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Abstract

The management of the actual COVID-19 pandemic is a great challenge for
scientists of quite different research areas. In addition to virology research,
mathematical models and simulations can be a valuable contribution to the un-
derstanding of the dynamics of the pandemic and can give recommendations to
physicians and politicians. In this paper mathematical models of epidemics will
be described, developed and applied to yield a contribution to the control and
management of the pandemic. Most of the treatment of the current COVID-19
pandemic with SIR-type models was a deterministic description of the epidemic
regime. In reality there are some uncertainties like incomplete data, big esti-
mated number of unknown cases and for example mismatched PCR-tests. One
possibility to describe this situation is given with the consideration of stochas-
tic processes in the models. In this paper an extension of SIR-type models to
stochastic differential equations will be presented exemplarily. The random dis-
turbances of data will be described by addends consisting of random variables
and Wiener processes. As a base for this investigations the German data of the
beginning of the pandemic of 2020 was used. It could be shown that the devel-
oped models with stochastic differential equations are able to describe random
influences on the pandemic by comparing the results with those of the deter-
ministic ones.
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1 Introduction

Because of the absence or scarcity of vaccines against the COVID-19 virus it is a
great demand of mathematical models to describe the pandemic and to control non-
pharmaceutical interventions to decrease number of infected people and to avoid
the propagation of the virus.

With the SIR-model (see [1]) it is possible to describe pandemics like the spanish
fly ([2]) or the COVID-19 pandemic. The aim of this model consists in tracing the
dynamics of sub-populations of susceptible (S), infected (I), and recovered (R) peo-
ple in a certain region. Classic SIR-type models are deterministic. These are simple
but effective for describing the progression of the pandemic. They are able to fit
the description of the average infection dynamics in macroscopic sub-populations.
SIR-type models were successful used to gave the politicians important recommen-
dations for actions and measures for the fight against the COV-Sars-2 virus (see for
example [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]).

Random influences can not fitted by the standard models. But there are some
uncertainties which cannot embraced by the model parameters. And this is reason
to extent the deterministic models to stochastic ones.

This will be done exemplarily for the classic SIR-model but it is also applicable
to other deterministic models like the SEIR- or the SIR−X-model [4].

2 The Mathematical SIR Model

First, I emphasize one important presupposition for the model. I suppose that the
distribution of the included sub-populations is equal, i.e., the density is approxi-
mately constant. This is a very strict supposition, but this is acceptable, for example,
for cities and congested urban areas like New York or the Ruhr area in Germany.
At the beginning of the pandemic, exponential growth of the number of infected
people is supposed.

In the so-called SIR model of Kermack and McKendrick [1], I denotes the in-
fected people, S denotes the susceptible people, and R denotes the recovered peo-
ple. It is a deterministic model. I constrain the investigations to the species I , S,
and R only. There are also more complex deterministic models that include sub-
populations other than S, I , and R (see [3, 4]), but the basic behavior of SIR-type
models can be described by the following simple one. The dynamics of infections
and recoveries can be approximated by the following system of ordinary differential
equations:

dS

dt
= −β S

N
I (1)

dI

dt
= β

S

N
I − γI (2)

dR

dt
= γI . (3)

β represents the number of others that one infected person encounters per unit
time (per day). γ is the reciprocal value of the typical time from infection to recovery.
N is the total number of people involved in the epidemic disease, andN = S+I+R.

The currently available empirical data suggest that the coronavirus infection typ-
ically lasts for some 14 days. This means that γ = 1/14 ≈ 0,7.



The choice of β is more complicated. Based on the daily data of infected people
in Germany ([13], [14]) at the very beginning of the pandemic in [5] was found β ≈
0,21.

By the division of the compartement I of the infected people into the comparte-
ment E of infected people who exposed and not infectious and the compartement
I of infected people who are infectious also, the so called SEIR-model was intro-
duced (see for example [7]):

dS

dt
= −β S

N
I

dE

dt
= β

S

N
I − αE

dI

dt
= αE − γI

dR

dt
= γI .

α is the reciprocal of the latency period (α = 1
4

assumed).

3 Stochastic framework

Stochastics pioneers like Norbert Wiener and Kiyoshi Itó (see [15]) introduced the
mathematical basics of stochastic analysis and stochastic processes. Key concepts
like Brownian motion (Wiener process) or the Ito-integral innovated the theory of
stochastic differential equations.

