Lattice Polygons and Real Roots

Michael Joswig

TU Berlin, CNRS-INSMI CMAP \& IMJ

Séminaire CMAP/CMLS/LIX, École Polytechnique, 21 April 2015

joint w/ Benjamin Assarf

Andreas Paffenholz
Niko Witte
Günter M. Ziegler

Overview

(1) Triangulations of Lattice Polytopes

Foldability
Lattice Polygons
(2) Why Should We Care?

Real Roots of (Very Special) Polynomial Systems
(3) Odds and Ends

Computational Experiments
Pick's Theorem
Products

Regularity, Denseness, Foldability

A triangulation of a lattice d-polytope is ...

Regularity, Denseness, Foldability

A triangulation of a lattice d-polytope is ...

- dense iff each lattice point is used

Regularity, Denseness, Foldability

A triangulation of a lattice d-polytope is . . .

- dense iff each lattice point is used
- foldable iff the graph of the triangulation is $(d+1)$-colorable
- \Leftrightarrow dual graph bipartite

Regularity, Denseness, Foldability

A triangulation of a lattice d-polytope is ...

- dense iff each lattice point is used

- foldable iff the graph of the triangulation is $(d+1)$-colorable
- \Leftrightarrow dual graph bipartite
- regular iff the triangulation can be lifted to the lower hull of a $(d+1)$-polytope

Regularity, Denseness, Foldability

A triangulation of a lattice d-polytope is ...

- dense iff each lattice point is used

- foldable iff the graph of the triangulation is $(d+1)$-colorable
- \Leftrightarrow dual graph bipartite
- regular iff the triangulation can be lifted to the lower hull of a $(d+1)$-polytope

Lattice Edges in the Plane

Let p and q be lattice points in \mathbb{Z}^{2}.
Definition
$\begin{cases}X & \text { if first coordinate of } p-q \text { odd } \\ \text { and second even } & \text { if first coordinate even } \\ \text { and second odd }\end{cases}$
$X Y$
if both coordinates odd

No type defined if both coordinates even.

Foldable Triangulations of Lattice Polygons

Let Δ be a dense and foldable triangulation of a lattice polygon.

signature
$\sigma(\Delta)=\mid$ \#black facets - \#white facets \mid

A Simple Observation

Let T be a lattice triangle of odd normalized area in the plane.

```
Lemma
Then T has precisely one edge of type X,
one of type }Y\mathrm{ and one of type XY.
```


A Simple Observation

Let T be a lattice triangle of odd normalized area in the plane.

The Proof

- dense \Rightarrow all triangles unimodular

The Proof

- dense \Rightarrow all triangles unimodular
- pick $\tau \in\{X, Y, X Y\}$

The Proof

- dense \Rightarrow all triangles unimodular
- pick $\tau \in\{X, Y, X Y\}$
- interior τ-edges form partial matching in dual graph of Δ

The Proof

- dense \Rightarrow all triangles unimodular
- pick $\tau \in\{X, Y, X Y\}$
- interior τ-edges form partial matching in dual graph of Δ
- remove matched pairs of triangles

A Special Case

Let P be an axis-parallel lattice rectangle in the plane.

A Special Case

Let P be an axis-parallel lattice rectangle in the plane.

Corollary
The signature of any dense and
foldable triangulation of P vanishes.

A Special Case

Let P be an axis-parallel lattice rectangle in the plane.

P-------------------------
Proof.
There are no $X Y$ edges in the
boundary.

Wronski Polynomial Systems

Let P be a lattice d-polytope with an rdf lattice triangulation \mathcal{T} with coloring $c: P \cap \mathbb{Z}^{d} \rightarrow\{0, \ldots, d\}$ (and lifting $\lambda: P \cap \mathbb{Z}^{d} \rightarrow \mathbb{N}$).

