
Variational Time 
Integrators

Symposium on Geometry Processing Course 2015

Andrew Sageman-Furnas
University of Göttingen

1



Time Integrator
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Differential equations in time describe physical paths 

Solve for these paths on the computer

Non-damped, Non-Driven Pendulum
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Part One:
Reinterpreting Newtonian Mechanics

(what does “variational” mean?)

Part Two:
Why Use Variational Integrators?
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A Butchering of Feynman’s Lecture

Principle of Least Action
(Feynman Lectures on Physics Volume II.19)

http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-bio.html

5
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Closed mechanical system

Kinetic energy

Newtonian Mechanics

Potential energy

Total energy

U(q)

T (q̇) =
1

2
mq̇2

T (q̇) + U(q)
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q(t), q̇(t)



A physical path satisfies the vector equation

Newtonian Mechanics

Worked out using force balancing

=

force

mass acceleration

Difficult to compute with Cartesian coordinates

F m q̈
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Goal:

Derive Newton’s equations from a scalar equation

Lagrangian Reformulation

Why?

Works in every choice of coordinates

Highlights variational structure of mechanics

Energy is easy to write down
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Particle in a Gravitational Field

time

position

A

B
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t1 t2

“Throw a ball in the air from (    , A) catch at (    , B)”t1 t2



Particle in a Gravitational Field

time

position

What path does the ball take to get from A 
to B in a given amount of time?

A

B
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t1 t2



Physical path is unique and a parabola

time

position

Particle in a Gravitational Field

A

B
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t1 t2



time

position

Particle in a Gravitational Field

...but there are many possible paths

A

B
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t1 t2



time

position

How are physical paths special among all paths 
from A to B?

Particle in a Gravitational Field

A

B
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t1 t2



Hamilton’s Principle of Stationary Action

Physical paths are extremal amongst 
all paths from A to B of a time 

integral called the action.

time

position
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Lagrangian

Physical paths are extrema of a time integral 
called the action

Hamilton’s Principle of Stationary Action

L(q, q̇)
(Lagrangian is not the total energy )T (q̇) + U(q)
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Z t2

t1

T (q̇)� U(q)| {z } dt



Physical paths extremize the action

Hamilton’s Principle of Stationary Action

...but how we find an extremal path in the 
space of all paths?

Use Lagrange’s variational calculus

S =

Z t2

t1

L(q, q̇) dt
L(q, q̇) = T (q̇)� U(q)
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Finding an Extremal Path

3. Study when

2. Differentiate action 

1.  Action of path

Analogous to regular calculus

qS(q)

�S(q)

�S(q) = 0
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Arbitrary smooth offset ⌘(t)

Perturbed curve

Curves share endpoints

⌘(t1) = ⌘(t2) = 0

Defining the Variation of an Action

q̃(t) = q(t) + "⌘(t)

18

t1 t2
⌘

q

q̃

"⌘



Defining the Variation of an Action

Reduce to single 
variable calculus!

19

First Variation of the 
Action (in direction eta)

�⌘S(q) :=
d

d"
S(q + "⌘)

���
"=0

t1 t2
⌘

q

q̃

"⌘



Defining the Variation of an Action

Reduce to single 
variable calculus!

20

First Variation of the 
Action (in direction eta)

�⌘S(q) :=
d

d"
S(q + "⌘)

���
"=0

t1 t2
⌘

q

q̃

"⌘
Differentiating a given path with 
respect to all smooth variations 

reduces to single variable calculus.



Particle Example: Setup

tt1 t2

S(q) =

Z t2

t1

q̇(t)2

2
� U(q(t)) dt

mass = 1

T (q̇) =
q̇2

2

L(q, q̇) = q̇2

2
� U(q)

q
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Particle Example:  Investigating the Variation

S(q) =

Z t2

t1

q̇(t)2

2
� U(q(t)) dt

=

Z t2

t1

d

d"

✓
(q̇ + "⌘̇)2

2
� U(q + "⌘)

◆ ���
"=0

dt

=

Z t2

t1

(q̇ + "⌘̇)⌘̇ � U 0(q + "⌘)⌘
���
"=0

dt

=

Z t2

t1

q̇(t)⌘̇(t)� U 0(q(t))⌘(t) dt
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t1 t2
⌘

q

q̃
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Variational Trick: Essential Integration by Parts

