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3. Exercise sheet - solutions

FV/FD-Methods for the solution of pde’s

1) Exercise
Solve the equation

ut = uxx + uyy .

numerically on
Ω =]0, π[×]0, π[

with homogeneous boundary conditions, and the initial condition

u(x, y, 0) =


1 for |x− π

2 | <
1
2 and |y − π

2 | <
3
2

1 for |x− π
2 | <

3
2 and |y − π

2 | <
1
2

0 otherwise
.

Use an appropriate finite difference discretization of Ω and test implicit and explicit time
discretizations. Follow the solution to a steady state (∂u∂t ≈ 0).

Solution:
With the matrices

B =


2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

...
0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2

 ∈ RN×N ,

the identity IN = eye(N) and the discretization parameter h = π
N we create the stiffness

matrix

A = B ⊗ IN + IN ⊗B +
h2

τ
(IN ⊗ IN ) ∈ RN

2×N2

and the r.h.s

F =
h2

τ
(IN ⊗ IN )Û ,

where Û ∈ RN×N is the vector consisting of the unknown values ûij at the gridpoints (i ∗
h, j ∗h) at the time level t = kτ . The solution U at the time level t = (k+ 1)τ we get with the
Euler implicit method by the solution of

AU = F .

We start this process at t = 0 with the projection of u(x, y, 0) onto the grid Ωh = {(i h, j h)|i =
1, . . . , N, j = 1, . . . , N}.



2) Exercise
We consider the inital boundary value problem

ut = uxx in Ω =]0, 1[

u(0, t) = u(1, t) = 0

u(x, 0) = sin(πx)

with the exakt solution
u(x, t) = e−π

2t sin(πx) .

Use the horizontal method of lines to solve the problem numerically and compare the nu-
merical solutions to the exact solution. Use an equidistant finite difference discretization of
uxx and Ω.
Test different ode-solver including Euler-explicit and Euler-imlicit and MATLAB ode45 or
an equivalent Octave-ode-solver.

Solution:
Solution:
At the gridpoints xi = i h, i = 1, . . . , N, h = 1

N+1 we get the ode-system

∂ui(t)

∂t
=

2ui(t)− ui+1(t)− ui−1(t)
h2

, i = 1, . . . , N,

(u0(t) = uN+1(t) = 0) with the initial values

ui(0) = sin(i hπ) , i = 1, . . . , N .

This initial value problem is now to solve with the named ode-solver.

3) Exercise
The heat conduction number and the temperature conduction number of a potato are

λ = 0, 16
W

mK
, a = 5, 6 · 104

m2

3600 s

and the convective heat transfer coefficient is in some sense uncertain, we suppose it as

α = 30
W

m2K
.

The potato is supposed as a ball Ω with the radius R = 5 cm. We consider such a potato,
which has after cooking the homogeneous temperature of 373K. The potato was cooled in a
big can with water of a constant temperature of u∞ = 291K. The heat conduction equation
is

ut = a(uxx + uyy + uzz) ,

the initial condition is
u(x, y, z, 0) = 373K .

On the boundary Γ = ∂Ω we consider a bc of third kind

−λ∂u
∂~n

= α(u− u∞) ,

where ∂
∂~n is the derivative in the outer normal direction (r-direction). Determine the minimal

time when the maximal temperatur of the potato is less or equal to 333K.



Because of the radial symmetry it is useful to understand this problem as a 2,5d problem (2d
in polar coordinates).

Because of the independence of the coordinates θ and ϕ the 1d problem

ut =
a

r2
∂

∂r
[r2
∂u

∂r
]

is to solve for the function u(r, t) on ]0, R[ with the boundary condition

−λ∂u
∂r

= α(u− u∞) .

Because of the bc of thrid kind an analytical solution seems to be complicable. Thus a nume-
rical solution should be found. With a Finite-Volume ansatz (dV =⇒ r2 sin θ dθdϕdr)∫

ω
ut r

2 sin θdθdϕdr =

∫
ω

a

r2
∂

∂r
[r2
∂u

∂r
]r2 sin θdθdϕdr

and the independance of θ and ϕ we get∫ ri+1/2

ri−1/2

ut r
2 dr =

∫ ri+1/2

ri−1/2

∂

∂r
[r2
∂u

∂r
] dr

and by an appropriate implicit approximation of the time derivative we get the Finite-
Volume approximation

ui − ûi
τ

r3i+1/2 − r
3
i−1/2

3
= r2i+1/2

ui+1 − ui
∆r

− r2i−1/2
ui − ui−1

∆r

where ûi is the numerical solution at time tk = kτ and ui (i = 1, . . . , n) is the numerical
solution at the new time level tk+1 = tk + τ .1 The bc is approximated by

−λun+1 − un
∆r

= α(un+1 − u∞)

and is used to eliminate the unknown un+1. At the end we have to solve a linear equation
system for the unknowns U = (u1 u2 . . . un)T per time-step, starting with k = 1 and the
values ûi at time t = 0 from the initial condition.

