
 

Topology Counts: Force Distributions in Circular Spring Networks

Knut M. Heidemann,1 Andrew O. Sageman-Furnas,1 Abhinav Sharma,2,3 Florian Rehfeldt,2

Christoph F. Schmidt,2,* and Max Wardetzky1,†
1Institute for Numerical and Applied Mathematics, University of Goettingen, 37083 Goettingen, Germany

2Third Institute of Physics - Biophysics, University of Goettingen, 37077 Goettingen, Germany
3Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany

(Received 10 July 2017; published 5 February 2018)

Filamentous polymer networks govern the mechanical properties of many biological materials. Force
distributions within these networks are typically highly inhomogeneous, and, although the importance of
force distributions for structural properties is well recognized, they are far from being understood
quantitatively. Using a combination of probabilistic and graph-theoretical techniques, we derive force
distributions in a model system consisting of ensembles of random linear spring networks on a circle. We
show that characteristic quantities, such as the mean and variance of the force supported by individual springs,
can be derived explicitly in terms of only two parameters: (i) average connectivity and (ii) number of nodes.
Our analysis shows that a classical mean-field approach fails to capture these characteristic quantities
correctly. In contrast, we demonstrate that network topology is a crucial determinant of force distributions in
an elastic spring network. Our results for 1D linear spring networks readily generalize to arbitrary dimensions.
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Filamentous polymer networks are ubiquitous in nature.
They make up the cytoskeleton of animal cells and form
the scaffold of the extracellular matrix. These networks
determine the mechanical response of cells and tissues and
support elastic forces under external or internal loading
[1–5]. Crucial for the understanding of the mechanical
response in such networks is a thorough analysis of force
distributions under strain.
Thus far, the quantitative analysis of force distributions in

random polymer networks has largely relied on computa-
tional modeling [6,7]. Analytical descriptions of filamentous
networks have primarily used mean-field approaches [7–12],
which rely on the assumption that global mechanical proper-
ties can be inferredwithout the consideration of the network’s
topological structure. In this study, we show, both analytically
and numerically, that this assumption has severe limitations.
We show that the full network topology is essential for

accurately capturing force distributions in filamentous
networks. Indeed, force propagation through networks
under loading occurs along “nontrivial loops,” i.e., paths
that connect one boundary of the system to another.
Network failure is expected to arise from a rupture of
bonds here, because extremal forces occur in these loops.
The presence of topological effects is independent of the
choice of boundary conditions or system dimension. We

therefore illustrate these effects in a one-dimensional model
with periodic boundary conditions.
Our model system considers ensembles of linear random

spring networks on a circle (see Fig. 1). To model a
generically forced system, we employ a generation pro-
cedure that results in initial configurations that are not in
mechanical equilibrium. This is meant to produce a situation
equivalent to, say, a cytoskeletal protein network in which
molecular motors are turned on that contract the network
locally as force dipoles. We then study the resulting force
distributions in the relaxed systems using a combination of
probabilistic and graph-theoretical techniques.
We show that characteristic quantities, such as the mean

and variance of force distributions, can be derived explicitly
in terms of only two parameters: (i) average connectivity
and (ii) number of nodes. Our analysis shows that a
classical mean-field approach fails to capture these char-
acteristic quantities correctly; the error is particularly
pronounced for the biologically most relevant regime of
low degrees of connectivity.
We generate initial network configurations as follows

(Fig. 1). (i) Place N node positions (indexed from 1 to N)
drawn from a uniform distribution on the circle.
(ii) Connect these nodes in the order given by their indices
into one connected cycle via springs. We always connect
consecutive nodes via the shorter of the two possible
distances. Note that the cycle may wrap around the circle
zero, one, or multiple times [Fig. 1(c)]. This step guarantees
that each network will always have only one connected
component and prevents dangling ends. (iii) Connect
further node pairs randomly, such that each node pair is
connected by at most one spring, until the network contains
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Nz=2 springs, where the average degree of connectivity z is
chosen such that Nz=2 is an integer.
Each spring is linear and has rest length zero and a unit