Z t2

t1

q̇(t)⌘̇(t)dt = q̇(t)⌘(t)
���
t2

t1
�
Z t2

t1

q̈(t)⌘(t) dt

23

�⌘S(q) =

Z t2

t1

q̇(t)⌘̇(t)� U 0(q(t))⌘(t) dt

�⌘S(q) = �
Z t2

t1

(q̈(t) + U 0(t))⌘(t)dt
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Variational Trick: Essential Integration by Parts

recall offset vanishes at endpoints
0
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Variational Trick: Essential Integration by Parts

24

Z t2

t1

q̇(t)⌘̇(t)dt = q̇(t)⌘(t)
���
t2

t1
�
Z t2

t1

q̈(t)⌘(t) dt

�⌘S(q) =

Z t2

t1

q̇(t)⌘̇(t)� U 0(q(t))⌘(t) dt

�⌘S(q) = �
Z t2

t1

(q̈(t) + U 0(t))⌘(t)dt

Integrate by parts to get rid of the 
derivatives of the smooth offset. 

This requires the offset to vanish at 
the boundary.



Particle Example: Investigating the Variation

25

�⌘S(q) = �
Z t2

t1

(q̈(t) + U 0(q(t)))⌘(t) dt

When is for all offsets ⌘?�⌘S(q) = 0



Fundamental Lemma of  Variational Calculus

ifFor a continuous function 

⌘(t)

Z t2

t1

G(t)⌘(t) dt = 0

26

with

G

for all smooth functions ⌘(t1) = ⌘(t2) = 0

then G vanishes everywhere in the interval.

,



Fundamental Lemma of  Variational Calculus

...believable, but why?

ifFor a continuous function 

⌘(t)
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G(t)⌘(t) dt = 0
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with

G

for all smooth functions ⌘(t1) = ⌘(t2) = 0

then G vanishes everywhere in the interval.

,



Fundamental Lemma of  Variational Calculus

t1
t2

G

Assume 

27

for all offsets ⌘(t)

then G

Z t2

t1

G(t)⌘(t) dt = 0

vanishes on the interval.

zero at t1, t2If



Fundamental Lemma of  Variational Calculus

t1
t2

⌘
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Fundamental Lemma of  Variational Calculus

G⌘
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Fundamental Lemma of  Variational Calculus

t1
t2

G⌘
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Fundamental Lemma of  Variational Calculus

t1
t2

Z
G⌘ dt 6= 0
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for all offsets ⌘(t)

then G

Z t2

t1

G(t)⌘(t) dt = 0

vanishes on the interval.

zero at t1, t2If



Fundamental Lemma of  Variational Calculus

t1
t2

G must be zero where ⌘ is nonzero
33

for all offsets ⌘(t)

then G

Z t2

t1

G(t)⌘(t) dt = 0

vanishes on the interval.

zero at t1, t2If



Fundamental Lemma of  Variational Calculus

t1
t2

must hold for every choice of ⌘
34

for all offsets ⌘(t)

then G

Z t2

t1

G(t)⌘(t) dt = 0

vanishes on the interval.

zero at t1, t2If



Fundamental Lemma of  Variational Calculus

t1
t2

So G vanishes everywhere in the interval.

35

for all offsets ⌘(t)

then G

Z t2

t1

G(t)⌘(t) dt = 0

vanishes on the interval.

zero at t1, t2If



Particle Example: Deriving Euler-Lagrange Equations

When is for all offsets ⌘?

Where were we?

36

t1 t2
⌘

q

q̃

"⌘

�⌘S(q) = �
Z t2

t1

(q̈(t) + U 0(q(t)))⌘(t) dt

�⌘S(q) = 0



Apply Fundamental Lemma

Euler-Lagrange equations

Particle Example: Deriving Euler-Lagrange Equations
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�⌘S(q) = �
Z t2

t1

(q̈(t) + U 0(q(t)))⌘(t) dt

�⌘S(q) = 0 () q̈(t) + U 0(q(t)) = 0| {z }



�⌘S(q) = �
Z t2

t1

(q̈(t) + U 0(q(t)))⌘(t) dt

�⌘S(q) = 0 () q̈(t) + U 0(q(t)) = 0| {z }

Apply Fundamental Lemma

Euler-Lagrange Equations

Apply the Fundamental Lemma to see 
when the derivative vanishes

and recover the Euler-Lagrange equations.

