Log-barrier interior point methods are not strongly polynomial

Michael Joswig

TU Berlin

Simons Institute, 20 Oct 2017

joint w/ Xavier Allamigeon Pascal Benchimol Stéphane Gaubert

(1) Main results

Long and winding central paths
(2) What Is Tropical Geometry?

The tropical semi-ring
Puiseux series
(3) Interior Points and Central Paths

Our setup
Description as an algebraic curve
(4) The Tropical Central Path

Maslov Dequantization
Lower bound on number of iterations
(5) Details on the Counter-Examples

Main Results

> Theorem (ABGJ 2017+)
> There is a family, $\mathbf{L W}_{r}(t)$, of linear programs in $2 r$ variables with $3 r+1$ constraints, depending on $t>1$, such the number of iterations of any primal-dual path-following interior point algorithm with a log-barrier function which iterates in the wide neighborhood of the central path is exponential in r for $t \gg 0$.

Theorem (ABGJ 2014+)
On the same family of LPs the total curvature of the central path is in
$\Omega\left(2^{r}\right)$ for $t \gg 0$.

Ridiculously Abbreviated History

Algorithms

- Karmarkar 1984: polynomial time interior point algorithm
- Renegar 1988: $O(\sqrt{m+n} L)$
- where $L=$ total bit size of input
- wide neighborhood methods:
- short/long step: Kojima, Mizuno \& Yoshise 1989, Monteiro \& Adler 1989
- predictor-corrector: Mizuno, Todd \& Ye 1993, Vavasis \& Ye 1996

Geometry

- Bayer \& Lagarias 1989; Dedieu \& Shub 2005;

Dedieu, Malajovich and Shub 2005: curvature of central path

- Deza, Terlaky \& Zinchenko 2009: redundant Klee-Minty cube
- continuous Hirsch conjecture

The Linear Programs $\mathbf{L W}_{r}(t) \mathbf{L} \mathbf{W}_{r}^{\epsilon}(t) \ldots$

$$
\begin{aligned}
\operatorname{minimize} & x_{1} \\
\text { subject to } & x_{1} \leq t^{2} \\
& x_{2} \leq t \\
& \left.x_{2 j+1} \leq t x_{2 j-1}, x_{2 j+1} \leq t x_{2 j}\right] \\
& x_{2 j+2} \leq t^{1-1 / 2^{j}}\left(x_{2 j-1}+x_{2 j}\right) \\
& x_{2 r-1} \geq 0, x_{2 r} \geq 0 \epsilon \quad \text { for } r \geq 1 \leq j \text { and } t \gg 0 \\
& \text { and } 1>\epsilon \geq 0
\end{aligned}
$$

... have long and winding central paths.
"Piecewise linear shadows of classical varieties"

$$
\begin{array}{r}
t^{8}\left(x^{4}+y^{4}+z^{4}\right)+t^{4}\left(x^{3} y+x z^{3}+y^{3} z\right)+t^{2}\left(x^{3} z+x y^{3}+y z^{3}\right) \\
+t\left(x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}\right)+\left(x^{2} y z+x y^{2} z+x y z^{2}\right)
\end{array}
$$

Tropical Arithmetic

tropical semi-ring: $\mathbb{T}=\mathbb{T}(\mathbb{R})=(\mathbb{R} \cup\{-\infty\}, \oplus, \odot)$ where

$$
x \oplus y:=\max (x, y) \quad \text { and } \quad x \odot y:=x+y
$$

- absolutely convergent (generalized) Puiseux series with real coefficients

$$
\mathbb{R}_{\mathrm{conv}}\{\{t\}\}=\{\underbrace{c_{\alpha_{1}} t^{\alpha_{1}}+c_{\alpha_{2}} t^{\alpha_{2}}+\cdots}_{\gamma(t)}\} \cup\{0\}
$$

such that $\alpha_{1}>\alpha_{2}>\cdots$ strictly descending sequence of reals (finite or unbounded), $c_{\alpha_{i}} \in \mathbb{R}-\{0\}$, absolutely convergent for $t \gg 0$
\rightsquigarrow real closed
Dries \& Speissegger 1998

