Tropical Linear Spaces, Matroid Decompositions, and Tropical Grassmannians

Michael Joswig

(1) Tropicalization of the Grassmannians

- Tropical Grassmannians
- Tropical Plücker Vectors and Dressians
(2) Matroid Decompositions
- Hypersimplices and Matroid Polytopes
- Parameterization of Tropical ($d-1$)-Planes

3 (Not Only) Computational Results

Recalling Tropical Varieties

Our tropical semi-ring is $(\mathbb{R} \cup\{\infty\}$, min,+).

tropical variety $\begin{aligned} \mathcal{T}(I)= & \text { sub-fan of Gröbner fan in } \mathbb{R}^{n} \\ & \text { corresponding to generalized initial ideals without monomials }\end{aligned}$

- Bieri \& Groves 1984: if I prime ideal then $\mathcal{T}(I)$ pure fan of dimension r

Recalling Tropical Varieties

Our tropical semi-ring is $(\mathbb{R} \cup\{\infty\}$, min,+).
I : ideal in $K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
tropical variety $\mathcal{T}(I)=$ sub-fan of Gröbner fan in \mathbb{R}^{n} corresponding to generalized initial ideals without monomials

- Bieri \& Groves 1984: if $/$ prime ideal then $\mathcal{T}(I)$ pure fan of dimension r
- $r=\operatorname{dim} K[x] / 1$

Tropical Grassmannians

$\mathbb{Z}[p]:=\mathbb{Z}\left[p_{i_{1}, \ldots, i_{d}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n\right]$
$p_{i_{1}, \ldots, i_{d}}: d \times d$-minor of generic $d \times n$-matrix with columns ($i_{1}, i_{2}, \ldots, i_{d}$)
Plücker ideal $I_{d, n}$: algebraic relations

> Definition (Speyer \& Sturmfels 2004)
> $\operatorname{Gr}_{K}(d, n):=\mathcal{T}\left(I_{d, n} \otimes K\right)$

- sub-fan of Gröbner fan of $I_{d, n}$ in $\mathbb{R}\binom{n}{d}$

Tropical Grassmannians

$\mathbb{Z}[p]:=\mathbb{Z}\left[p_{i_{1}, \ldots, i_{d}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n\right]$
$p_{i_{1}, \ldots, i_{d}}: d \times d$-minor of generic $d \times n$-matrix with columns ($i_{1}, i_{2}, \ldots, i_{d}$)
Plücker ideal $I_{d, n}$: algebraic relations

Definition (Speyer \& Sturmfels 2004)
$\operatorname{Gr}_{K}(d, n):=\mathcal{T}\left(I_{d, n} \otimes K\right)$

- sub-fan of Gröbner fan of $I_{d, n}$ in $\mathbb{R}\binom{n}{d}$
- here: Krull dimension $r=(n-d) d+1$
- factorize by lineality space / intersect with sphere

Tropical Grassmannians

$\mathbb{Z}[p]:=\mathbb{Z}\left[p_{i_{1}, \ldots, i_{d}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n\right]$
$p_{i_{1}, \ldots, i_{d}}: d \times d$-minor of generic $d \times n$-matrix with columns ($i_{1}, i_{2}, \ldots, i_{d}$)
Plücker ideal $I_{d, n}$: algebraic relations

Definition (Speyer \& Sturmfels 2004)
$\operatorname{Gr}_{K}(d, n):=\mathcal{T}\left(I_{d, n} \otimes K\right)$

- sub-fan of Gröbner fan of $I_{d, n}$ in $\mathbb{R}\binom{n}{d}$
- here: Krull dimension $r=(n-d) d+1$
- factorize by lineality space / intersect with sphere

Tropical Grassmannians

$\mathbb{Z}[p]:=\mathbb{Z}\left[p_{i_{1}, \ldots, i_{d}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n\right]$
$p_{i_{1}, \ldots, i_{d}}: d \times d$-minor of generic $d \times n$-matrix with columns ($\left.i_{1}, i_{2}, \ldots, i_{d}\right)$
Plücker ideal $I_{d, n}$: algebraic relations

