Lattice Polygons and Real Roots

Michael Joswig

TU Berlin, CNRS-INSMI CMAP & IMJ

Séminaire CMAP/CMLS/LIX, École Polytechnique, 21 April 2015

joint w/ Benjamin Assarf Andreas Paffenholz Niko Witte Günter M. Ziegler

Overview

Triangulations of Lattice Polytopes Foldability Lattice Polygons

Why Should We Care? Real Roots of (Very Special) Polynomial Systems

Odds and Ends Computational Experiments Pick's Theorem Products

A triangulation of a lattice d-polytope is . . .

• dense iff each lattice point is used

- dense iff each lattice point is used
- foldable iff the graph of the triangulation is (d + 1)-colorable
 - \Leftrightarrow dual graph bipartite

- dense iff each lattice point is used
- foldable iff the graph of the triangulation is (d + 1)-colorable
 - \Leftrightarrow dual graph bipartite
- regular iff the triangulation can be lifted to the lower hull of a (d + 1)-polytope

- dense iff each lattice point is used
- foldable iff the graph of the triangulation is (d + 1)-colorable
 - \Leftrightarrow dual graph bipartite
- regular iff the triangulation can be lifted to the lower hull of a (d + 1)-polytope

Lattice Edges in the Plane

No type defined if both coordinates even.

Foldable Triangulations of Lattice Polygons

Let Δ be a dense and foldable triangulation of a lattice polygon.

```
Theorem (J. & Ziegler, 2012)
The signature \sigma(\Delta) equals the
absolute value of the difference
between the numbers of black and of
white boundary edges of type \tau, for
any fixed \tau \in \{X, Y, XY\}.
```


signature $\sigma(\Delta) = |\#$ black facets – #white facets|

A Simple Observation

Let T be a lattice triangle of *odd normalized area* in the plane.

A Simple Observation

Let T be a lattice triangle of *odd normalized area* in the plane.

```
Lemma
 Then T has precisely one edge of type X,
one of type Y and one of type XY.
Proof.
                                                            XY
For integer a, b, c, d consider
                                                                      X
           \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc
 odd and check cases.
```

• dense \Rightarrow all triangles unimodular

- dense \Rightarrow all triangles unimodular
- pick $\tau \in \{X, Y, XY\}$

- dense \Rightarrow all triangles unimodular
- pick $\tau \in \{X, Y, XY\}$
- interior $\tau\text{-edges}$ form partial matching in dual graph of Δ

- dense \Rightarrow all triangles unimodular
- pick $\tau \in \{X, Y, XY\}$
- interior $\tau\text{-edges}$ form partial matching in dual graph of Δ
- remove matched pairs of triangles

A Special Case

Let P be an axis-parallel lattice rectangle in the plane.

A Special Case

Let P be an axis-parallel lattice rectangle in the plane.

A Special Case

Let P be an axis-parallel lattice rectangle in the plane.

Corollary
The signature of any dense and foldable triangulation of P vanishes.
Proof.
There are no <i>XY</i> edges in the boundary.

Wronski Polynomial Systems

Let *P* be a lattice *d*-polytope with an rdf lattice triangulation \mathcal{T} with coloring $c: P \cap \mathbb{Z}^d \to \{0, \ldots, d\}$ (and lifting $\lambda: P \cap \mathbb{Z}^d \to \mathbb{N}$).

Wronski polynomial for $\alpha_i \in \mathbb{R}$ and parameter $s \in (0, 1]$:

$$\sum_{m \in P \cap \mathbb{Z}^d} s^{\lambda(m)} \alpha_{c(m)} x^m \qquad \in \mathbb{R}[x_1, \dots, x_d]$$

Wronski system : system of *d* Wronski polynomials w.r.t. $T = P^{\lambda}$ and generic coefficients $\alpha_0^{(k)}, \ldots, \alpha_d^{(k)}$

Theorem (Bernstein, 1975; Kushnirenko, 1976; Khovanskii, 1977) # complex roots = d!vol(P) =: $\nu(P)$

generic : no multiple complex roots

Theorem (Soprunova & Sottile, 2006)	1
Each Wronski system w.r.t. ${\sf P}^\lambda$ has at least $\sigma({\sf P}^\lambda)$ real roots,	

Theorem (Soprunova & Sottile, 2006)

Each Wronski system w.r.t. P^{λ} has at least $\sigma(P^{\lambda})$ real roots, provided that certain additional geometric conditions are satisfied.