spring constant. Its length is measured along and in units of
the circumference of the circle. In order to encode this
construction in an unambiguous manner, we work with
signed spring lengths as degrees of freedom. The orientation
of a spring is chosen such that it goes from a node of lower
index to a node of higher index. This is an arbitrary choice, but
defined orientations are essential in our formalism. The sign
of the spring length is chosen to be positive if its orientation on
the circle points counterclockwise and negative otherwise.
The network can be encodedwithin a graph representation,

where the springs together with their orientations are the
directed edges of the graph, with signed lengths as edge
weights [Fig. 1(b)]. In the sequel we use “spring lengths” and
“edge weights” synonymously. To lie on the circle, the graph
and edgeweightsmust be compatible in the sense that the sum
of the edgeweights around each cycle of the graph is equal to
an integer, which we refer to as its winding number g. Our
network generation procedure guarantees this compatibility.
It results in a randomdirectedHamiltonian graph, i.e., a graph

that contains a cycle that visits each node exactly once,withN
nodes and average degree z. This graph comes equipped with
compatible initial spring lengths fl̄igNz=2

i¼1 that are each
uniformly distributed as Uð−0.5; 0.5Þ but, since they are
coupled by integer winding numbers, not mutually indepen-
dent [13] as random variables.
We seek to characterize the length (i.e., force) distribu-

tions of springs in networks after they have relaxed into
mechanical equilibrium. Relaxation preserves a network’s
topology, i.e., its graph together with a set of winding
numbers, that arises from the generation process. Note that
networks sharing the same graph may have different sets of
winding numbers and therefore distinct relaxed states
[Fig. 1(c)]. A particular realization of an initial network
(see above) uniquely determines the network topology
and results in a known linear solution operator for the
respective mechanical equilibrium. However, a network
ensemble realizes many topologies—yielding a random
solution operator—making it more difficult to determine
the ensemble-averaged distribution of relaxed lengths.
Motivated by experiments, where explicit information on

particular realizations is hard to measure, we study ensem-
bles with a fixed number of nodes N and average degree z.
Surprisingly, such ensembles have characterizable force
distributions despite varying topologies. Explicitly account-
ing for these unknown underlying topologies makes our
approach different from a mean-field description.
Formally, our setup can be written as the following

optimization problem:

minimize
1

2
lT l subject to Cl ¼ g ¼ Cl̄; ð1Þ

where l ∈ RNz=2 is the vector of all spring lengths and
g ∈ Zm is the vector of winding numbers, which is
determined by the vector of initial spring lengths l̄ and
the signed cycle matrix C ∈ Zm×Nz=2, described below.
Note that all the above quantities are random variables.
The first part in Eq. (1) minimizes the total elastic energy

of the system, whereas the second part preserves the
topology of the network by fixing the winding numbers
of a set of m ¼ Nðz=2 − 1Þ þ 1 fundamental cycles [14].
Note that the choice of fundamental cycles corresponds to a
choice of basis and is therefore not unique. The solution to
Eq. (1), however, is independent of this choice [15].
After choosing a cycle basis, the C matrix is constructed

by specifying an orientation for each fundamental cycle
and then setting Cji equal to 1 if spring i is part of the jth
fundamental cycle and their orientations agree or −1 if their
orientations are opposite, and 0 otherwise. For the example
in Fig. 1(a), the cycle matrix and vector of winding numbers
are given by C1 ¼ ð1; 1; 1;−1; 0; 0Þ, C2 ¼ ð0; 0; 0; 1; 1; 1Þ,
and g ¼ ð−1; 0ÞT , respectively. Note that winding numbers
correspond to the signed number of times a cycle wraps
around the circle. Contractible cycles have winding number
zero. If all cycles were contractible, then Eq. (1) would
have a trivial solution with all springs collapsed to a
single point; it is only the presence of nontrivial cycle
constraints that prevents this outcome.