- valuation map $\operatorname{ord}(\gamma(t))=\alpha_{1}$ and $\operatorname{ord}(0)=-\infty$

$$
\begin{aligned}
\operatorname{ord}(\gamma(t)+\boldsymbol{\delta}(t)) & \leq=\max (\operatorname{ord}(\gamma(t)), \operatorname{ord}(\boldsymbol{\delta}(t))) \operatorname{ord}(\gamma(t)) \oplus \operatorname{ord}(\boldsymbol{\delta}(t)) \\
\operatorname{ord}(\gamma(t) \cdot \boldsymbol{\delta}(t)) & =\operatorname{ord}(\gamma(t))+\operatorname{ord}(\boldsymbol{\delta}(t)) \operatorname{ord}(\gamma(t)) \odot \operatorname{ord}(\boldsymbol{\delta}(t))
\end{aligned}
$$

Tropicalization

The polynomial

$$
f=\gamma(t) x_{1}^{u_{1}} x_{2}^{u_{2}} \ldots x_{d}^{u_{d}}+\delta(t) x_{1}^{v_{1}} x_{2}^{v_{2}} \ldots x_{d}^{v_{d}}+\ldots
$$

gives rise to the tropicalization

$$
\begin{aligned}
F=\operatorname{trop}(f):= & \operatorname{ord}(\gamma(t)) \odot x_{1}^{\odot u_{1}} \odot x_{2}^{\odot u_{2}} \odot \cdots \odot x_{d}^{\odot u_{d}} \\
& \oplus \operatorname{ord}(\delta(t)) \odot x_{1}^{\odot v_{1}} \odot x_{2}^{\odot v_{2}} \odot \cdots \odot x_{d}^{\odot v_{d}} \oplus \ldots,
\end{aligned}
$$

where $\operatorname{ord}(\gamma(t))=$ highest t-exponent
Example
$f=\quad x^{3}-\left(t^{3}+2 t+1\right) x^{2}+$
$\left(2 t^{4}+t^{3}+2 t\right) x-2 t^{4}$
$F=x^{\odot 3} \oplus 3 \odot x^{\odot 2} \oplus$
$4 \odot x \quad \oplus$
4
$=\max (3 x \quad, 3+2 x$,
$4+x$,
4)

Main Theorem of Tropical Geometry

```
Theorem (Kapranov 2002)
For \(f \in \mathbb{C}\{\{t\}\}\left[x_{1}, x_{2}, \ldots, x_{d}\right]\) the tropical hypersurface \(\mathcal{T}(F)\) coincides with \(\operatorname{ord}(V(f))\).
```


Definition

F vanishes if maximum attained at least twice

Example
$f=x^{3}-\left(t^{3}+2 t+1\right) x^{2}+\left(2 t^{4}+t^{3}+2 t\right) x-2 t^{4}$ vanishes at $x=2 t$
$F=\max (3 x, 3+2 x, 4+x, 4)$ vanishes at $x=1=\operatorname{ord}(2 t)$

Example: The Linear Assignment Problem

$$
A=\left(\begin{array}{llll}
2 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 \\
2 & 3 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

- assignment $=$ choice of coefficients, one per column/row

$$
\begin{aligned}
\text { best } & =\max _{\omega \in \operatorname{Sym}(4)} a_{1, \omega(1)}+a_{2, \omega(2)}+a_{3, \omega(3)}+a_{4, \omega(4)} \\
& =\bigoplus_{\omega \in \operatorname{Sym}(4)} a_{1, \omega(1)} \odot a_{2, \omega(2)} \odot a_{3, \omega(3)} \odot a_{4, \omega(4)}
\end{aligned}
$$