Definition (Speyer \& Sturmfels 2004)
$\operatorname{Gr}_{K}(d, n):=\mathcal{T}\left(I_{d, n} \otimes K\right)$

- sub-fan of Gröbner fan of $I_{d, n}$ in $\mathbb{R}\binom{n}{d}$
- here: Krull dimension $r=(n-d) d+1$
- factorize by lineality space / intersect with sphere
- \rightsquigarrow spherical polytopal complex of dimension $n d-n-d^{2}$

First Example: $d=2$ and $n=4$

```
running Macaulay2 ...
i1 : R = ZZ[x_11..x_24];
i2 : M = matrix {{x_11, x_12, x_13, x_14},{x_21,x_22, x_23, x_24}}
o2 = | x_11 x_12 x_13 x_14 |
    | x_21 x_22 x_23 x_24 |
2 4
o2 : Matrix R <--- R
i3 : p_12=det(submatrix(M,{0,1},{0,1}));
i9 : print (p_12*p_34-p_13*p_24+p_14*p_23);
0
\[
\begin{array}{r}
I_{2,4}=\left\langle p_{12} p_{34}-p_{13} p_{24}+p_{14} p_{23}\right\rangle \\
\text { 3-term Plücker relation } \\
\operatorname{Gr}(2,4)=\text { three isolated points } \\
\text { result characteristic-free }
\end{array}
\]
```


Tropical Plücker Vectors and Dressians

Definition (Speyer 2008)

$\pi \in \mathbb{R}\binom{n}{d}$ (finite) tropical Plücker vector
$: \Leftrightarrow$ for every $S \in\binom{[n]}{d-2}$ and every i, j, k, l in $[n] \backslash S$ (pairwise distinct):

$$
\pi \in \mathcal{T}\left(p_{S i j} p_{S k l}-p_{S i k} p_{S j l}+p_{S i l} p_{S j k}\right)
$$

Dressian $\operatorname{Dr}(d, n)$: set of all finite tropical Plücker vectors
tronical pre-variety arising as intersection of all tronical hypersurfaces
corresponding to 3 -term Plücker relations
Kapranov 1993: \rightsquigarrow Chow quotients of Grassmannians
Speyer 2008: tropical pre-Grassmannian

Tropical Plücker Vectors and Dressians

Definition (Speyer 2008)

$\pi \in \mathbb{R}\binom{n}{d}$ (finite) tropical Plücker vector
$: \Leftrightarrow$ for every $S \in\binom{[n]}{d-2}$ and every i, j, k, l in $[n] \backslash S$ (pairwise distinct):

$$
\pi \in \mathcal{T}\left(p_{S i j} p_{S k l}-p_{S i k} p_{S j l}+p_{S i l} p_{S j k}\right)
$$

Definition

Dressian $\operatorname{Dr}(d, n)$: set of all finite tropical Plücker vectors

- tropical pre-variety arising as intersection of all tropical hypersurfaces corresponding to 3-term Plücker relations
- Kapranov 1993: \rightsquigarrow Chow quotients of Grassmannians
- Speyer 2008: tropical pre-Grassmannian

Tropical Plücker Vectors and Dressians

Definition (Speyer 2008)

$\pi \in \mathbb{R}\binom{n}{d}$ (finite) tropical Plücker vector
$: \Leftrightarrow$ for every $S \in\binom{[n]}{d-2}$ and every i, j, k, l in $[n] \backslash S$ (pairwise distinct):

$$
\pi \in \mathcal{T}\left(p_{s i j} p_{S k l}-p_{S i k} p_{S j l}+p_{s i l} p_{s j k}\right)
$$

Definition

Dressian $\operatorname{Dr}(d, n)$: set of all finite tropical Plücker vectors

- tropical pre-variety arising as intersection of all tropical hypersurfaces corresponding to 3 -term Plücker relations
- Kapranov 1993: \rightsquigarrow Chow quotients of Grassmannians
- Speyer 2008: tropical pre-Grassmannian

Matroid Polytopes and Matroid Subdivisions

Theorem/Definition (Gel'fand et al. 1987)

A (d, n)-matroid polytope is a subpolytope of $\Delta(d, n)$ whose edges are parallel to $e_{i}-e_{j}$.