Theorem (Soprunova & Sottile, 2006)

Each Wronski system w.r.t. P^{λ} has at least $\sigma(P^{\lambda})$ real roots, provided that certain additional geometric conditions are satisfied.

signature $\sigma(P^{\lambda}) = |\#$ black facets - #white facets $|^*$

*: only odd normalized volume $\nu(F)$

Theorem (Soprunova & Sottile, 2006)

Each Wronski system w.r.t. P^{λ} has at least $\sigma(P^{\lambda})$ real roots, provided that certain additional geometric conditions are satisfied.

signature $\sigma(P^{\lambda}) = |\#$ black facets - #white facets $|^*$

*: only odd normalized volume $\nu(F)$

$$\lambda(0,1) = \lambda(1,0) = \lambda(1,1) = 0$$

 $\lambda(0,0) = \lambda(2,0) = \lambda(0,2) = 1$

Theorem (Soprunova & Sottile, 2006)

Each Wronski system w.r.t. P^{λ} has at least $\sigma(P^{\lambda})$ real roots, provided that certain additional geometric conditions are satisfied.

The Case d = 1

- one polynomial *p* in one indeterminate
- generic \Rightarrow all coefficients non-vanishing
- Newton polytope = interval [0, r], where r = deg p
- unique rdf triangulation into unit intervals
- signature = parity of r

Computational Experiments

with polymake and Singular

[Assarf, J. & Paffenholz]

Counting Lattice Points in Polygons

Let P be a lattice polygon.

- A: Euclidean area
- B: number of boundary lattice points
- *I* : number of interior lattice points

```
Theorem (Pick, 1899)
B = 2 \cdot (A - I + 1)
```

Counting Lattice Points in Polygons

Bounding the Signature

Let Δ be a dense and foldable triangulation of a lattice polygon.

Corollary $\sigma(\Delta) \leq rac{2}{3}(A-I+1)$

Bounding the Signature

Let Δ be a dense and foldable triangulation of a lattice polygon.

Corollary $\sigma(\Delta) \leq rac{2}{3}(A-I+1)$

$$A = 4/2$$
$$B = 6$$
$$I = 0$$

Bounding the Signature

Let Δ be a dense and foldable triangulation of a lattice polygon.

 $\begin{array}{l} \mathsf{Corollary}\\ \sigma(\Delta) \leq \frac{2}{3}(A - I + 1)\\ \\ \\ \mathsf{Proof.}\\ \\ \\ \\ \mathsf{There is at least one type } \tau \in \{X,Y,XY\}\\ \\ \\ \mathsf{with at most } B/3 \text{ boundary edges.} \end{array}$

The Simplicial Product

K, L: simplicial complexes

 V_K , V_L : respective vertex sets with orderings O_K , O_L

 $O := O_K \times O_L$: product partial ordering

$$\begin{array}{l} \text{Definition} \\ K \times_{\text{stc}} L := \left\{ F \subseteq V_{\mathcal{K}} \times V_L \ \middle| \begin{array}{c} \pi_{\mathcal{K}}(F) \in \mathcal{K} \text{ and } \pi_L(F) \in L \, , \\ \text{and } O \mid_F \ \text{is a total ordering} \end{array} \right\} \end{array}$$

- Eilenberg & Steenrod, 1952: Cartesian product
- Santos, 2000: staircase refinement

 P^{λ} : rdf-triangulation of *m*-dimensional lattice polytope $P \subset \mathbb{R}^m$ Q^{μ} : n $Q \subset \mathbb{R}^n$

 P^{λ} : rdf-triangulation of *m*-dimensional lattice polytope $P \subset \mathbb{R}^m$ Q^{μ} : n $Q \subset \mathbb{R}^n$

Theorem (J. & Witte, 2007) For color consecutive vertex orderings of the factors the simplicial product $P^{\lambda} \times_{\text{stc}} Q^{\mu}$ is an rdf-triangulation of the polytope $P \times Q$ with signature $\sigma(P^{\lambda} \times_{\text{stc}} Q^{\mu}) = \sigma_{m,n} \sigma(P^{\lambda}) \sigma(Q^{\mu})$.

 P^{λ} : rdf-triangulation of *m*-dimensional lattice polytope $P \subset \mathbb{R}^m$ Q^{μ} : n $Q \subset \mathbb{R}^n$

Theorem (J. & Witte, 2007) For color consecutive vertex orderings of the factors the simplicial product $P^{\lambda} \times_{stc} Q^{\mu}$ is an rdf-triangulation of the polytope $P \times Q$ with signature $\sigma(P^{\lambda} \times_{stc} Q^{\mu}) = \sigma_{m,n} \sigma(P^{\lambda}) \sigma(Q^{\mu})$. And the additional geometric properties are preserved.