Particle Example: Deriving Euler-Lagrange Equations

38

�⌘S(q) =

Z
G(q, q̇, q̈)⌘ dt = 0



�S(q) = 0 () q̈(t) + U 0(q(t)) = 0| {z }
Euler-Lagrange equations

Particle Example: Lagrangian Reformulation
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�S(q) = 0 () q̈(t) + U 0(q(t)) = 0| {z }
Euler-Lagrange equations

Wait... this looks familiar!

Particle Example: Lagrangian Reformulation
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�S(q) = 0 () q̈(t) + U 0(q(t)) = 0| {z }
Euler-Lagrange equations

Wait... this looks familiar!

Particle Example: Lagrangian Reformulation

39

is Newton’s law 

(force is derivative of potential energy)

(reinserting mass)

m q̈(t) + U 0(q(t)) = 0



Lagrangian Reformulation Summary

Principle of Stationary Action
A path connecting two points is a 
physical path precisely when the 

first derivative of the action is zero.

L(q, q̇) = T (q̇)� U(q)Lagrangian

�S(q) = 0 () F = mq̈

Action

Euler-Lagrange 
Equations Fundamental 

Lemma

S =

Z t2

t1

L(q(t), q̇(t)) dt

40



(general) Principle of Stationary Action

“Variational principles” apply to many systems, e.g., 
special relativity, quantum mechanics, geodesics, etc.

Fundamental 
Lemma

Key is to find Lagrangian L(t, q(t), q̇(t))

so general Euler-Lagrange equations are 
the equations of interest

41

�S(q) = 0 () dL(t, q, q̇)
dq

� d

dt
(
dL(t, q, q̇)

dq̇
) = 0



�S(q) = 0 () dL(t, q, q̇)
dq

� d

dt
(
dL(t, q, q̇)

dq̇
) = 0

(general) Principle of Stationary Action

“Variational principles” apply to many systems, e.g., 
special relativity, quantum mechanics, geodesics, etc.

Fundamental 
Lemma

Key is to find Lagrangian L(t, q(t), q̇(t))

so general Euler-Lagrange equations are 
the equations of interest

The Euler-Lagrange equations for a general 
Lagrangian                        are
 

L(t, q(t), q̇(t))

42

dL(t, q, q̇)
dq

� d

dt
(
dL(t, q, q̇)

dq̇
) = 0



Noether’s Theorem

Continuous symmetries of the Lagrangian imply 
conservation laws for the physical system.

Translational Linear momentum

Rotational
(one dimensional) Angular momentum

Time Total energy

Continuous Symmetry Conserved Quantity 

43



Lagrangian Paths are Symplectic

44
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Lagrangian Paths are Symplectic

45

position
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energy 
levels

in 2D equivalent to area conservation in phase space

Image from Hairer, Lubich, and Wanner 2006

(in higher dimensions implies volume conservation)



Lagrangian Paths are Symplectic
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Variational Time Integrators

Discretize Lagrangian

Arrive at Discrete Equations of Motion

(as opposed to discretizing equations directly)

Apply Variational Principle

46
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Discrete Noether’s Theorem

Discretize Lagrangian

Arrive at Discrete Equations of Motion

Continuous symmetries of the discrete Lagrangian imply 
conserved quantities throughout entire discrete motion.

(for not too large time steps)

47



Discrete Variational Integrators are Symplectic

48

... time is now discrete, so total energy is not conserved.

But, discrete symplectic structure guarantees bounded 
oscillation around true energy level

(for not too large time steps)

time
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Discrete Variational Integrators are Symplectic

48

... time is now discrete, so total energy is not conserved.

But, discrete symplectic structure guarantees bounded 
oscillation around true energy level

(for not too large time steps)

time

en
er

gy

true conserved energy



LUNCH BREAK

49 image from openclipart.org



Part Two:
Why Use Variational Integrators?

50



Quick Recap

A

BPhysical paths are extremal amongst 
all paths from A to B of the action 

integral

Action is the integral of the Lagrangian, 
kinetic minus potential energy

Symmetries of Lagrangian and symplectic 
structure give rise to conservation laws
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Variational Time Integrators

Discretize Action (integral of Lagrangian)

Arrive at Discrete Equations of Motion

(as opposed to discretizing equations directly)

Apply Variational Principle

52
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Discrete Noether’s Theorem

Discretize Lagrangian

Arrive at Discrete Equations of Motion

Continuous symmetries of discrete Lagrangian imply 
conserved quantities throughout entire discrete motion,

e.g., conservation of linear and angular momentum

53

(for not too large time steps)



Discrete Variational Integrators are Symplectic

54

... time is now discrete, so total energy is not conserved.