- hypersimplex $\Delta(d, n)$
- convex hull of $0 / 1$-vectors of length n with exactly d ones
- $\Delta(2,4)$ octahedron
- uniform matroid of rank d on n points
- polytopal subdivision into matroid polytopes
\Leftrightarrow polytopal subdivision without new
edges

Matroid Polytopes and Matroid Subdivisions

Theorem/Definition (Gel'fand et al. 1987)

A (d, n)-matroid polytope is a subpolytope of $\Delta(d, n)$ whose edges are parallel to $e_{i}-e_{j}$.

- hypersimplex $\Delta(d, n)$
- convex hull of $0 / 1$-vectors of length n with exactly d ones
- $\Delta(2,4)$ octahedron
- uniform matroid of rank d on n points
- matroid subdivision
- polytopal subdivision into matroid polytopes
- \Leftrightarrow polytopal subdivision without new edges

Lifting Functions

- interpret point in $\mathbb{R}\binom{n}{d}$ as height function on vertices of hypersimplex $\Delta(d, n)$
- tropical Plücker vector gives (regular) matroid decomposition
- imposes fan structure on $\operatorname{Dr}(d, n)$

Example

$d=2, n=4$, and

$$
\pi: S \mapsto \begin{cases}1 & \text { if } S \in\{12,13,14\} \\ 2 & \text { if } S \in\{23,24\} \\ 3 & \text { if } S=34\end{cases}
$$

Tropical (d-1)-Planes in ($n-1$)-Space

Theorem (Speyer \& Sturmfels 2004)

The tropical Grassmannian $\operatorname{Gr}(d, n)$ parameterizes tropical $(d-1)$-planes in \mathbb{T}^{n-1}.

Proof.

- fix point $\pi \in \operatorname{Gr}(d, n)$ considered as element of $\mathbb{R}\binom{n}{d} / \mathbb{R}(1,1, \ldots, 1)$
- for $J \in\binom{[n]}{d+1}$ consider tropical polynomial

Tropical (d-1)-Planes in ($n-1$)-Space

Theorem (Speyer \& Sturmfels 2004)

The tropical Grassmannian $\operatorname{Gr}(d, n)$ parameterizes tropical $(d-1)$-planes in \mathbb{T}^{n-1}.

Proof.

- fix point $\pi \in \operatorname{Gr}(d, n)$ considered as element of $\mathbb{R}\binom{n}{d} / \mathbb{R}(1,1, \ldots, 1)$
- for $J \in\binom{[n]}{d+1}$ consider tropical polynomial

$$
F_{J}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j \in J} \pi_{\backslash \backslash j\}} \cdot x_{j}
$$

- $L_{\pi}:=$ intersection of all tropical hyperplanes $\mathcal{T}\left(F_{J}\right)$
- turns out to be tropicalization of a linear space
- map $\pi \mapsto L_{\pi}$ bijective

Tropical (d-1)-Planes in ($n-1$)-Space

Theorem (Speyer \& Sturmfels 2004)

The tropical Grassmannian $\operatorname{Gr}(d, n)$ parameterizes tropical $(d-1)$-planes in \mathbb{T}^{n-1}.

Proof.