Definition (tropical determinant)
tdet $=\operatorname{trop}(\operatorname{det})$

Linear Programming via Interior Point Method

 Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}, \mu>0$. primal linear program:$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leq b, x \geq 0, x \in \mathbb{R}^{n}
\end{array}
$$

dual linear program:

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{\top} y \\
\text { subject to } & -A^{\top} y \leq c, y \geq 0, y \in \mathbb{R}^{m}
\end{array}
$$

associated logarithmic barrier problem:

$$
\begin{array}{ll}
\text { minimize } & \frac{c^{\top} x}{\mu}-\sum_{j=1}^{n} \log \left(x_{j}\right)-\sum_{i=1}^{m} \log \left(w_{i}\right) \\
\text { subject to } & A x+w=b, x>0, w>0
\end{array}
$$

A System of Polynomial Equations

logarithmic barrier problem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{c^{\top} x}{\mu}-\sum_{j=1}^{n} \log \left(x_{j}\right)-\sum_{i=1}^{m} \log \left(w_{i}\right) \\
\text { subject to } & A x+w=b, x>0, w>0
\end{array}
$$

for $\mu>0$ has unique optimal solution $\left(x^{\mu}, w^{\mu}\right)$ chacterized by

$$
\begin{aligned}
A x+w=b & \\
-A^{\top} y+s=c & \\
w_{i} y_{i}=\mu & \text { for all } i \in[m] \\
x_{j} s_{j}=\mu & \text { for all } j \in[n] \\
x, w, y, s>0 &
\end{aligned}
$$

That is, there uniquely exist y^{μ} and s^{μ} such that $\left(x^{\mu}, w^{\mu}, y^{\mu}, s^{\mu}\right)$ is a solution ...

The Central Path and the Central Curve

```
, Definition
The central path is the image of the map
\[
\mathcal{C}_{A, b, c}: \mathbb{R}_{>0} \rightarrow \mathbb{R}^{2 m+2 n}, \quad \mu \mapsto\left(x^{\mu}, w^{\mu}, y^{\mu}, s^{\mu}\right) .
\]
```

- primal central path $=$ projection onto x-coordinates
- dual central path $=$ projection onto y-coordinates

The equality constraints in the log-barrier problem define a real algebraic curve, the central curve, which is the Zariski closure of the central path.

The Wide Neighborhood

Let $z=(x, w, s, y) \in \mathbb{R}^{2 n+2 m}$.
For duality measure $\bar{\mu}(z):=\frac{1}{n+m}(\langle x, s\rangle+\langle w, y\rangle)$ we have

$$
z=\mathcal{C}(\mu) \Longleftrightarrow\binom{x s}{w y}=\bar{\mu}(z) e
$$

Yields a first neighborhood (e.g., for ℓ_{2}-norm)

$$
\mathcal{N}_{\theta}:=\left\{z \in \mathcal{F}^{\circ}:\left\|\binom{x s}{w y}-\bar{\mu}(z) e\right\| \leq \theta \bar{\mu}(z)\right\}
$$

for some real precision parameter $\theta \in(0,1)$.
This is replaced by the wide neigborhood

$$
\mathcal{N}_{\theta}^{-\infty}(\mu):=\left\{z \in \mathcal{F}^{\circ}:\binom{x s}{w y} \geq(1-\theta) \bar{\mu}(z) e\right\}
$$

for the one-sided ℓ_{∞}-norm $\max \left(0, \max _{k}\left(-v_{k}\right)\right)$.

Maslov Dequantization of Central Paths

For $\boldsymbol{A} \in \mathbb{K}^{m \times n}, \boldsymbol{b} \in \mathbb{K}^{m}$ and $\boldsymbol{c} \in \mathbb{K}^{n}$ assume

$$
\mathcal{P}=\left\{\boldsymbol{x} \in \mathbb{K}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq 0\right\}
$$

bounded with non-empty interior. Not necessarily compact!

