
Random Comments on polymake’s Design

Michael Joswig

June 21, 2017

This is intentionally kept short rather than complete. All examples refer to version 3.1 of March
2017.

1 Types and defined semantics for all objects

polymake is software for the working mathematician. Therefore, its goal is to provide proper de-
scriptions of valid mathematical concepts. The user experience should be as seemless as possible.
In particular, calling a function on an object should be independent of how the object was initially
defined.

The first example is a polytope, in fact, just a quadrangle in the plane. Note that polymake
employs homogeneous coordinates (thus the leading ones).

In [1]: $P = new Polytope(VERTICES=>[[1,1,0],[1,0,1],[1,3,2],[1,5,7]]);

Any computation might trigger calling third party software (lrs in the example below) on the
way. polymake takes care of translating from its own data description into the description of the
third party software and back. While this is no big deal in the example, we keep this paradigm
throughout.

In [2]: print $P->F_VECTOR;

Out[2]: polymake: used package lrs
Implementation of the reverse search algorithm of Avis and Fukuda.
Copyright by David Avis.
http://cgm.cs.mcgill.ca/~avis/lrs.html

4 4

polymake is organized into ’applications’ which essentially serve as namespaces. The applica-
tion ’fulton’ deals with toric varieties.

In [3]: application "fulton";

The seemless integration allows to carry objects over application boundaries. Here we produce
a toric variety.

In [4]: $T = new NormalToricVariety($P);
print $T->PROJECTIVE;

1

Out[4]: polymake: used package ppl
The Parma Polyhedra Library (PPL): A C++ library for convex polyhedra
and other numerical abstractions.
http://www.cs.unipr.it/ppl/

polymake: used package cdd
cddlib
Implementation of the double description method of Motzkin et al.
Copyright by Komei Fukuda.
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html

1

Types of objects and their subobjects can be read off. polymake establishes a hierarchy among
its types, including multiple inheritence and more.

In [5]: print $P->TRIANGULATION->type->full_name();

Out[5]: GeometricSimplicialComplex<Rational> as Polytope<Rational>::TRIANGULATION

Note that the polytope P belongs to the application ’polytope’, while we currently sit in ’ful-
ton’. The property TRIANGULATION works like a data member of the polytope object P. It is a
SimplicialComplex, which is an object type in yet another application called ’topaz’. Hence we
can compute the (reduced integer) homology.

In [6]: print $P->TRIANGULATION->HOMOLOGY;

Out[6]: ({} 0)
({} 0)
({} 0)

polymake’s object model is explained in

Gawrilow and Joswig: Flexible object hierarchies in polymake, Mathematical software
— ICMS 2006, Lecture Notes in Comput. Sci. 4151, pp. 219-221 (2006), http://dx.
doi.org/10.1007/11832225_20.

2 Perl, yet enhanced

There are many programming languages, and most of them have at least some useful features
which distinguish them from others. From the very beginning polymake was designed as a hybrid
employing C++ (as a compiled language) and Perl (as an interpreted language). This combines
interactivity with fast execution. Systems which follow similar ideas today often rely on some
form of just-in-time compilation. My current favorite among the implementations that I am aware
of is the one in Julia.

polymake’s approach, which can be superior to just-in-time compilation if done right, is based
on our extension of the Perl language by a number of additional features. Everything is based
on the idea that calling a function (which looks like Perl) in polymake interpreter might actually
be implemented in C++. This way, e.g., long integer arithmetic (implemented in GMP) becomes
available in Perl, including overloading of operators.

2

http://dx.doi.org/10.1007/11832225_20
http://dx.doi.org/10.1007/11832225_20

In [7]: print fac(120)+fac(5);

Out[7]: 6689502913449127057588118054090372586752746333138029810295671352301633557244962989366874165271984981308157637893214090552534408589408121859898481114389650005964960521256960000000000000000000000000120

The most important modification is is bringing C++ templates to Perl. These are type param-
eters. However, in modern dialects of C++ the sub-language for the templates is Turing complete
in itself.

As an example we look at ordered sets of (machine size) integers.

In [8]: $S = new Set<Int>();
for (my $i=0; $i<10; ++$i) { $S += new Int(rand()*100) }
print $S;

Out[8]: {18 40 48 58 66 70 77 87 93 96}

The point is that the same C++ code which takes care of the sets of integers also deals with
other types, such as sets of vectors of rational numbers. The default ordering is lexicographic. We
switch back to the application ’polytope’.