Wronski polynomial for $\alpha_{i} \in \mathbb{R}$ and parameter $s \in(0,1]$:

$$
\sum_{m \in P \cap \mathbb{Z}^{d}} s^{\lambda(m)} \alpha_{c(m)} x^{m} \quad \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]
$$

Wronski system : system of d Wronski polynomials w.r.t. $\mathcal{T}=P^{\lambda}$ and generic coefficients $\alpha_{0}^{(k)}, \ldots, \alpha_{d}^{(k)}$

Theorem (Bernstein, 1975; Kushnirenko, 1976; Khovanskii, 1977)
$\#$ complex roots $=d!\operatorname{vol}(P)=: \nu(P)$
generic : no multiple complex roots

Lower Bounds for the Number of Real Roots

Theorem (Soprunova \& Sottile, 2006)
Each Wronski system w.r.t. P^{λ} has at least $\sigma\left(P^{\lambda}\right)$ real roots,

$a(1+x y)+b\left(x+y^{2}\right)+c\left(x^{2}+y\right)$

Lower Bounds for the Number of Real Roots

```
TTheorem (Soprunova & Sottile, 2006)
Each Wronski system w.r.t. P}\mp@subsup{}{}{\lambda}\mathrm{ has at least }\sigma(\mp@subsup{P}{}{\lambda})\mathrm{ real roots, provided
that certain additional geometric conditions are satisfied.
```


Lower Bounds for the Number of Real Roots

Theorem (Soprunova \& Sottile, 2006)
Each Wronski system w.r.t. P^{λ} has at least $\sigma\left(P^{\lambda}\right)$ real roots, provided that certain additional geometric conditions are satisfied.
signature $\sigma\left(P^{\lambda}\right)=\mid \#$ black facets $-\#$ white facets $\left.\right|^{*}$
*: only odd normalized volume $\nu(F)$

Lower Bounds for the Number of Real Roots

Theorem (Soprunova \& Sottile, 2006)
Each Wronski system w.r.t. P^{λ} has at least $\sigma\left(P^{\lambda}\right)$ real roots, provided that certain additional geometric conditions are satisfied.
signature $\sigma\left(P^{\lambda}\right)=\mid \#$ black facets $-\#$ white facets $\left.\right|^{*}$
*: only odd normalized volume $\nu(F)$

$$
\begin{aligned}
& \lambda(0,1)=\lambda(1,0)=\lambda(1,1)=0 \\
& \lambda(0,0)=\lambda(2,0)=\lambda(0,2)=1
\end{aligned}
$$

Lower Bounds for the Number of Real Roots

Theorem (Soprunova \& Sottile, 2006)
Each Wronski system w.r.t. P^{λ} has at least $\sigma\left(P^{\lambda}\right)$ real roots, provided that certain additional geometric conditions are satisfied.

The Case $d=1$

- one polynomial p in one indeterminate
- generic \Rightarrow all coefficients non-vanishing
- Newton polytope $=$ interval $[0, r]$, where $r=\operatorname{deg} p$
- unique rdf triangulation into unit intervals
- signature $=$ parity of r

Computational Experiments

[Assarf, J. \& Paffenholz]

Counting Lattice Points in Polygons

Let P be a lattice polygon.
A : Euclidean area
B : number of boundary lattice points
I : number of interior lattice points

Counting Lattice Points in Polygons

Let P be a lattice polygon.
A : Euclidean area
B : number of boundary lattice points
I : number of interior lattice points
$\left\{\begin{array}{l}\text { Theorem (Pick, 1899) } \\ B=2 \cdot(A-I+1)\end{array}\right.$

Bounding the Signature

Let Δ be a dense and foldable triangulation of a lattice polygon.

Bounding the Signature

Let Δ be a dense and foldable triangulation of a lattice polygon.

$$
\begin{aligned}
& A=4 / 2 \\
& B=6 \\
& I=0
\end{aligned}
$$

Bounding the Signature

Let Δ be a dense and foldable triangulation of a lattice polygon.

P---------------------------
Proof.
There is at least one type $\tau \in\{X, Y, X Y\}$ with at most $B / 3$ boundary edges.

$$
\begin{aligned}
& A=4 / 2 \\
& B=6 \\
& I=0
\end{aligned}
$$

The Simplicial Product

K, L : simplicial complexes
V_{K}, V_{L} : respective vertex sets with orderings O_{K}, O_{L}
$O:=O_{K} \times O_{L}$: product partial ordering
Definition

$$
K \times_{\text {stc }} L:=\left\{\begin{array}{l|l}
F \subseteq V_{K} \times V_{L} & \begin{array}{l}
\pi_{K}(F) \in K \text { and } \pi_{L}(F) \in L, \\
\text { and }\left.O\right|_{F} \text { is a total ordering }
\end{array}
\end{array}\right\}
$$