- $\mathbb{K}=\mathbb{R}_{\text {conv }}\{\{t\}\}$ absolutely convergent generalized Puiseux series
- for $t \gg 0$ real linear programs $\operatorname{LP}(\boldsymbol{A}(t), \boldsymbol{b}(t), \boldsymbol{c}(t))$ well defined
- $\mathcal{C}(t, \lambda)=\mathcal{C}_{\boldsymbol{A}(t), \boldsymbol{b}(t), \boldsymbol{c}(t)}\left(t^{\lambda}\right)$ real central path

Definition

$\mathcal{C}^{\text {trop }}: \lambda \mapsto \lim _{t \rightarrow+\infty} \log _{t} \mathcal{C}(t, \lambda) \quad$ tropical central path

Proposition (ABGJ 2017+)
The family of maps $\left(\log _{t} \mathcal{C}(t, \cdot)\right)_{t}$ converges uniformly on any closed interval $[a, b] \subset \mathbb{R}$ to the tropical central path $\mathcal{C}^{\text {trop }}$.

Tropicalizing a System of Linear Inequalities

Consider the Puiseux polyhedron $\mathcal{P} \subset \mathbb{K}^{2}$ defined by:

$$
\begin{align*}
\boldsymbol{x}_{1}+\boldsymbol{x}_{2} & \leq 2 \\
t \boldsymbol{x}_{1} & \leq 1+t^{2} \boldsymbol{x}_{2} \\
t \boldsymbol{x}_{2} & \leq 1+t^{3} \boldsymbol{x}_{1} \tag{1}\\
\boldsymbol{x}_{1} & \leq t^{2} \boldsymbol{x}_{2} \\
\boldsymbol{x}_{1}, \boldsymbol{x}_{2} & \geq 0 .
\end{align*}
$$

Then the set $\operatorname{ord}(\mathcal{P})$ is described by the tropical linear inequalities:

$$
\begin{align*}
\max \left(x_{1}, x_{2}\right) & \leq 0 \\
1+x_{1} & \leq \max \left(0,2+x_{2}\right) \tag{2}\\
1+x_{2} & \leq \max \left(0,3+x_{1}\right) \\
x_{1} & \leq 2+x_{2} .
\end{align*}
$$

... and Two of Its Primal Tropical Central Paths

- tropical central path $=$ ord(Puiseux central path)

Maslov Dequantization of Central Paths

Recall the claim:
'Proposition (ABGJ 2017+)
The family of maps $\left(\log _{t} \mathcal{C}(t, \cdot)\right)_{t}$ converges uniformly on any closed interval $[a, b] \subset \mathbb{R}$ to the tropical central path $\mathcal{C}^{\text {trop }}$.

Proof of Dequantization Theorem

$z_{t}:=$ function $\lambda \mapsto \log _{t} \mathcal{C}(t, \lambda) \in \mathbb{R}^{2 n+2 m}$
$z:=\lim _{t \rightarrow \infty} z_{t}$ pointwise

Proof.

Fix $\epsilon>0$ and choose partition $a=a_{1}<a_{2}<\cdots<a_{k}<a_{k+1}=b$ such that $a_{i+1}-a_{i} \leq \epsilon$ for all i. Pick $\lambda \in\left[a_{i}, a_{i+1}\right]$. Then

$$
\left|z_{t}(\lambda)-z(\lambda)\right| \leq ?\left|z_{t}(\lambda)-z_{t}\left(a_{i}\right)\right| 2 \epsilon+\left|z_{t}\left(a_{i}\right)-z\left(a_{i}\right)\right|+\left|z\left(a_{i}\right)-z(\lambda)\right| \epsilon .
$$

Can show:

$$
\left|z_{t}(\lambda)-z_{t}\left(a_{i}\right)\right| \leq \log _{t}(2 n+2 m)+\lambda-a_{i} \leq \log _{t}(2 n+2 m)+\epsilon
$$

Thus, there exists t_{ϵ} with $\left|z_{t}(\lambda)-z_{t}\left(a_{i}\right)\right| \leq 2 \epsilon$ for all $t \geq t_{\epsilon}$.
Can also show:

$$
\left|z(\lambda)-z\left(a_{i}\right)\right| \leq \lambda-a_{i} \leq \epsilon
$$

Pointwise convergence takes care of final term.