Because of the fact that a Wiener processWt is not differentiable, an equation like

dXt

dt
= f(Xt) + g(Xt)

dWt

dt

don’t stack up, where Xt is a random variable and Wt is a Wiener process. That’s
the reason for the integral formulation

dXt = f(Xt)dt+ g(Xt)dWt . (4)

Equations (4) are called ”stochastic differential equations” (sde, see for example
[16]). A formal solution of (4) for a given initial state X0 is of the form

Xt = X0 +

∫ t

0

f(Xt)dt+

∫ t

0

g(Xt)dWt . (5)

The first integral of (5) is a classic Riemann-integral, but the second integral∫ t

0

g(Xt)dWt (6)

is not covered by the classic integration because of the mad properties of the Wiener
process Wt. Itó introduced for integrals like (6) the concept of the ”Itó integral” and
thus he showed a way to solve stochastic differential equations with the formula (5).
The stochastic process Xt from equation (5) is called an Itó-process.



Now we can augment the deterministic model equation system to the stochastic
differential equation system

dSt = −βSt

N
It dt− νItdWt (7)

dIt = (β
St

N
It − γIt) dt+ νItdWt (8)

dRt = γIt dt . (9)

The index t does not mean a time-derivative. It, St and Rt denote stochastic pro-
cesses andWt is a Wiener process with its main characteristicWt−Ws ∼ N(0,

√
t− s),

t > s and the independence of Wt and Ws for t 6= s. With the addend νItdWt we try
to describe the random fluctuation of infected people, for instance unrecognized or
over/under-estimated infected people. The scope of such random effects can be
controlled by the parameter ν.

Together with initial data S0, I0 and R0 a stochastic SIR-model is defined.

4 Numerical Solution methods for the classic determin-
istic SIR-model and the stochastic SIR-model

I disclaim qualitative mathematical considerations like existence and uniqueness of
solutions of the dynamical system of (1)–(3) and concentrate my interest on prac-
tical application and numerical experiments. It should be mentioned that both the
deterministic SIR-ode-system and the stochastic SIR-sde-system with certain ini-
tial values are solvable with unique solutions.

The numerical solution of the ordinary differential equation system of the SIR
model was done with a Runge–Kutta integration method of the fourth order. The
independence of the time discretization of the solution method was tested by a sys-
tematic time-grid refinement. At the end, I found that time-steps of a day or half a
day could be used.

For the solution of the stochastic SIR-model I used both the Euler-Maruyama
method (order 1) and the Milstein method (order 1,5). An overview on the numerics
of sde’s is given in [17]. As time-steps I could use a day or half a day also.

5 Numerical Computations for Germany based on SIR-
type models

With the choice of a β-value of 0,215 –which is evaluated on the basis of the real data
from the ECDC– and γ = 0,07, one gets the progress of the pandemic’s dynamics,
pictured in Figure 1b (I0 denotes the initial value of the I species, that is, 31 Jan-
uary 2020. The total number N for Germany is guessed to be 70 million). R0 is the
basis reproduction number of persons infected by the transmission of a pathogen
from an infected person during the infectious time (R0 = β/γ), shown in the fol-
lowing figures1. Because of the delay in development and production of vaccines
it was looking for non-pharmaceutical control strategies for the pandemic. In [5]
suitable points in time are discussed to start a lockdown by the reduction of people

1The values of R0 in all of the following figures are applied to the β-value of the beginning of the
pandemic.



contacts by some measures related to the social life. It could be shown that very
early lockdowns move the pandemic behavior by the duration of the lockdown (see
Figure 1b).

(a) (b)

Figure 1: (a) Typical undisturbed one-year pandemic regime in Germany; (b) The
pandemic regime as a result of an early 30-days lockdown.

Only starting points of lockdown behind the time (it was called ”dynamical lock-
down”) when the curve of infected people changes his behavior from convex to con-
cave are successful for flattening the curve. The Figures 2a and 2b show the effect
of dynamical lockdowns.

(a) (b)

Figure 2: (a) The one-year pandemic behavior for a 30-days dynamical lockdown;
(b) The one-year pandemic behavior for a 50-days dynamical lockdown.

Other non-pharmaceutical interventions based on SIR-models are discussed for
example in [3] or [9].

The SEIR-model allows more granular investigations of the pandemic propa-
gation. The results of simulations based on the SEIR-model are pictured in Figures
3a and 3b.



(a) (b)

Figure 3: (a) The one-year pandemic behavior described with the SEIR-model,
α = 1/4; (b) The one-year pandemic behavior described with the SEIR-model,
α = 1/6.

The Figures 4a, 4b, 5a und 5b show the results of the SIR − X-simulation for
Germany.

(a) (b)

Figure 4: (a) The one-year pandemic behavior described with the SIR −X-model,
η0 = 0, η = 0; (b) The one-year pandemic behavior described with the SIR − X-
model, η0 = 0 003, η = 0 003.