- Eilenberg \& Steenrod, 1952: Cartesian product
- Santos, 2000: staircase refinement

Products of Polytopes

P^{λ} : rdf-triangulation of m-dimensional lattice polytope $P \subset \mathbb{R}^{m}$ Q^{μ} :
n

$$
Q \subset \mathbb{R}^{n}
$$

Products of Polytopes

P^{λ} : rdf-triangulation of m-dimensional lattice polytope $P \subset \mathbb{R}^{m}$ Q^{μ} : n
$Q \subset \mathbb{R}^{n}$

Theorem (J. \& Witte, 2007)
For color consecutive vertex orderings of the factors the simplicial product $P^{\lambda} \times$ stc Q^{μ} is an rdf-triangulation of the polytope $P \times Q$ with signature

$$
\sigma\left(P^{\lambda} \times_{\text {stc }} Q^{\mu}\right)=\sigma_{m, n} \sigma\left(P^{\lambda}\right) \sigma\left(Q^{\mu}\right)
$$

Products of Polytopes

P^{λ} : rdf-triangulation of m-dimensional lattice polytope $P \subset \mathbb{R}^{m}$ Q^{μ} : n
$Q \subset \mathbb{R}^{n}$

Theorem (J. \& Witte, 2007)
For color consecutive vertex orderings of the factors the simplicial product $P^{\lambda} \times$ stc Q^{μ} is an rdf-triangulation of the polytope $P \times Q$ with signature

$$
\sigma\left(P^{\lambda} \times_{\text {stc }} Q^{\mu}\right)=\sigma_{m, n} \sigma\left(P^{\lambda}\right) \sigma\left(Q^{\mu}\right)
$$

And the additional geometric properties are preserved.

Products of Polytopes

P^{λ} : rdf-triangulation of m-dimensional lattice polytope $P \subset \mathbb{R}^{m}$ Q^{μ} : n
$Q \subset \mathbb{R}^{n}$

Theorem (J. \& Witte, 2007)
For color consecutive vertex orderings of the factors the simplicial product $P^{\lambda} \times$ stc Q^{μ} is an rdf-triangulation of the polytope $P \times Q$ with signature

$$
\sigma\left(P^{\lambda} \times_{\text {stc }} Q^{\mu}\right)=\sigma_{m, n} \sigma\left(P^{\lambda}\right) \sigma\left(Q^{\mu}\right)
$$

And the additional geometric properties are preserved.

$$
\sigma_{m, n}=\sigma\left(\operatorname{stc}\left(\Delta_{m} \times \Delta_{n}\right)\right)= \begin{cases}\binom{(m+n) / 2}{m / 2} & \text { if } m \text { and } n \text { even } \\ \binom{(m+n-1) / 2}{m / 2} & \text { if } m \text { even and } n \text { odd } \\ 0 & \text { if } m \text { and } n \text { odd }\end{cases}
$$

Conclusion

- very special triangulations of Newton polytopes allow to read off lower bound for number of real roots (for very special systems of polynomials)
- bivariate case easy to analyze
- behaves well with respect to forming products

Soprunova \& Sottile, Adv. Math. 204 (2006)
J. \& Witte, Adv. Math. 210 (2007)
J. \& Ziegler, Amer. Math. Monthly 121 (2014)

The "Additional Geometric Conditions"

- $P \subset \mathbb{R}_{\geq 0}^{d}$: lattice d-polytope with N lattice points, λ as above \ldots

$$
\phi_{P}:\left(\mathbb{C}^{\times}\right)^{d} \rightarrow \mathbb{C P}^{N-1}: t \mapsto\left[t^{v} \mid v \in P \cap \mathbb{Z}^{d}\right]
$$

- toric variety $X_{P}=$ (Zariski) closure of image
- real part $Y_{P}=X_{P} \cap \mathbb{R P}^{N-1}$, lift Y_{P}^{+}to \mathbb{S}^{N-1}

The "Additional Geometric Conditions"