But, discrete symplectic structure guarantees bounded 
oscillation around true energy level

(for not too large time steps)
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Discrete Variational Integrators are Symplectic
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Discrete Variational Integrators are Symplectic
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... time is now discrete, so total energy is not conserved.

But, discrete symplectic structure guarantees bounded 
oscillation around true energy level

(for not too large time steps)

time
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er

gy

true conserved energy

Variational integrators are 
symplectic and vice versa. Both 

equivalent terms are used.



Discrete Variational Integrators are Symplectic
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... time is now discrete, so total energy is not conserved.

But, discrete symplectic structure guarantees bounded 
oscillation around true energy level

(for not too large time steps)

time

en
er

gy

true conserved energy

Variational integrators are 
symplectic and vice versa. Both 

equivalent terms are used.



Building a Variational Time Integrator
1. Choose a finite difference scheme for q̇, e.g.,
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Building a Variational Time Integrator

2. Choose a quadrature rule to integrate action, e.g.,

1. Choose a finite difference scheme for q̇, e.g.,

rectangular midpoint trapezoid

3.  Apply variational principle

forward backward central

56



Discrete Variational Principle Example

forward

rectangular

57

k

Z t+�t

t
L(q, q̇) dt ⇡ �tL(qk, q̇k)

Z t2

t1
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NX
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qk+1 � qk
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Discrete Variational Principle Example

forward

rectangular
0 N + 1
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k

Z t+�t

t
L(q, q̇) dt ⇡ �tL(qk, q̇k)

Z t2

t1

L(q, q̇) dt ⇡
NX

k=0

L(qk, q̇k)�t

Choose a finite difference scheme 
and quadrature rule and write 
down the discrete action sum.

q̇ ⇡ q̇k =
qk+1 � qk

�t
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0 N + 1

q̇k =
qk+1 � qk

�t
S�t =

NX

k=0

⇣m
2
q̇2k � U(qk)

⌘
�t

�⌘S�t =
d

d"
S�t(qk + "⌘k)

���
"=0

=
NX

k=0

(mq̇k⌘̇k � U 0(qk)⌘k) �t

✓
⌘̇k =

⌘k+1 � ⌘k
�t

◆
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�⌘S�t =
NX

k=0

(m q̇k⌘̇k � U 0(qk)⌘k) �t
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get rid of derivates of the offset

�⌘S�t =
NX

k=0

(m q̇k⌘̇k � U 0(qk)⌘k) �t



Discrete Variational Principle Example

60

get rid of derivates of the offset

Summation by Parts

�⌘S�t =
NX

k=0

(m q̇k⌘̇k � U 0(qk)⌘k) �t

NX

k=0

q̇k⌘̇k �t = bdry �
NX

k=0

q̈k⌘k+1 �t
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⌘N+1 = ⌘0 = 0
recall offset vanishes at boundary

0

get rid of derivates of the offset

Summation by Parts

�⌘S�t =
NX

k=0

(m q̇k⌘̇k � U 0(qk)⌘k) �t

NX

k=0

q̇k⌘̇k �t = bdry �
NX

k=0

q̈k⌘k+1 �t
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�⌘S�t =

=

=

�
NX

k=0

m q̈k⌘k+1 �t�
NX

k=0

U 0(qk)⌘k �t

�
NX

k=0

m (
q̇k+1 � q̇k

�t
)⌘k+1�t�

NX

k=0

U 0(qk)⌘k �t

�
NX

k=0

✓
m
q̇k+1 � q̇k

�t
+ U 0(qk+1)

◆
⌘k+1�t
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�
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�⌘S�t =

=

shift index

=

�
NX

k=0

m q̈k⌘k+1 �t�
NX

k=0

U 0(qk)⌘k �t

�
NX

k=0

m (
q̇k+1 � q̇k

�t
)⌘k+1�t�

NX

k=0

U 0(qk)⌘k �t

�
NX

k=0

✓
m
q̇k+1 � q̇k

�t
+ U 0(qk+1)

◆
⌘k+1�t
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�⌘S�t =

=

shift index

(⌘N+1 = ⌘0 = 0)