(a) (b)

Figure 5: (a) The one-year pandemic behavior described with the SIR −X-model,
η0 = 0,002, η = 0; (b) The one-year pandemic behavior described with the SIR−X-
model, η0 = 0, η = 0 002.

6 Numerical Computations for Germany based on
stochastic SIR-models

In all countries concerned by the COVID-19 pandemic, there are random influences
on the infection run which can not be covered by deterministic SIR-type models.
With the addend νItdWt in the sde-system we describe the extend of eventuality
of the information about the parameters β and γ based on the real data capture.
It means a certain percentage of the infected people is unknown or miscount. In
the following we demonstrate the effects caused by the consideration of random
disturbances. In Figures 6 and 7 the results of numerical solution of the sde-system
(7)-(9) are compared to the deterministic ones. As a solution we understand the
mean of 50 paths of the Itó-processes generated by the Euler-Maruyama method of
solving the sde-system.

(a) (b)

Figure 6: (a) Deterministic simulation of the one-year pandemic regime in Ger-
many; lockdown; (b) Stochastic simulation of the one-year pandemic regime in Ger-
many, ν = 0,2.



(a) (b)

Figure 7: (a) Stochastic simulation of the one-year pandemic regime in Germany,
ν = 0,25 ; lockdown; (b) Stochastic simulation of the one-year pandemic regime in
Germany, ν = 0,3.

The simulations show that the maximum of infected people is in inverse propor-
tion to the magnitude of ν (which determines the extend of uncertainty about the
pandemic data.

The Wiener process Wt follows a Gaussian distribution (∼ N(0,
√
t)). Instead of

Wt I consider a stochastic process Yt which is uniform distributed with values in
[−1,1]. Now we analyze the sde-system

dSt = −βSt

N
It dt− νItdYt (10)

dIt = (β
St

N
It − γIt) dt+ νItdYt (11)

dRt = γIt dt . (12)

With Yt and the addend νItdYt it is now possible to fix an uncertainty interval
[−ν, ν]. The result of the numerical analysis of the sde-system (10)-(12) compared to
the deterministic solution is pictured in Figure 8



(a) (b)

Figure 8: (a) Deterministic simulation of the one-year pandemic regime in Ger-
many; lockdown; (b) Stochastic simulation of the one-year pandemic regime in Ger-
many, ν = 0,4 (solution of (10)-(12).

This result confirms the simulations with the Gaussian distributed Wiener pro-
cess Wt.

The inclusion of random effects into the SEIR-model follows the proceeding
with the SIR model in the section above with the result

dSt = −βSt

N
Itdt− ν(Et + It) dWt (13)

dEt = (β
St

N
It − αEt)dt+ νEt dWt (14)

dIt = (αE−γIt)dt+ νIt dWt (15)
dRt = γItdt . (16)

In Figures 9a - 9b the results of the deterministic and stochastic SEIR-simulations
are pictured.

(a) (b)

Figure 9: (a) Deterministic simulation of the one-year pandemic regime in Ger-
many with the SEIR-model; lockdown; (b) Stochastic simulation of the one-year
pandemic regime in Germany, ν = 0,125 (solution of (13)-(16)).



7 Discussion and Conclusions

With the extensions to a SEIR- and a SIR − X-model a more granular resolution
of the pandemic development could achieved. In this paper I gave an overview on
different SIR-type models as a base for the development of stochastic extensions
of the deterministic SIR-type models. For the appropriate choice of the parameters
ν, η0 and η are further analyses of actual data necessary. But the given simulation
results let expect an improvement of the pandemic modeling.

It could be shown that the results of the deterministic simulations over-estimate
the height of the infected curve. The stochastic simulations results in a decreased
maximum of infected people.

As shown in an earlier paper ([5]) there are two possibilities for the rise of of
infected people to be inverted and the medical burden to be reduced. Firstly the
reduction of the stock of the species S. This can be obtained by immunization or
vaccination. Another possibility is the isolation of high-risk people (70 years and
older) as it wa shown with the SIR − X-model. Positive tests for antibodies re-
duce the stock of susceptible persons. The second possibility is the reduction of
the infection rate β. This can be achieved by strict lockdowns, social distancing at
appropriate times, or rigid sanitarian moves.

In conclusion, it must be said that the results of the simulations show that stochas-
tic extensions of the SIR-model are easy to realize and they are able to describe the
pandemic propagation more realistic. Thus the extended stochastic models could
be a valuable contribution for the description and control of the actual pandemic.
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