- $P \subset \mathbb{R}_{\geq 0}^{d}$: lattice d-polytope with N lattice points, λ as above \ldots

$$
\phi_{P}:\left(\mathbb{C}^{\times}\right)^{d} \rightarrow \mathbb{C P}^{N-1}: t \mapsto\left[t^{v} \mid v \in P \cap \mathbb{Z}^{d}\right]
$$

- toric variety $X_{P}=$ (Zariski) closure of image
- real part $Y_{P}=X_{P} \cap \mathbb{R P}^{N-1}$, lift Y_{P}^{+}to \mathbb{S}^{N-1}
- s-deformation $s . Y_{P}($ for $s \in(0,1])=$ closure of the image of

$$
\text { s. } \phi_{P}:\left(\mathbb{C}^{\times}\right)^{d} \rightarrow \mathbb{C P}^{N-1}: t \mapsto\left[s^{\lambda(v)} t^{v} \mid v \in P \cap \mathbb{Z}^{d}\right]
$$

The "Additional Geometric Conditions"

- $P \subset \mathbb{R}_{\geq 0}^{d}$: lattice d-polytope with N lattice points, λ as above \ldots

$$
\phi_{P}:\left(\mathbb{C}^{\times}\right)^{d} \rightarrow \mathbb{C P}^{N-1}: t \mapsto\left[t^{v} \mid v \in P \cap \mathbb{Z}^{d}\right]
$$

- toric variety $X_{P}=$ (Zariski) closure of image
- real part $Y_{P}=X_{P} \cap \mathbb{R P}^{N-1}$, lift Y_{P}^{+}to \mathbb{S}^{N-1}
- s-deformation $s . Y_{P}($ for $s \in(0,1])=$ closure of the image of

$$
s . \phi_{P}:\left(\mathbb{C}^{\times}\right)^{d} \rightarrow \mathbb{C P}^{N-1}: t \mapsto\left[s^{\lambda(v)} t^{v} \mid v \in P \cap \mathbb{Z}^{d}\right]
$$

- Wronski projection

$$
\begin{aligned}
\mathbb{C P}^{N-1} \backslash E & \rightarrow \mathbb{C P}^{d} \\
\pi:\left[x_{v} \mid v \in P \cap \mathbb{Z}^{d}\right] & \mapsto\left[\sum_{v \in c^{-1}(i)} x_{v} \mid i=0,1, \ldots, d\right]
\end{aligned}
$$

with center

$$
E=\left\{x \in \mathbb{C P}^{N-1} \mid \sum_{v \in c^{-1}(i)} x_{v}=0 \quad \text { for } i=0,1, \ldots, d\right\}
$$

The "Additional Geometric Conditions"

- $P \subset \mathbb{R}_{\geq 0}^{d}$: lattice d-polytope with N lattice points, λ as above \ldots

$$
\phi_{P}:\left(\mathbb{C}^{\times}\right)^{d} \rightarrow \mathbb{C P}^{N-1}: t \mapsto\left[t^{v} \mid v \in P \cap \mathbb{Z}^{d}\right]
$$

- toric variety $X_{P}=$ (Zariski) closure of image
- real part $Y_{P}=X_{P} \cap \mathbb{R P}^{N-1}$, lift Y_{P}^{+}to \mathbb{S}^{N-1} must be oriented
- s-deformation $s . Y_{P}($ for $s \in(0,1])=$ closure of the image of

$$
s . \phi_{P}:\left(\mathbb{C}^{\times}\right)^{d} \rightarrow \mathbb{C P}^{N-1}: t \mapsto\left[s^{\lambda(v)} t^{v} \mid v \in P \cap \mathbb{Z}^{d}\right]
$$

- Wronski projection

$$
\begin{aligned}
\mathbb{C P}^{N-1} \backslash E & \rightarrow \mathbb{C P}^{d} \\
\pi:\left[x_{v} \mid v \in P \cap \mathbb{Z}^{d}\right] & \mapsto\left[\sum_{v \in c^{-1}(i)} x_{v} \mid i=0,1, \ldots, d\right]
\end{aligned}
$$

must avoid
$E=\left\{x \in \mathbb{C P}^{N-1} \mid \sum_{v \in c^{-1}(i)} x_{v}=0 \quad\right.$ for $\left.i=0,1, \ldots, d\right\}$

