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3. Exercise sheet - solutions

FV/FD-Methods for the solution of pde’s

1) Exercise
Solve the equation
Ut = Ugy + Uyy -

numerically on
€ =0, 7[x]0, x|

with homogeneous boundary conditions, and the initial condition

1 forlz—3| <% and [y—3| <3
u(z,y,0) =< 1 for|x—g|<% and |y—§\<%
0 otherwise

Use an appropriate finite difference discretization of {2 and test implicit and explicit time
discretizations. Follow the solution to a steady state (% ~ 0).

Solution:
With the matrices
2 -1 0 0o ... 0
-1 2 -1 0 0
B — : e RNXN
0o ... 0 -1 2 -1
0o ... 0 0 -1 2

the identity Iy = eye(N) and the discretization parameter h = £ we create the stiffness

matrix )

h
A=B®1N+IN®B+7(IN®IN)eRNQxN?

and the r.h.s
h2 -

F (IN(X)IN)U,

B
where U € RV*N is the vector consisting of the unknown values 7;; at the gridpoints (i *

h, j = h) at the time level t = k7. The solution U at the time level ¢t = (k + 1)7 we get with the
Euler implicit method by the solution of

AU =F.

We start this process at ¢ = 0 with the projection of u(x, y, 0) onto the grid Q5 = {(i h,jh)|i =
1,...,N,j=1,...,N}.



2) Exercise
We consider the inital boundary value problem

Up = Uyy N Q =)0, 1]
u(0,t) = u(l,t) =0
x)

u(z,0) = sin(m

with the exakt solution

—72t

u(z,t) =e sin(7x) .

Use the horizontal method of lines to solve the problem numerically and compare the nu-
merical solutions to the exact solution. Use an equidistant finite difference discretization of
Uy and €).

Test different ode-solver including Euler-explicit and Euler-imlicit and MATLAB ode45 or
an equivalent Octave-ode-solver.

Solution:

Solution:

At the gridpoints z; =i h, ¢ =1,...,N,h = ﬁ we get the ode-system
8ui (t) _ 2’114' (t) — ui+1(t) — u,-_l(t)

= > ,i=1,...,N

(uo(t) = un41(t) = 0) with the initial values
u;(0) =sin(ihr), i=1,...,N .

This initial value problem is now to solve with the named ode-solver.

3) Exercise
The heat conduction number and the temperature conduction number of a potato are

m2

3600 s

W
A=016—— =5,6-10%
b) m K b a b

and the convective heat transfer coefficient is in some sense uncertain, we suppose it as

w
m2K -’

a =30

The potato is supposed as a ball €2 with the radius R = 5cm. We consider such a potato,
which has after cooking the homogeneous temperature of 373 K. The potato was cooled in a
big can with water of a constant temperature of u,, = 291 K. The heat conduction equation
is
Ut = a(ua:a: + Uy + Uzz) )
the initial condition is
u(x,y,2,0) =373K .

On the boundary I' = 992 we consider a bc of third kind
ou

A= =a(u — Uso) ,
where % is the derivative in the outer normal direction (r-direction). Determine the minimal
time when the maximal temperatur of the potato is less or equal to 333 K.



= W N =

Because of the radial symmetry it is useful to understand this problem as a 2,5d problem (2d
in polar coordinates).

Because of the independence of the coordinates § and ¢ the 1d problem

a 0. ,0u

w= a5 g,
is to solve for the function u(r, t) on |0, R[ with the boundary condition
ou
_ )\E -

Because of the bc of thrid kind an analytical solution seems to be complicable. Thus a nume-
rical solution should be found. With a Finite-Volume ansatz (dV = r?sin 0 dfdpdr)

(U — Uso) -

/ ug 2 sin OdOdpdr = / a9 [ @]rz sin 0dOdpdr
w wr2or or

and the independance of 6 and ¢ we get

Tit1/2 9 _/Ti+1/28 2@
/ ugre dr = 8r[r 87n]alr

Ti—1/2 Ti—1/2

and by an appropriate implicit approximation of the time derivative we get the Finite-
Volume approximation

.3 _ 3
Ui — Uitz T Tim1y2 o Uil Wi o Wi T Uind
- 3 =i A, il A,
where 1u; is the numerical solution at time ¢t = k7 and u; (i = 1,...,n) is the numerical

solution at the new time level ¢4 41 = t;, + 7.! The bc is approximated by

Un41 — Un

-
Ar

= a(un+1 - Uoo)

and is used to eliminate the unknown u,, ;. At the end we have to solve a linear equation
system for the unknowns U = (u; ug ... up) T per time-step, starting with £ = 1 and the
values 1; at time ¢ = 0 from the initial condition.

r'1/2 | Unp Upyd

0 I|‘1 I'|1+1|,"2 | lJn R lLn+]
I n+1/2R

Abbildung 1: discretization of 2 = [0, R]

Listing 1: source code

% hot potato problem — exercise 4.3
%

%

n = 25;

3 3
Tiv1/2  Ti—1/2
3

!Instead of the use of the factor it's also possible to use 7 * Ar as a result of the midpoint rule



R1 = 1.0/20.;

drho = (R1-R0)/n;

Ubound = 333;

uo 373.;

Uu 291.;

a = 5.6/3600x1.0e—4;

lambda = 0.16;

alpha = 30;

%

% Zentralpunkte der Finiten Zellen
rho = linspace(R0+drho/2,R1—drho/2,n);
% Randpunkte der Finiten Zellen
rhop = linspace(RO,R1,n+1);

% Matrixaufbau Ar

)

(]
(Il

(]

Ar = zeros(n,n);
u0 = ones(n,1)=U0;
%

for i=2:n-1
Ar(i,i) = ax(rhop(i+1)"2 + rhop(i)"2)/drho/(rho (i) 2xdrho);

Ar(i,i—1) = (—axrhop(i)"2/drho) /(rho(i)"2xdrho);
Ar(i,i+1) = (—a*rhop(i+1)"2/drho) /(rho(i)"2xdrho);
end
Ar(1,1) = (ax(rhop(1)"2+rhop(2)°2)/drho) /(rho (1) 2xdrho);
Ar(1,2) = (—axrhop(2)"2/drho) /(rho (1) 2xdrho);
Ar(n,n) = (axrhop(n)"2/drho + axrhop(n+1)"2/drho) /(rho(n)"2xdrho)

Z axrhop (n+1)*2/ drho*(lambda/drho) /(lambda/drho + alpha)/(rho(n)*2xdrho);

Ar(n,n—1) = (—axrhop(n)"2/drho)/(rho(n)"2xdrho);
%
for i=1:n
Ualt(i) = UO0;
end
R = zeros(n,l);
% Zyklus
% rechte Seite (Beruecksichtigung der Randbedingung)
for i=1:n
if (i < n) R(i) = 0; end
R(n) = ...
axrhop (n+1)"2xalpha/drho/(lambda/drho + alpha)«Uu/(rho(n)"2x*drho);
end
%o
Time_min=80; %time in minutes
Time=Time_min*60; % time in seconds
%
odefun=@(t,x) —Ar*x+R; % function of right side
[T, U]=0de23s(@(t,x)odefun(t,x) ,[0,Time],u0); %ode23s works faster for stiff
%
% PlOt
for i=1:length(T)
plot (U(i,:))
end
% Plot



