal such stopping time

TS determined above coincides with S: TS = S, i.e., S = inf{t ≥ S | κt > ϑt+} almost

surely. This implies κS ≥ ϑS+ and so θ∗S+ ≥ ϑS+ P-a.s. We deduce that almost surely

θ∗t = ϑt for any joint point of continuity t for both θ∗ and ϑ, i.e., for all but at most

countably many points t.

Hence, in order to deduce the desired flat off condition θ∗t = ϑt for dA(θ∗)-a.e. t, it

now suffices to note that A(θ∗) has continuous sample paths. This, however, holds true

because ∇C(θ∗)− and thus also S(θ∗) are continuous in expectation. 2

4 Applications

As an immediate consequence of Theorem 2 we obtain an extension of a result in

Karatzas (1985) from the Brownian case to our larger class of finite fuel problems:

Corollary 4.1 The optimal control policy in Problem (1) with finite fuel (ϑ ≡ const. )

is just the optimal control policy with infinite fuel (ϑ ≡ +∞) abandoned after all fuel

has been exhausted. 2
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To obtain a more general result, let us note the following version of the dynamic

programming principle:

Corollary 4.2 For each stopping time S ∈ T , the process

θS
t

∆
= sup

s∈[S,t)

{κs ∧ ϑs} ∨ ϑ

attains

(7) ess inf
θ∈A , θS=ϑ

E
[∫ ∞

S

c(t, θt)µ(dt) +

∫ ∞

S

kt dθt

∣∣∣∣ FS

]
.

In particular, θS
S+ = ϑ∨ lim supt↘S κt ∧ ϑS+ describes the initial policy decision one has

to take when starting to minimize costs as of time S.

Proof : Define ϑ
S

t
∆
=ϑ for t ≤ S and ϑ

S

t
∆
=ϑt for t > S and note that by Theorem 2

θS is the optimal policy in the set of admissible policies A S corresponding to ϑ
S

instead

of ϑ. It thus attains infθ∈A S C(θ) and also

inf
θ∈A , θS=ϑ

E
[∫ ∞

S

c(t, θt)µ(dt) +

∫ ∞

S

kt dθt

]
= E

[∫ ∞

S

c(t, θS
t )µ(dt) +

∫ ∞

S

kt dθ
S
t

]
.

It is easy to see that this infimum is actually the expectation of ess inf in (7). This,

however, allows us to conclude our assertion since this essential infimum is always less

than E
[∫∞

S
c(t, θS

t )µ(dt) +
∫∞

S
kt dθ

S
t

∣∣ FS

]
almost surely. 2

The preceding corollary can be used in two ways. On the hand, it shows that the

process κ of (6) can be used to describe optimal solutions not only as of time 0, but

actually from any arbitrary initial time S ∈ T . On the other hand, it allows us to

deduce κ (at least partially) from the policies attaining (7). This observation yields the

following corollary.

Corollary 4.3 Let K be an optional process such that, for S ∈ T , KS = θS
S+ is the

initial value of the optimal policy for problem (7) when working under the fuel constraint

θS
t ∈ [ϑ, ϑt] (t ≥ S). Then the optimal policy for Problem (1) with fuel constraint ϑ

′ ≤ ϑ

is given by

θ′t
∆
= sup

s∈[0,t)

{Ks ∧ ϑ
′
s} ∨ ϑ .

In particular, the solutions to the problem without fuel constraint (ϑ ≡ +∞) suffice to

determine the optimal policies for the problem with an arbitrary dynamic fuel constraint.



Optimal Control under a Dynamic Fuel Constraint 14

4.1 Monotone follower problems

Let us now come back to the special case of a monotone follower problem studied by

Karatzas and Shreve (1984) which we used to motivate the formulation of our general

finite fuel problem (1) in Section 1: We wish to determine a control policy θ ∈ A which

minimizes

C(θ)
∆
= E

∫ ∞

0

δe−δt 1

2
(Wt − θt)

2 dt ,

where W is a standard Brownian motion. It follows from Theorem 2 that we can solve

this problem explicitly for an arbitrary ϑ by providing a solution to the representation

problem (6). In our present setting, this amounts to finding a progressively measurable

κ such that

(8) E

[∫ ∞

S

δe−δt sup
s∈[S,t)

κs dt

∣∣∣∣∣ FS

]
= e−δSWS for all S ∈ T .