(a) (b)

(c)

FIG. 1. (a) An example network on the circle, with N ¼ 5 and
z ¼ 2.4. (b) Graph representation of the network in (a). The spring
orientations are depicted by black arrows. The network contains
two fundamental cycles, for example,fl1; l2; l3; l4gandfl4; l5; l6g.
After choosing arbitrary orientations for both cycles (gray arrows),
we construct linear constraints that fix their winding numbers
[Eq. (1)]—here, l1 þ l2 þ l3 − l4 ¼ −1 (winds around the circle
once) and l4 þ l5 þ l6 ¼ 0 (contractible). (c) The abstract cycle
graph (z ¼ 2) withN ¼ 5 (left) and three realizations on the circle
with distinct topologies (same graphs but different winding
numbers g). Top and bottom row show the initial and correspond-
ing relaxed configurations, respectively. Note that, for visualiza-
tion purposes, overlapping springs are drawn with a slight offset.
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Equation (1) defines a quadratic programming problem
with a unique analytic solution. Written in terms of the
spring length changes Δl during relaxation to the final
configuration l�, the solution is

Δl ≔ l� − l̄ ¼ ½CTðCCTÞ−1C − I|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕S

�l̄; ð2Þ

which can be explicitly computed for each realization via,
e.g., the optimization library IPOPT [16].
To express the resulting force distributions of our ensem-

bles, we consider the expected histogram of the vector l� of
random variables. This results in a univariate probability
density pl�, which is given by the average of the individual
spring densities, i.e., pl� ðl�Þ ≔ ð2=NzÞPNz=2

i¼1 pl�i
ðl�Þ (for

details, see [15]). Using l�i ¼ l̄i þ Δli [Eq. (2)], we compute
for each component:

pl�i
ðl�Þ ¼

Z þ∞

−∞
pl̄iðl̄ÞpΔlijl̄i¼l̄ðl� − l̄Þdl̄: ð3Þ

Since the initial spring lengths l̄i are identically distributed,
i.e., pl̄i ¼ pl̄, we obtain that

pl� ðl�Þ ¼
Z þ∞

−∞
pl̄ðl̄ÞpΔljl̄¼l̄ðl� − l̄Þdl̄; ð4Þ

with pΔljl̄¼l̄ðΔlÞ ≔
2

Nz

XNz=2

i¼1

pΔlijl̄i¼l̄ðΔlÞ: ð5Þ

In the following, we characterize the conditional prob-
ability density Eq. (5) that completely determines the final
distribution of spring lengths given the initial distribution
[Eq. (4)]. Equation (2) relates Δl to l̄ and a random matrix
S, which vary with the topology of each realization. It is
therefore challenging to obtain pΔljl̄¼l̄ explicitly, especially

since the individual l̄i are not mutually independent.
Instead, we consider the first two moments, EðΔljl̄ ¼ l̄Þ
and VarðΔljl̄ ¼ l̄Þ, and investigate under which conditions
Δljl̄¼l̄ is approximately normally distributed.
Equations (2) and (5) lead to (see [15] for the derivation)

EðΔljl̄ ¼ l̄Þ ¼ 2l̄
Nz

tr S ¼ −
2l̄
z

�
1 −

1

N

�
; ð6Þ

where tr S ¼ 1 − N is an invariant of the ensemble that
surprisingly depends only on the number of nodes in the
graphs, not on their respective topologies. We compare
Eq. (6) to a mean-field (mf) approach, where each node is
displaced as if all other nodes in the network were fixed.
In this case, EðΔljl̄ ¼ l̄Þjmf ¼ −2l̄=z [15]; in particular,
the mean-field result agrees with the exact solution Eq. (6)
in the limit N → ∞; i.e., there is no significant difference
for large node numbers. In contrast, we will show that, for
the variance, the mean-field solution differs substantially
from the exact result, even in the limit N → ∞.
The conditional variance VarðΔljl̄ ¼ l̄Þ remains chal-

lenging to express analytically. Indeed, in general, there are

many graphs realizing the same z and N, each with its own
topology that may introduce nonzero covariance between
the edge lengths.
For two extreme cases, namely, the cycle graph (z ¼ 2,