- fix point $\pi \in \operatorname{Gr}(d, n)$ considered as element of $\mathbb{R}\binom{n}{d} / \mathbb{R}(1,1, \ldots, 1)$
- for $J \in\left(\begin{array}{c}{\left[\begin{array}{c}{[n]} \\ d+1\end{array}\right)}\end{array}\right)$ consider tropical polynomial

$$
F_{J}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j \in J} \pi_{\backslash\{j\}} \cdot x_{j}
$$

- $L_{\pi}:=$ intersection of all tropical hyperplanes $\mathcal{T}\left(F_{J}\right)$
- turns out to be tropicalization of a linear space
- map $\pi \mapsto L_{\pi}$ bijective

Example $d=2$ and $n=4$, continued

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

Example $d=2$ and $n=4$, continued

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

Example $d=2$ and $n=4$, continued

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

- $F_{123}=2 x_{1}+1 x_{2}+1 x_{3}+\infty x_{4}$

Example $d=2$ and $n=4$, continued

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

- $F_{123}=2 x_{1}+1 x_{2}+1 x_{3}+\infty x_{4}$
- $F_{124}=2 x_{1}+1 x_{2}+\infty x_{3}+1 x_{4}$
- $F_{134}=3 x_{1}+\infty x_{2}+1 x_{3}+1 x_{4}$
- $F_{234}=\infty x_{1}+3 x_{2}+2 x_{3}+2 x_{4}$

Example $d=2$ and $n=4$, continued

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

- $F_{123}=2 x_{1}+1 x_{2}+1 x_{3}+\infty x_{4}$
- $F_{124}=2 x_{1}+1 x_{2}+\infty x_{3}+1 x_{4}$
- $F_{134}=3 x_{1}+\infty x_{2}+1 x_{3}+1 x_{4}$
- $F_{234}=\infty x_{1}+3 x_{2}+2 x_{3}+2 x_{4}$

Example $d=2$ and $n=4$, continued

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

- $F_{123}=2 x_{1}+1 x_{2}+1 x_{3}+\infty x_{4}$
- $F_{124}=2 x_{1}+1 x_{2}+\infty x_{3}+1 x_{4}$
- $F_{134}=3 x_{1}+\infty x_{2}+1 x_{3}+1 x_{4}$
- $F_{234}=\infty x_{1}+3 x_{2}+2 x_{3}+2 x_{4}$

Geometry of Hypersimplices

- two kinds of facets
- contraction
- deletion
- tight span := dual of (matroid) decomposition
- recall: matroid \Leftrightarrow no new edges

Lemma

Polytopal decomposition of $\Delta(2, n)$ is matroid iff tight span is tree.

Spaces of Trees

Theorem (Kapranov 1993; Speyer \& Sturmfels 2004)

$\operatorname{Gr}(2, n) \cong$ space of trivalent metric trees with n marked leaves

interior edges $=$ splits

- $\operatorname{Dr}(2, n)=\operatorname{Gr}(2, n)$ as fans

Constructing a Matroid Subdivision of $\Delta(d, n)$

(From Tropical Polytopes to Tropical Plücker Vectors)

Theorem (Kapranov 1993; Speyer 2008)

Each regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision of $\Delta(d, n+d)$.

Constructing a Matroid Subdivision of $\Delta(d, n)$

(From Tropical Polytopes to Tropical Plücker Vectors)

Theorem (Kapranov 1993; Speyer 2008)

Each regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision of $\Delta(d, n+d)$.

- choose arbitrary $V \in \mathbb{R}^{d \times(n-d)}$ as lifting of $\Delta_{d-1} \times \Delta_{n-d-1}$

$$
V=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & \infty & \infty \\
3 & 5 & 0 & 5 & \infty & 0 & \infty \\
6 & 2 & 1 & 0 & \infty & \infty & 0
\end{array}\right)
$$

here: $d=3$ and $n=7$

Constructing a Matroid Subdivision of $\Delta(d, n)$

(From Tropical Polytopes to Tropical Plücker Vectors)

Theorem (Kapranov 1993; Speyer 2008)

Each regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision of $\Delta(d, n+d)$.