Tubular Neighborhood Controls Iteration Complexity

- number of tropical segments required to approximate tropical central path bounded from below

Recall: $\mathbf{L W}_{r}(t) \mathbf{L W}_{r}^{\epsilon}(t)$

$$
\begin{aligned}
\operatorname{minimize} & x_{1} \\
\text { subject to } & x_{1} \leq t^{2} \\
& x_{2} \leq t \\
& \left.x_{2 j+1} \leq t x_{2 j-1}, x_{2 j+1} \leq t x_{2 j}\right] \\
& x_{2 j+2} \leq t^{1-1 / 2^{j}}\left(x_{2 j-1}+x_{2 j}\right) \\
& x_{2 r-1} \geq 0, x_{2 r} \geq 0 \epsilon
\end{aligned}
$$

$$
\text { for } \begin{aligned}
& r \geq 1 \text { and } t \gg 0 \\
& \text { and } 1 \gg \epsilon
\end{aligned}
$$

An Explicit Bound for t

Theorem (ABGJ 2017+)
Let $0<\theta<1$, and suppose that

$$
t>\left(\frac{((10 r-1)!)^{8}}{1-\theta}\right)^{2^{r+2}}
$$

Then, every polygonal curve $\left[z^{0}, z^{1}\right] \cup\left[z^{1}, z^{2}\right] \cup \cdots \cup\left[z^{p-1}, z^{p}\right]$ contained in the neighborhood $\mathcal{N}_{\theta, t}^{-\infty}$ of the primal-dual central path of $\mathbf{L W}_{r}^{=}(t)$, with $\bar{\mu}\left(z^{0}\right) \leq 1$ and $\bar{\mu}\left(z^{p}\right) \geq t^{2}$, contains at least 2^{r-1} segments.
duality measure

$$
\bar{\mu}(z):=\frac{1}{n+m}(\langle x, s\rangle+\langle w, y\rangle)
$$

The Tropical Central Paths of the Counter-Examples

- the x-components of the primal tropical central path of $\mathbf{L W}_{r}$ for $r \geq 5$ and $0 \leq \lambda \leq 2$
- lifting a construction by

Bezem, Nieuwenhuis and Rodríguez-Carbonell 2008

Schlegel Diagram of $\mathbf{L W}_{2}(2)$, perturbed to simplicity

Conclusion

- tropical geometry is useful for getting insight about intricate details in (linear) optimization
- sheds new light on the interior point method as well as on the simplex method

Allamigeon, Benchimol, Gaubert \& J.:
(1) Tropicalizing the simplex algorithm,

SIAM J. Discrete Math. 29 (2015)
2 Combinatorial simplex algorithms can solve mean payoff games, SIAM J. Opt. 24 (2014)
(3) Long and winding central paths, arXiv:1405.4161
(4) Log-barrier interior point methods are not strongly polynomial, to appear in SIAM J. Appl. Alg. Geo., arXiv:1708.01544

Uniform Convergence

$$
\begin{aligned}
\delta_{\mathrm{F}}(x, y) & :=\max \left(0, \max _{k}\left(y_{k}-x_{k}\right)\right) \\
d_{\infty}(x, y) & :=\max \left(\delta_{\mathrm{F}}(x, y), \delta_{\mathrm{F}}(y, x)\right) \\
d_{\mathrm{H}}(x, y) & :=\delta_{\mathrm{F}}(x, y)+\delta_{\mathrm{F}}(y, x) \\
\delta(t) & :=2 d_{\mathrm{H}}\left(\log _{t} \mathcal{F}(t), \mathcal{F}\right)
\end{aligned}
$$