It is intuitively clear (and has been established formally in Karatzas (1985)) that the op-

timal policy consists in reflecting the controlled Brownian motion at a certain threshold

c. This suggests to consider the Ansatz κs
∆
=Ws−c for some constant c ∈ R. Indeed, this

Ansatz can easily be vindicated: We can use the independence and time-homogeneity

of the increments of W to conclude that (8) will be satisfied if we choose

c
∆
= E

∫ ∞

0

δe−δt sup
s∈[0,t)

Ws dt ,

In fact, looking back, we see that the above reasoning will apply not only for Brownian

motion but actually for any Lévy process satisfying suitable integrability properties:

Corollary 4.4 Let X be a Lévy process such that E
∫∞

0
δe−δtX2

t dt < +∞. Then the

optimal policy for the monotone follower problem

Minimize C(θ)
∆
= E

∫ ∞

0

δe−δt 1

2
(Xt − θt)

2 dt over θ ∈ A

is given by

θ∗t = sup
s∈[0,t)

{(Xs − c) ∧ ϑs} ∨ ϑ

where c
∆
= E

∫∞
0
δe−δt sups∈[0,t)Xs dt < +∞.

Proof : We merely have to note that c < +∞ follows from the square-integrability

condition on X and Doob’s maximal inequality for the martingale (Xt− tEX1)t≥0. 2
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Remark 4.5 While Beneš, Shepp, and Witsenhausen (1980/81) study a practically

identical cost functional they allow for downward and upward displacement of the parti-

cle: Controls merely have to be of bounded variation. As they show, in this situation the

amount of fuel left becomes crucial for the optimal control decision so that there is no

longer a universal process like κ describing the optimal policy. Indeed, one will accept

larger distances of the controlled processes from the origin with little fuel left than with

a lot.

More generally the above approach will allow us to explicitly describe optimal control

policies whenever the representation problem (8) can be solved explicitly for a given

process W , not necessarily Brownian motion. This is indeed possible for a large class of

diffusions as shown in Bank and Föllmer (2003).

If, on the other hand, one wishes to consider a non-quadratic cost functional under

a dynamic finite fuel constraint, we can use Corollary 4.2 to reduce the construction of

an optimal policy to the unconstraint case with infinite fuel and make use of the results

of Chow, Menaldi, and Robin (1985) or Karatzas (1985).

4.2 Irreversible investments

Let us finally illustrate how Corollary 4.4 can be used to extend the closed form solutions

obtained for certain irreversible investment problems in Kobila (1993) and Scheinkman

and Zariphopoulou (2001) to incorporate a dynamic finite fuel constraint.

The paper Kobila (1993) studies the problem to maximize a reward functional of the

type

R(θ)
∆
= E

∫ ∞

0

e−δtΠ(Xt, θt) dt+

∫ ∞

0

kt dθt

where X is a geometric Browninan motion and Π = Π(x, ϑ) : (0,+∞)×R → R describes

the reward function. Apart from a number of technical conditions, Π is assumed to be

strictly concave in ϑ; see Condition (5.1) in Kobila (1993) and note that our control cost

process k does not depend on the control in contrast to the setting chosen in Kobila

(1993). All increasing, left-continuous processes θ with θ ≥ ϑ = θ0 are considered

admissible controls, i.e., ϑ ≡ +∞.

Taking a dynamic programming approach the authors set up and explicitly solve

the Hamilton-Jacoby-Bellman equation for this problem. It turns out that the optimal

policy consists in keeping the problem’s state process (X, θ) away from a ‘forbidden’

region R of the form

R = {(x, ϑ) ∈ (0,+∞)× R | φ(x) > ϑ}
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for an explicitly given continuous function φ. In particular, when starting at time S ∈ T

in θS
S = ϑ ∈ R the optimal policy requires an initial jump to KS = ϑ ∨ φ(XS), i.e., to

the minimal ϑ ≥ ϑ such that (XS, ϑ) 6∈ R.

It now follows from Corollary 4.4 that the region R computed in Kobila (1993) can

actually be used to solve the same problem with an arbitrary dynamic fuel constraint

ϑ 6≡ +∞: The optimal policy consists still in keeping the state process away from the

region R, at least as long as enough fuel is left to do so. If this is not the case, one has

to wait until further supply of fuel becomes available (i.e. until ϑ increases) and then

use this fuel to move the state process as close as possible to the complement of R.

The problem studied in Scheinkman and Zariphopoulou (2001) can be viewed as

the problem in Kobila (1993) with an additional finite fuel constraint: ϑ = 0 and

ϑ = 1. Given our previous observation it is now very easy to reduce the explicit solution

computed in Scheinkman and Zariphopoulou (2001) to the results of Kobila (1993).
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