- choose arbitrary $V \in \mathbb{R}^{d \times(n-d)}$ as lifting of $\Delta_{d-1} \times \Delta_{n-d-1}$
- concatenate with tropical $d \times d$ unit matrix

Plücker vector $\pi: \mathbb{R}(d) \rightarrow \mathbb{R}$

$$
\bar{V}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & \infty & \infty \\
3 & 5 & 0 & 5 & \infty & 0 & \infty \\
6 & 2 & 1 & 0 & \infty & \infty & 0
\end{array}\right)
$$

here: $d=3$ and $n=7$

Constructing a Matroid Subdivision of $\Delta(d, n)$

(From Tropical Polytopes to Tropical Plücker Vectors)
TECHNISCHE

Theorem (Kapranov 1993; Speyer 2008)

Each regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision of $\Delta(d, n+d)$.

- choose arbitrary $V \in \mathbb{R}^{d \times(n-d)}$ as lifting of $\Delta_{d-1} \times \Delta_{n-d-1}$
- concatenate with tropical $d \times d$ unit matrix
- for each set of d columns compute tropical determinant to define tropical Plücker vector $\pi: \mathbb{R}\binom{n}{d} \rightarrow \mathbb{R}$

$$
\begin{aligned}
\bar{V} & =\left(\begin{array}{ccccccc}
0 & 0 & 0 & 1 & \underline{0} & \infty & \infty \\
3 & \frac{5}{2} & 0 & 5 & \infty & 0 & \infty \\
6 & 2 & 1 & \underline{0} & \infty & \infty & 0
\end{array}\right) \\
\text { e.g., } \pi(245) & =\min (0+5+0,0+5+2)=5 \\
& \text { here: } d=3 \text { and } n=7
\end{aligned}
$$

A Matroid Subdivision of $\Delta(3,7)$

| label | |
| :--- | :--- | :--- |
| v_{1} | 125126135136145146156157167256356456567 |
| v_{2} | 124125127145157234235237245246256257267345357456567 |
| v_{3} | 134136137146167234236237246267345346356357367456567 |
| v_{4} | 124127145147157234237246247267345347357456457467567 |
| w_{1} | 134137146167234237246267345346347357367456467567 |
| w_{2} | 124127145157234237245246247257267345357456457567 |
| w_{3} | 123124125126127134137145146157167234235237246256267345357456567 |
| w_{4} | 123125126134135136137145146157167235256345356357456567 |
| w_{5} | 124127134137145146147157167234237246267345347357456467567 |
| w_{6} | 123126134136137146167234235236237246256267345356357456567 |

$\operatorname{Gr}(3,6)$

Theorem (Speyer \& Sturmfels 2004)

The tropical Grassmannian $\operatorname{Gr}(3,6)$ is a 3 -dimensional simplicial complex with f-vector

$$
(65,550,1395,1035)
$$

and integral homology

$$
\tilde{H}_{*}=\left(0,0,0, \mathbb{Z}^{126}\right) .
$$

- characteristic-free
- $\operatorname{Gr}(3,6)=\operatorname{Dr}(3,6)$ as sets, but fan structures differ

Tight Spans of Finest Matroid Subdivisions of $\Delta(3,6)$

TECHNISCHE UNIVERSITÄT DARMSTADT

EEEE:

FFFGG:

16 July 2010 | TUD | Joswig | 15

Arrangements of Trees and the Dressian

Theorem (Herrmann, Jensen, Sturmfels \& J. 2009)

The matroid subdivisions of $\Delta(3, n)$ bijectively correspond to the equivalence classes of arrangements of n metric trees (on $n-1$ labeled leaves).

- arrangement of metric trees: metrics $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ with

Arrangements of Trees and the Dressian

Theorem (Herrmann, Jensen, Sturmfels \& J. 2009)

The matroid subdivisions of $\Delta(3, n)$ bijectively correspond to the equivalence classes of arrangements of n metric trees (on $n-1$ labeled leaves).

- arrangement of metric trees: metrics $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ with

$$
\delta_{i}(j, k)=\delta_{j}(k, i)=\delta_{k}(i, j)
$$

- matroid decomposition of $\triangle(3, n)$ induces (dual) tree on each contraction facet

Arrangements of Trees and the Dressian

Theorem (Herrmann, Jensen, Sturmfels \& J. 2009)

The matroid subdivisions of $\Delta(3, n)$ bijectively correspond to the equivalence classes of arrangements of n metric trees (on $n-1$ labeled leaves).