Funk metric symmetrized Funk Hilbert's projective metric deviation of feasible regions

For all $t>t_{0}$ and $\mu>0$ we have

$$
d_{\infty}\left(\log _{t} \mathcal{N}_{\theta, t}^{-\infty}(\mu), \mathcal{C}^{\text {trop }}\left(\log _{t} \mu\right)\right) \leq \log _{t}\left(\frac{N}{1-\theta}\right)+\delta(t)
$$

Metric Estimate For Maslov Dequantization of Polyhedra

Theorem (ABGJ 2017+)

Let $\mathcal{P} \subset \mathbb{K}_{+}^{d}$ be a polyhedron of the form $\left\{\boldsymbol{x} \in \mathbb{K}^{d}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$ where \boldsymbol{A} and \boldsymbol{b} are monomial. Let η_{0} be the minimum of the quantities $\eta(\boldsymbol{M})$ where \boldsymbol{M} is a square submatrix of $\left(\begin{array}{ccc}\boldsymbol{A} & \boldsymbol{b} & 0 \\ e^{\top} & 0 & 1\end{array}\right)$ of order d.
Then, for all $t \geq(d!)^{1 / \eta_{0}}$, we have:

$$
d_{\mathrm{H}}\left(\log _{t} \mathcal{P}(t), \operatorname{ord}(\mathcal{P})\right) \leq \log _{t}\left((d+1)^{2}(d!)^{4}\right) .
$$

$$
\eta(\boldsymbol{M}):=\min \left\{\eta: \sigma, \tau \in \operatorname{Sym}(d), \eta=\sum_{i=1}^{d} \alpha_{i \sigma(i)}-\sum_{i=1}^{d} \alpha_{i \tau(i)}>0\right\}
$$

Tubular Neighborhood

Theorem (ABGJ 2017+)
For $0<\theta<1$ suppose that $t>t_{0}$ satisfies

$$
\log _{t}\left(\frac{2 N}{1-\theta}\right)+\delta(t)<\epsilon_{0}([\underline{\lambda}, \bar{\lambda}]) .
$$

Then, every polygonal curve $\left[z^{0}, z^{1}\right] \cup\left[z^{1}, z^{2}\right] \cup \cdots \cup\left[z^{p-1}, z^{p}\right]$
contained in the neighborhood $\mathcal{N}_{\theta, t}^{-\infty}$, with $\bar{\mu}\left(z^{0}\right) \leq t^{\lambda}$ and $\bar{\mu}\left(z^{p}\right) \geq t^{\bar{\lambda}}$, contains at least $\gamma([\bar{\lambda}, \lambda])$ segments.

Geometric Characterization of Tropical Central Path

Fix $\boldsymbol{\mu} \in \mathbb{K}$ positive.
$\left(\boldsymbol{x}^{\mu}, \boldsymbol{w}^{\mu}\right)=$ corresponding point on primal central path of $\operatorname{LP}(\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{c})$
$\boldsymbol{\nu} \quad=$ that LP's optimal value
$\mathcal{P}^{\boldsymbol{\mu}} \quad=\left\{(\boldsymbol{x}, \boldsymbol{w}) \in \mathbb{K}_{+}^{n+m} \mid \boldsymbol{A x}+\boldsymbol{w}=\boldsymbol{b}, \boldsymbol{c x} \leq \boldsymbol{\nu}+(n+m) \boldsymbol{\mu}\right\}$

Theorem (ABGJ 2014+)
Then $\operatorname{ord}\left(\boldsymbol{x}^{\boldsymbol{\mu}}, \boldsymbol{w}^{\boldsymbol{\mu}}\right)$ equals tropical barycenter of $\operatorname{ord}\left(\mathcal{P}^{\mu}\right)$.