In [9]: application "polytope";
$C = cube(5);
$S = new Set<Vector<Rational>>();
for (my $i=0; $i<10; ++$i) { $S += $C->VERTICES->[new Int(rand()*32)] }
print $S;

Out[9]: {<1 -1 -1 1 -1 1> <1 -1 1 1 -1 1> <1 -1 1 1 1 1> <1 1 -1 -1 -1 1> <1 1 -1 1 1 1> <1 1 1 -1 1 1> <1 1 1 1 -1 1> <1 1 1 1 1 1>}

It is by no means obvious what the advantage over just-in-time compilation should be here.
The difference comes from how the Set class is implemented in polymake’s C++ template library:
our C++ code avoids using virtual functions and virtual classes. This is beneficial in terms of
speed on modern hardware due to better caching behavior.

Most of polymake’s core algorithms are templated. This includes convex hulls computations
and linear optimization. Below is an example computation concerning a polytope defined over a
field of formal Puiseux series with real coefficients.

In [10]: set_var_names<UniPolynomial<Rational,Rational>>(qw(t));
$monomial = monomials<Rational,Rational>(1);
$t = new PuiseuxFraction<Min>($monomial);
print klee_minty_cube(3,$t)->VOLUME;

Out[10]: polymake: used package tosimplex
Dual simplex algorithm implemented by Thomas Opfer

(1 -2*t + tˆ2)

The volume is a rational function in the parameter t (in fact, here it is a polynomial). This is
also valid for real polytopes parameterized by t for sufficiently small positive values of t.

3

3 XML based file format, standardized via RELAX-NG

Since computations can be costly, storing the data, including intermediate results, may be vitally
important.

In [11]: $R = rand_sphere(5,300);
prefer_now("beneath_beyond"); $R->FACETS;
print $R->F_VECTOR;
save $R, "R.poly";

Out[11]: 300 4468 14892 17870 7148

The following does not require any computation.

In [12]: $R = load "R.poly";
print $R->F_VECTOR;

Out[12]: 300 4468 14892 17870 7148

As a recently introduced feature polymake can provide an entirely self-contained description
of its own file format as RELAX-NG. This allows for interpreting polymake data independent of
the polymake software. This also offers the possibility to write generic interfaces to polymake. This
might be particularly useful since the precise file format is constantly changing (to be able to keep
up with any progress in the mathematics underlying the system).

In [13]: save_schema $R, "R.rng";

In [14]: system "head -30 R.rng";

Out[14]: <?xml version="1.0" encoding="utf-8"?>

<grammar datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes" ns="http://www.math.tu-berlin.de/polymake/#3" xmlns="http://relaxng.org/ns/structure/1.0">
<include href="file:///data/polymake/git/xml/common_grammar.rng" />
<define name="PolymakeVersion">

<attribute name="version">
<value>3.1</value>

</attribute>
</define>
<start>

<ref name="polytope-Polytope.Rational" />
</start>
<define name="polytope-Polytope.Rational">

<element name="object">
<ref name="PolymakeVersion" />
<attribute name="type">

<value>polytope::Polytope<Rational></value>
</attribute>
<ref name="Extensions" />
<ref name="polytope-Polytope.Rational-contents" />

4

</element>
</define>
<define name="polytope-Polytope.Rational-contents">

<ref name="ObjectTextDescriptions" />
<oneOrMore>

<element name="property">
<choice>

<ref name="polytope-Polytope.Rational.LATTICE_BASIS" />
<ref name="polytope-Polytope.Rational.SMOOTH" />
<ref name="polytope-Cone.Rational.MONOID_GRADING" />

Gawrilow, Hampe and Joswig: The polymake XML file forma}, Mathematical software
— ICMS 2016. 5th international congress, Berlin, Germany, July 11–14, 2016, pp. 403-
410, http://dx.doi.org/10.1007/978-3-319-42432-3_50.

Stay tuned and: Happy polymaking!

5

http://dx.doi.org/10.1007/978-3-319-42432-3_50

	Types and defined semantics for all objects
	Perl, yet enhanced
	XML based file format, standardized via RELAX-NG