- arrangement of metric trees: metrics $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ with

$$
\delta_{i}(j, k)=\delta_{j}(k, i)=\delta_{k}(i, j)
$$

- matroid decomposition of $\Delta(3, n)$ induces (dual) tree on each contraction facet

Arrangements of Trees and the Dressian

Theorem (Herrmann, Jensen, Sturmfels \& J. 2009)

The matroid subdivisions of $\Delta(3, n)$ bijectively correspond to the equivalence classes of arrangements of n metric trees (on $n-1$ labeled leaves).

- arrangement of metric trees: metrics $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ with

$$
\delta_{i}(j, k)=\delta_{j}(k, i)=\delta_{k}(i, j)
$$

- matroid decomposition of $\Delta(3, n)$ induces (dual) tree on each contraction facet
- $\operatorname{Dr}(3,7)$ 6-dimensional non-pure non-simplicial complex
- f-vector $=(616,13860,101185,315070,431025,211365,30)$
- homology $=\tilde{H}_{*}(\operatorname{Dr}(3,7) ; \mathbb{Z})=H_{5}(\operatorname{Dr}(3,7) ; \mathbb{Z})=\mathbb{Z}^{740}$
$116,962,265$ maximal cones, or 4,748 up to symmetry

Arrangements of Trees and the Dressian

Theorem (Herrmann, Jensen, Sturmfels \& J. 2009)

The matroid subdivisions of $\Delta(3, n)$ bijectively correspond to the equivalence classes of arrangements of n metric trees (on $n-1$ labeled leaves).

- arrangement of metric trees: metrics $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ with

$$
\delta_{i}(j, k)=\delta_{j}(k, i)=\delta_{k}(i, j)
$$

- matroid decomposition of $\Delta(3, n)$ induces (dual) tree on each contraction facet
- $\operatorname{Dr}(3,7) 6$-dimensional non-pure non-simplicial complex
- f-vector $=(616,13860,101185,315070,431025,211365,30)$
- homology $=\tilde{H}_{*}(\operatorname{Dr}(3,7) ; \mathbb{Z})=H_{5}(\operatorname{Dr}(3,7) ; \mathbb{Z})=\mathbb{Z}^{7440}$
- complete computation of $\operatorname{Dr}(3,8)$
[Herrmann \& J. 2010+]
- 116,962,265 maximal cones, or 4,748 up to symmetry

Arrangement of Trees Corresponding to a Ray of $\operatorname{Dr}(3,7)$

TECHNISCHE UNIVERSITATT DARMSTADT

$\operatorname{Gr}(3,7)$

Theorem (Herrmann, Jensen, Sturmfels \& J. 2009)

The tropical Grassmannian $\operatorname{Gr}_{K}(3,7)$ is a 5 -dimensional simplicial complex with f-vector

$$
(721,16800,124180,386155,522585,252000)
$$

and integral homology

$$
\tilde{H}_{*}\left(\operatorname{Gr}_{K}(3,7) ; \mathbb{Z}\right)=H_{5}\left(\operatorname{Gr}_{K}(3,7) ; \mathbb{Z}\right)=\mathbb{Z}^{7470},
$$

unless characteristic equals 2 .

Advertisements

- Book Project "Essentials of Tropical Combinatorics"
- www.mathematik.tu-darmstadt.de/~joswig/etc
- New DFG Priority Programme 1489: "Experimental Methods in Algebra, Geometry, and Number Theory"
- polymake meeting in Darmstadt, November 2010

The Space of Trivalent Phylogenetic Trees

- flag simplicial complex
[Billera, Holmes \& Vogtmann 2001]
- $2^{n-1}-n-1$ vertices
- $1 \cdot 3 \cdot 5 \cdot(2 n-5)$ facets
- homotopy equivalent to bouquet of ($n-2$)! spheres of dimension $n-1$
- shellable
[Trappmann \& Ziegler 1998]