=

�
NX

k=0

m q̈k⌘k+1 �t�
NX

k=0

U 0(qk)⌘k �t

�
NX

k=0

m (
q̇k+1 � q̇k

�t
)⌘k+1�t�

NX

k=0

U 0(qk)⌘k �t

�
NX

k=0

✓
m
q̇k+1 � q̇k

�t
+ U 0(qk+1)

◆
⌘k+1�t
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�⌘S�t =

Recall:
�S(q) = 0 () F = mq̈

�
NX

k=0

✓
m
q̇k+1 � q̇k

�t
+ U 0(qk+1)

◆
⌘k+1�t

(discrete) Fundamental Lemma of Calculus of Variations

discrete Euler-Lagrange

�S�t = 0 () �U 0(qk+1) = m
(q̇k+1 � q̇k)

�t| {z }



Discrete Variational Integrator Scheme
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Symplectic (variational) Euler

forward

k

�U 0(qk+1) = m
(q̇k+1 � q̇k)

�t

q̇k =
qk+1 � qk

�t

qk+1 = qk +�t q̇k

(qk, q̇k) 7! (qk+1, q̇k+1)

q̇k+1 = q̇k +�tm�1(�U 0(qk+1))



(qk, q̇k) 7! (qk+1, q̇k+1)

Discrete Variational Integrator Scheme
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vk+1 = vk +�t(�V 0(qk+1))

qk+1 = qk +�t vk

Semi-implicit Euler

discrete Euler-Lagrange

(qk, vk) 7! (qk+1, vk+1)

and

forward

(left) rectangular

Use

Symplectic Euler Method A

qk+1 = qk +�t q̇k

q̇k+1 = q̇k +�tm�1(�U 0(qk+1))



(qk, q̇k) 7! (qk+1, q̇k+1)

Discrete Variational Integrator Scheme
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vk+1 = vk +�t(�V 0(qk+1))

qk+1 = qk +�t vk

Semi-implicit Euler

discrete Euler-Lagrange

(qk, vk) 7! (qk+1, vk+1)

and

(left) rectangular

Use

Symplectic Euler Method B

backward

qk+1 = qk +�t q̇k+1

q̇k+1 = q̇k +�tm�1(�U 0(qk))



Time Integration Schemes
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Great... we know how to derive a variational 
integrator, but what other integrators are there?

Where do they come from?

How do they compare?

Why are they used?



First Order Integration Schemes

67

Explicit Euler

Use (forward) first order Taylor approximation of motion

q(t+�t) = q(t) + q̇(t)�t+
q̈(t)

2
�t 2 + ...

q̇(t+�t) = q̇(t) + q̈(t)�t+

...
q (t)

2
�t 2 + ...



First Order Integration Schemes
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Explicit Euler

q̇(t+�t) = q̇(t) + q̈(t)�t

q(t+�t) = q(t) + q̇(t)�t



First Order Integration Schemes
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Explicit Euler

q̇(t+�t) = q̇(t) + q̈(t)�t

q(t+�t) = q(t) + q̇(t)�t

F = �U 0(q) = mq̈

use Newton’s law

mq̇(t+�t) = mq̇(t) +�t(�U 0(q(t))



First Order Integration Schemes
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Explicit Euler

Cheap to compute -- explicit dependence of variables

adds artificial driving 

but

“unstable” for large time steps
(drastically deviates from true trajectories)

qk+1 = qk +�t q̇k

q̇k+1 = q̇k +�tm�1(�U 0(qk))



Explicit Euler
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2�6

step size in seconds



Explicit Euler
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2�6

step size in seconds



Explicit:  Time Step Refinement

2�6 2�7 2�8

2�9 2�10 2�11

step size in seconds
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First Order Integration Schemes
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Explicit (forward) Euler

Implicit (backward) Euler

motion “implicitly” depends on variables

qk+1 = qk +�t q̇k

q̇k+1 = q̇k +�tm�1(�U 0(qk))

qk+1 = qk +�t q̇k+1

q̇k+1 = q̇k +�tm�1(�U 0(qk+1))



First Order Integration Schemes
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Implicit Euler

more expensive -- nonlinear solve for implicit variables

adds artificial damping 

“stable” for large time steps
(stays close to true trajectories) 

but

qk+1 = qk +�t q̇k+1

q̇k+1 = q̇k +�tm�1(�U 0(qk+1))