N > 3) and the complete graph (z ¼ N − 1, each node
connected to every other node), there exists only a single
possible graph, respectively, each being symmetric (i.e.,
vertex and edge transitive [17]), allowing us to derive
VarðΔljl̄ ¼ l̄Þ explicitly. In particular, edge transitivity
allows us to reduce to a single entry in the l� vector, which
is given by a weighted sum of identically distributed, but
dependent random variables [Eq. (2)].
For the case of the cycle graph, an entry inEq. (2) simplifies

to Δli ¼ N−1P
j≠il̄j. Using conditional pairwise independ-

ence of the initial edge random variables allows for the direct
computation of VarðΔljl̄ ¼ l̄Þ ¼ ðN − 1Þ=N2Varðl̄Þ.
For the case of the complete graph, the derivation of the

conditional variance is significantly more involved. In order
to obtain manageable algebraic expressions, one needs to
carefully choose the cycle basis. This choice is detailed in
Ref. [15] and leads to a tractable analysis of ðCCTÞ−1, which
can then be applied to reformulate the problem in terms of
conditionally independent winding number random varia-
bles, leading to VarðΔljl̄ ¼ l̄Þ ¼ ðN − 2Þ=N2ðjl̄j − l̄2Þ.
For the intermediate-connectivity regime, 2 < z < N − 1,

a similar approach remains elusive; however, numerical data
suggest that the conditional variance exhibits a continuous
transition between the two extremes (Fig. 2). We also
observe that the conditional variance is approximately
constant given that z ≪ N. This is the most relevant case
for biological networks where typically z≲ 4. For z ≪ N,
we may thus approximate VarðΔljl̄ ¼ l̄Þ ≈ El̄½VarðΔljl̄Þ�,
which we now derive.
The law of total variance [13] states

El̄½VarðΔljl̄Þ� ¼ VarðΔlÞ − Varl̄½EðΔljl̄Þ�: ð7Þ
From Eqs. (2) and (5), it follows that

VarðΔlÞ ¼ −
2Varðl̄Þ
Nz

tr S ¼ 2

z

�
1 −

1

N

�
Varðl̄Þ; ð8Þ

where we have used that S2 ¼ −S (see [15] for details).
We can again compare this expression to its mean-field
counterpart: VarðΔlÞjmf ¼ 2=zð1þ 1=zÞVarðl̄Þ (see [15]).
Clearly, the expressions do not agree in the limit N → ∞.
In particular, for sparsely connected networks (small values
of z), there are significant deviations, independent of the
number of nodes in the network. Using Eq. (6), we also
have that Varl̄½EðΔljl̄Þ�¼ ½2=zð1−1=NÞ�2Varðl̄Þ and there-
fore by substituting into Eq. (7):

El̄½VarðΔljl̄Þ�
Varðl̄Þ ¼ 2

z

�
1 −

1

N

��
1 −

2

z

�
1 −

1

N

��
: ð9Þ

Now, if Δljl̄¼l̄ were normally distributed, having esti-
mates for the mean and variance would be sufficient to fully
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characterize pΔljl̄¼l̄. Indeed, for the two extremes, cycle
and complete graph, we can prove that Δljl̄¼l̄ is normally
distributed in the limit N → ∞, with a rate of convergence
proportional to ðN − 2Þ−1=2 [15].
This result might look like a direct application of the

classical central-limit theorem. However, since the edge
lengths are not independent as random variables, more
sophisticated techniques are required to represent the
solution in terms of a suitable set of mutually independent
random variables. In contrast to situations in time series
analysis [18], where independence holds beyond a certain
time window, the cycle constraints prohibit localization of
dependencies. To deal with this problem, we reduce the
number of variables by relaxing each integer cycle con-
straint to an interval constraint. Harnessing the resulting
independence then requires a nonstandard transformation
of random variables, which complicates a direct application
of the Berry-Esseen theorem [19,20] (a deviation-bound

version of the central-limit theorem) to obtain a quantitative
bound on the distance to a normal distribution.
Recall that in the intermediate-connectivity regime,

2 < z < N − 1, the ensembles contain graphs with varying
cycle structures making a similar analysis significantly
more challenging. In simulations, however, we observe that
Δljl̄¼l̄ is approximately normally distributed if z is suffi-
ciently large (Fig. 3).
Our empirical observations and theoretical discussion

above justify the following approximation for 3 ≤ z ≪ N:

Δljl̄¼l̄ ∼N fEðΔljl̄ ¼ l̄Þ; El̄½VarðΔljl̄Þ�g; ð10Þ
with the expressions for EðΔljl̄ ¼ l̄Þ and El̄½VarðΔljl̄Þ�
given in Eqs. (6) and (9). Using Eqs. (4) and (10), we obtain
an explicit representation for the final length distribution
pl� ðl�Þ in mechanical equilibrium (see [15]). In Fig. 4, we

FIG. 2. Normalized conditional variance VarðΔljl̄ ¼ l̄Þ=El̄½VarðΔljl̄Þ� as a function of l̄ for graphs with N ¼ 100 and varying z. For
each value of z, data points correspond to ensemble averages (repeated simulations) with 4.95 × 106 springs in total. We use local linear
regression with 3 × 104 nearest neighbors to estimate the variance for different values of l̄. The solid lines correspond to the analytically
derived expressions for the cycle and the complete graph (illustrated in the insets). In the intermediate regime of connectivity, the
variance shows a continuous transition between the two extreme cases.