 P^{λ} : rdf-triangulation of *m*-dimensional lattice polytope $P \subset \mathbb{R}^m$ Q^{μ} : n $Q \subset \mathbb{R}^n$

Theorem (J. & Witte, 2007) For color consecutive vertex orderings of the factors the simplicial product $P^{\lambda} \times_{\text{stc}} Q^{\mu}$ is an rdf-triangulation of the polytope $P \times Q$ with signature $\sigma(P^{\lambda} \times_{\mathsf{stc}} Q^{\mu}) = \sigma_{m,n} \, \sigma(P^{\lambda}) \, \sigma(Q^{\mu}) \, .$ And the additional geometric properties are preserved. $\int ((m+n)/2)$ if m and n even

$$\sigma_{m,n} = \sigma(\operatorname{stc}(\Delta_m \times \Delta_n)) = \begin{cases} \binom{m/2}{m/2} & \text{if } m \text{ even and } n \text{ odd} \\ 0 & \text{if } m \text{ and } n \text{ odd} \end{cases}$$

Conclusion

- very special triangulations of Newton polytopes allow to read off lower bound for number of real roots (for very special systems of polynomials)
- bivariate case easy to analyze
- behaves well with respect to forming products

Soprunova & Sottile, *Adv. Math.* 204 (2006) J. & Witte, *Adv. Math.* 210 (2007) J. & Ziegler, *Amer. Math. Monthly* 121 (2014)

• $P \subset \mathbb{R}^d_{\geq 0}$: lattice *d*-polytope with *N* lattice points, λ as above ...

$$\phi_P: (\mathbb{C}^{\times})^d \to \mathbb{CP}^{N-1}: t \mapsto [t^{\nu} \mid \nu \in P \cap \mathbb{Z}^d],$$

- toric variety $X_P = (Zariski)$ closure of image
- real part $Y_P = X_P \cap \mathbb{RP}^{N-1}$, lift Y_P^+ to \mathbb{S}^{N-1}

• $P \subset \mathbb{R}^d_{\geq 0}$: lattice *d*-polytope with *N* lattice points, λ as above ...

$$\phi_P: (\mathbb{C}^{\times})^d \to \mathbb{CP}^{N-1}: t \mapsto [t^{\mathsf{v}} \mid \mathsf{v} \in P \cap \mathbb{Z}^d],$$

- toric variety $X_P = (Zariski)$ closure of image
- real part $Y_P = X_P \cap \mathbb{RP}^{N-1}$, lift Y_P^+ to \mathbb{S}^{N-1}

• s-deformation s. Y_P (for $s \in (0,1]$) = closure of the image of

$$s.\phi_P: (\mathbb{C}^{ imes})^d o \mathbb{CP}^{N-1}: t \mapsto [s^{\lambda(v)} \ t^v \mid v \in P \cap \mathbb{Z}^d]$$

• $P \subset \mathbb{R}^d_{\geq 0}$: lattice *d*-polytope with *N* lattice points, λ as above ...

$$\phi_P: (\mathbb{C}^{\times})^d \to \mathbb{CP}^{N-1}: t \mapsto [t^v \mid v \in P \cap \mathbb{Z}^d],$$

- toric variety $X_P = (Zariski)$ closure of image
- real part $Y_P = X_P \cap \mathbb{RP}^{N-1}$, lift Y_P^+ to \mathbb{S}^{N-1}
- s-deformation s.Y_P (for $s \in (0,1]) =$ closure of the image of

$$s.\phi_P: (\mathbb{C}^{ imes})^d o \mathbb{CP}^{N-1}: t \mapsto [s^{\lambda(v)} \ t^v \mid v \in P \cap \mathbb{Z}^d]$$

Wronski projection

$$\mathbb{CP}^{N-1} \setminus E \to \mathbb{CP}^d$$

$$\pi : [x_v \mid v \in P \cap \mathbb{Z}^d] \mapsto [\sum_{v \in c^{-1}(i)} x_v \mid i = 0, 1, \dots, d]$$

with center

$$E = \left\{ x \in \mathbb{CP}^{N-1} \mid \sum_{v \in c^{-1}(i)} x_v = 0 \quad \text{for } i = 0, 1, \dots, d \right\}$$
(5.85.200)

• $P \subset \mathbb{R}^d_{\geq 0}$: lattice *d*-polytope with *N* lattice points, λ as above ...

$$\phi_P: (\mathbb{C}^{\times})^d \to \mathbb{CP}^{N-1}: t \mapsto [t^v \mid v \in P \cap \mathbb{Z}^d],$$

• toric variety $X_P = (Zariski)$ closure of image

- real part $Y_P = X_P \cap \mathbb{RP}^{N-1}$, lift Y_P^+ to \mathbb{S}^{N-1} must be oriented
- s-deformation s.Y_P (for $s \in (0,1]) =$ closure of the image of

$$s.\phi_P:(\mathbb{C}^{ imes})^d o \mathbb{CP}^{N-1}: t\mapsto [s^{\lambda(v)} \ t^v \mid v\in P\cap \mathbb{Z}^d]$$

Wronski projection

$$\mathbb{CP}^{N-1} \setminus E \to \mathbb{CP}^d$$

$$\pi : [x_v \mid v \in P \cap \mathbb{Z}^d] \mapsto [\sum_{v \in c^{-1}(i)} x_v \mid i = 0, 1, \dots, d]$$

must avoid $E = \left\{ x \in \mathbb{CP}^{N-1} \mid \sum_{v \in c^{-1}(i)} x_v = 0 \quad \text{for } i = 0, 1, \dots, d \right\}$ (52.5.2)