Implicit Euler
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2�6

step size in seconds



Implicit Euler
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2�6

step size in seconds



Implicit:  Time Step Refinement

2�6 2�7 2�8

2�9 2�10 2�11

step size in seconds
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First Order Integration Schemes
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Symplectic Euler Method A

also called “semi-implicit” Euler methods

Symplectic Euler Method B

qk+1 = qk +�t q̇k

q̇k+1 = q̇k +�tm�1(�U 0(qk+1))

qk+1 = qk +�t q̇k+1

q̇k+1 = q̇k +�tm�1(�U 0(qk))



First Order Integration Schemes
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Symplectic Euler Methods, e.g., 

as cheap as Explicit Euler 

bounded energy oscillation
(little artificial damping/driving)

conserved linear and angular momentum

also unstable for very large time steps

qk+1 = qk +�t q̇k+1

q̇k+1 = q̇k +�tm�1(�U 0(qk))



Symplectic Euler (Method B)
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2�6

step size in seconds



Symplectic Euler (Method B)
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2�6

step size in seconds



Symplectic:  Time Step Refinement

2�6 2�7 2�8

2�9 2�10 2�11

step size in seconds
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explicit

symplectic

implicit

true energy

Energy Landscape Under Step Refinement

2�11

2�11

2�6

2�6

2�6

��
��
��

���� (�)
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explicit

symplectic

implicit

true energy

Energy Landscape Near Time Zero
��
��
��

���� (�)



implicitexplicit symplectic

Very Small Time Step

83



Large Time Steps: Symplectic vs Implicit

2�6 2�5 2�4 2�3

Sym

Imp

Symplectic unstable region shown in largest time step

Implicit is stable, but damping is time step dependent

�t

84



Three Integrators Summary

Explicit Variational Implicit

85

artificial driving good energy

unstable

cheap

unstable for large      

cheap more expensive

artificial damping

stable�t

momenta conserved
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Explicit Variational Implicit
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artificial driving good energy

unstable

cheap

unstable for large      

cheap more expensive

artificial damping

stable�t

momenta conserved

Variational Integrators

good energy

cheap

unstable for large      �t

momenta conserved

but (can’t have it all!)



Three Integrators Summary

Explicit Variational Implicit

86

artificial driving good energy

unstable

cheap

unstable for large      

cheap more expensive

artificial damping

stable�t

momenta conserved

Variational Integrators

good energy

cheap

unstable for large      �t

momenta conserved

but (can’t have it all!)



Damped Systems

Want to include non-conservative forces, too

Systems with non-conservative forces satisfy the 

�⌘

Z t2

t1

L(q(t), q̇(t)) dt+
Z t2

t1

f(q(t), q̇(t)) · ⌘ dt = 0

integral of force 
in direction of 
variation, eta

variation of action in 
direction eta

Lagrange-D’Alembert Principle

modification of Principle of Stationary Action
87

mq̈ = �U 0(q) + f(q, q̇)



Damped Systems

�⌘

Z t2

t1

L(q(t), q̇(t)) dt+
Z t2

t1

f(q(t), q̇(t)) · ⌘ dt = 0

Lagrange-D’Alembert Principle

88

forward

rectangular

k

Discretize using Variational Principle with:

(Forced Symplectic Euler Method)



Discrete Lagrange-D’Alembert Principle

Forced Symplectic Euler Method B

89

qk�1

qk

qk+1

fk�1(qk�1, q̇k�1) fk(qk, q̇k)

qk+1 = qk +�t q̇k+1

q̇k+1 = q̇k +�tm�1

✓
�U 0(qk) +

fk�1 + fk
2

◆



Discrete Lagrange-D’Alembert Principle

Forced Symplectic Euler Method B

89

qk�1

qk

qk+1

fk�1(qk�1, q̇k�1) fk(qk, q̇k)

qk+1 = qk +�t q̇k+1

q̇k+1 = q̇k +�tm�1

✓
�U 0(qk) +

fk�1 + fk
2

◆

e.g., air resistance
fk = �c q̇k



non-damped

Variational Damped Pendulum

30% damped
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Variational Damped Pendulum

30% damped
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non-damped

behavior independent of step size
(within stable region)

Variational Damped Pendulum

30% damped
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non-damped

behavior independent of step size
(within stable region)