FIG. 3. Conditional probability density pΔljl̄¼l̄ðΔlÞ for spring
networks with N ¼ 100 and varying z, conditioned on different l̄
values. For each value of z, the data points correspond to
ensemble averages (repeated simulations) with 4.95 × 106

springs in total. Solid lines correspond to best fit normal
distributions. The cycle graph (z ¼ 2) is close to being normally
distributed—as proven forN → ∞. Whereas for z ¼ 2.2 there are
still deviations from a normal distribution, for z ¼ 3 and larger
the densities quickly become approximately normally distributed.

FIG. 4. Probability density pl� ðl�Þ for the final spring lengths
for networks with N ¼ 1000 and varying z. Solid lines show the
analytic expression for pl� ðl�Þ [15], both using the exact
expressions for EðΔljl̄ ¼ l̄Þ and El̄½VarðΔljl̄Þ� (solid black line)
as well as using their mean-field approximations (solid red line).
The data points correspond to averages over 50 simulations; the
error bars correspond to the standard deviation. The initial
uniform spring length distribution pl̄ðl̄Þ is shown as a gray
dashed line.
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compare this analytical expression to ensembles of simu-
lated networks; we observe excellent agreement. In con-
trast, the mean-field approach shows the aforementioned
deviations for small values of z.
In conclusion, we presented a probabilistic theory of

force distributions in one-dimensional random spring net-
works on a circle. Here we regarded networks with initially
unbalanced forces that relax into mechanical equilibrium.
When drawing the analogy to a biological network, our
approach, which focuses on the relaxation of the system
after nonequilibrium starting conditions, is equivalent to
assuming a separation of time scales where internal or
external nonequilibrium processes slowly create forces in
the network that rapidly equilibrate.
We developed a graph-theoretical approach that allows

us to exactly compute the mean and expected variance of
the distribution of conditional length changes that com-
pletely determines the final length distribution. For the two
extreme cases, the cycle graph and the complete graph, we
could additionally prove the convergence of this distribu-
tion to a normal distribution. A systematic analytical
treatment of the—less symmetric—intermediate regime
of connectivity is more demanding and not provided here.
However, our results suggest an approximation that shows
excellent agreement with the simulations for the biologi-
cally relevant regime of connectivity, 3 ≤ z ≪ N.
It is straightforward to generalize the approach we

presented here to higher spatial dimensions d if the
probability densities pl̄k

for the components of the initial
spring vectors are independent. In that case, due to the
linearity of spring forces with extension, the optimization
problem decouples into the spatial components. The
probability density for the final spring vectors then is
simply given as the product of the one-dimensional results:

pl� ðl�Þ ¼
Yd

k¼1

pl�k
ðl�

kÞ:

Hence, our results carry over to two- and three-dimensional
networks, which are more commonly studied in practice
and are of biological and physiological relevance.
Interestingly, a classical mean-field approach fails to

capture the mean and the variance of the relevant distri-
butions. The error is particularly pronounced for
the—biologically most relevant—regime of low degrees
of connectivity and does not vanish in the limit of an
infinite node number. Our work demonstrates that network
topology—here manifested as cycle constraints—is crucial
for the correct determination of force distributions in an
elastic spring network.
This opens the door for future research on the role that

the network topology plays in more complex elastic net-
works. For example, the qualitative behavior of our results
carries over to systems with spring nonlinearities, where
forces separate and are concentrated along a few nontrivial
loops (force chains [7]). Future work could investigate

the dynamic rupture of these force chains. Moreover, the
mixture of probabilistic and graph-theoretical techniques
may prove useful for other types of network theories.
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