Abbildung 1: discretization of Ω = [0, R]

Listing 1: source code
1 % hot potato problem − e x e r c i s e 4 . 3
2 %
3 %
4 n = 2 5 ;

1Instead of the use of the factor
r3i+1/2−r3i−1/2

3
it’s also possible to use r2i ∗∆r as a result of the midpoint rule



5 R0 = 0 . ;
6 R1 = 1 . 0 / 2 0 . ;
7 drho = ( R1−R0 ) /n ;
8 Ubound = 3 3 3 ;
9 U0 = 3 7 3 . ;

10 Uu = 2 9 1 . ;
11 a = 5 .6/3600∗1 .0 e−4;
12 lambda = 0 . 1 6 ;
13 alpha = 3 0 ;
14 %
15 % Zentralpunkte der F i n i t e n Zel len
16 rho = linspace ( R0+drho /2 ,R1−drho /2 ,n ) ;
17 % Randpunkte der F i n i t e n Zel len
18 rhop = linspace ( R0 , R1 , n+1) ;
19 % Matrixaufbau Ar
20 Ar = zeros ( n , n ) ;
21 u0 = ones ( n , 1 ) ∗U0 ;
22 %
23 for i =2 :n−1
24 Ar ( i , i ) = a ∗ ( rhop ( i +1) ˆ2 + rhop ( i ) ˆ 2 ) /drho /( rho ( i ) ˆ2∗drho ) ;
25 Ar ( i , i−1) = (−a∗rhop ( i ) ˆ2/ drho ) /( rho ( i ) ˆ2∗drho ) ;
26 Ar ( i , i +1) = (−a∗rhop ( i +1) ˆ2/ drho ) /( rho ( i ) ˆ2∗drho ) ;
27 end
28 Ar ( 1 , 1 ) = ( a ∗ ( rhop ( 1 ) ˆ2+ rhop ( 2 ) ˆ 2 ) /drho ) /( rho ( 1 ) ˆ2∗drho ) ;
29 Ar ( 1 , 2 ) = (−a∗rhop ( 2 ) ˆ2/ drho ) /( rho ( 1 ) ˆ2∗drho ) ;
30 Ar ( n , n ) = ( a∗rhop ( n ) ˆ2/ drho + a∗rhop ( n+1) ˆ2/ drho ) /( rho ( n ) ˆ2∗drho ) . . .
31 − a∗rhop ( n+1) ˆ2/ drho ∗ ( lambda/drho ) /( lambda/drho + alpha ) /( rho ( n ) ˆ2∗drho ) ;
32 Ar ( n , n−1) = (−a∗rhop ( n ) ˆ2/ drho ) /( rho ( n ) ˆ2∗drho ) ;
33 %
34 for i =1 :n
35 Ualt ( i ) = U0 ;
36 end
37 R = zeros ( n , 1 ) ;
38 % Zyklus
39 % r e c h t e S e i t e ( Beruecksicht igung der Randbedingung )
40 for i =1 :n
41 if ( i < n ) R( i ) = 0 ; end
42 R( n ) = . . .
43 a∗rhop ( n+1) ˆ2∗ alpha/drho /( lambda/drho + alpha ) ∗Uu/( rho ( n ) ˆ2∗drho ) ;
44 end
45 %
46 Time min =80; %time in minutes
47 Time=Time min ∗60 ; % time in seconds
48 %
49 odefun=@( t , x ) −Ar∗x+R ; % funct ion of r i g h t s ide
50 [ T ,U]= ode23s (@( t , x ) odefun ( t , x ) , [ 0 , Time ] , u0 ) ; %ode23s works f a s t e r f o r s t i f f
51 %
52 % P l o t
53 for i =1 :length ( T )
54 plot (U( i , : ) )
55 end
56 % P l o t