30% damped

80% damped

Variational Damped Pendulum
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non-damped

behavior independent of step size
(within stable region)

30% damped

80% damped

Variational Damped Pendulum
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30% Damped Pendulum

Variational

�t 2�5 2�10

Implicit
step size

dependent

step size
independent
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30% Damped Pendulum

Variational

�t 2�5 2�10

Implicit
step size

dependent

step size
independent
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30% Damped Pendulum

Variational

�t 2�5 2�10

Implicit
step size

dependent

step size
independent

Forced Variational Integrators

good energy 
behavior

cheap

behavior independent of step size 
(in stable region)  

Essential for rough previews often 
done in Computer Graphics
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Higher Order Variational Integrators

rectangular

zeroth order 
quadrature

yields first order integration scheme

Recall:

forward
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order quadrature yieldsrth
Generically:

(r + 1)st order integrator
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Higher Order Variational Integrators

rectangular

zeroth order 
quadrature

yields first order integration scheme

Recall:

forward

order quadrature yieldsrth
Generically:

(r + 1)st order integrator
95

order quadrature yieldsrth

Variational Integrators
exist of all orders

(r + 1)st order integrator



Some Well Known Variational Integrators
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(of second order)

trapezoid

forward

Use:

Derive: Störmer-Verlet Method



Some Well Known Variational Integrators
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(of second order)

forward

Use:

midpoint

Derive: Implicit Midpoint Method

(algebraic miracle, zeroth yields second order)
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explicit Euler Runge, order 2

symplectic Euler Verlet

implicit Euler midpoint rule

Figure 1: Area preservation of numerical methods for the pendulum; same initial
sets as in Figure 3 of Lecture 1; first order methods (left column): h = π/4;
second order methods (right column): h = π/3; dashed: exact flow.

Proof. Symplecticity is a consequence of the third characterization of Theorem 5
(Lecture 1), and order 2 follows from the symmetry of the method.

We consider the pendulum problem with HamiltonianH(p, q) = 1
2p

2 − cos q.
We apply six different numerical methods to this problem: the explicit Euler
method, the symplectic Euler method (1), and the implicit Euler method, as well
as a second order method of Runge, the Störmer–Verlet scheme (2), and the im-
plicit midpoint rule (5). For two sets of initial values (p0, q0) we compute several
steps with step size h = π/4 for the first order methods, and h = π/3 for the sec-
ond order methods. One clearly observes in Figure 14 that the explicit Euler, the
implicit Euler and the second order explicit method of Runge are not symplectic
(not area preserving).

4This figure and most of the text are taken from the monographGeometric Numerical Integra-
tion by Hairer, Lubich & Wanner.

3

Image from Hairer, Lubich, and Wanner 2006

Comparison of First and Second Order Integrators



Summary:  Variational Time Integrators
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No more difficult to implement

... but have many advantages ...



Summary:  Variational Time Integrators

100

Discrete Principle of Stationary Action

Symplectic structure guarantees 
good energy behavior

Noether’s theorem guarantees 
conservation of momenta

Forced systems have behavior 
independent of step size
(for stable time steps)

time
en

er
gy
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Questions?
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(very incomplete list of) further reading

Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations. 
Hairer E, Lubich C, Wanner G. Springer; 2002. 

Speculative parallel asynchronous contact mechanics.
Samantha Ainsley, Etienne Vouga, Eitan Grinspun, and Rasmus Tamstorf. 2012. 

 ACM Trans. Graph. 31, 6, Article 151 (November 2012), 8 pages. DOI=10.1145/2366145.2366170

Geometric, variational integrators for computer animation.
L. Kharevych, Weiwei Yang, Y. Tong, E. Kanso, J. E. Marsden, P. Schröder, and M. Desbrun. 2006. In Proceedings of the 2006 ACM 

SIGGRAPH/Eurographics symposium on Computer animation (SCA '06).

Variational integrators.
West, Matthew (2004) Dissertation (Ph.D.), California Institute of Technology.

Principle of Least Action
Feynman Lectures on Physics II.19

http://www.feynmanlectures.caltech.edu/II_19.html

http://www.feynmanlectures.caltech.edu/II_19.html
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Details of Movies Shown

Pendulum assumptions:

mass equals length equals one

�U 0(q) = � sin(q)

initial conditions 

q̇(0) = 0

q(0) = ⇡/4

movies at 16 fps


