Monomial tropical cones for multicriteria optimization

Michael Joswig

TU Berlin

20 February 2018

joint w/ Georg Loho
arXiv:1707.09305

Overview

Multicriteria Optimization The problem

A first result

2 Enter Tropical Convexity

Basic concepts Our key result The algorithm

3 Miscellaneous

Complexity Monomials ideals

Multicriteria Optimization

A multicriteria optimization problem is of the form

min
$$f(x) = (f_1(x), \dots, f_d(x))$$

subject to $x \in X$.

- feasible set X, contained in decision space, which may be any set
- *i*th objective function $f_i : X \to \mathbb{R}$

• outcome space
$$Z = f(X) \subseteq \mathbb{R}^d$$

```
Definition
A point z \in Z is nondominated if there is no point w \in Z such that
w_i \leq z_i for all i \in [d] and w_\ell < z_\ell for at least one \ell \in [d].
```

A "Fast" Algorithm for Nondominated Points

Let $Z \subset \mathbb{R}^d$ be finite, with *n* nondominated points.

```
Theorem (Dächert et al. 2017; J. & Loho 2017+)
There is an algorithm which returns the set of nondominated points of Z with \Theta(n^{\lfloor d/2 \rfloor}) scalarizations.
```

asymptotically worst-case optimal

An Example

$$\min egin{pmatrix} -3 & 1 & 1 \ 2 & 1 & 1 \end{pmatrix} \cdot x$$
 subject to $x \in \{0,1\}^3$

- feasible set $X = \{0, 1\}^3$ in the decision space \mathbb{Z}^3
- outcome space

- nondominated points g = (0,0) and h = (-3,2)
- *d* = *n* = 2

Tropical Convexity

- $\mathbb{T}=(\mathbb{T},\oplus,\odot)$ tropical semiring
 - $C \subset \mathbb{T}^{d+1}$ tropical cone : $\iff (\lambda \odot x) \oplus (\mu \odot y) \in C$ for all $\lambda, \mu \in \mathbb{T}$ and $x, y \in C$
 - Gaubert 1992; Allamigeon, Gaubert & Katz 2011: can be described in terms of finitely many tropical linear inequalities
 - Develin & Yu 2007; Allamigeon, Benchimol, Gaubert & J. 2015: tropical cone = ord(ordinary cone over Puiseux series)
 - Develin & Sturmfels 2004; Fink & Rincón 2015; J. & Loho 2016: combinatorial description via regular subdivisions of products of simplices

$$\mathbb{T}_{\mathsf{max}} = (\mathbb{R} \cup \{-\infty\}, \mathsf{max}, +)$$
 or $\mathbb{T}_{\mathsf{min}} = (\mathbb{R} \cup \{\infty\}, \mathsf{min}, +)$

Monomial Tropical Cones

Assume $G \subseteq \mathbb{T}_{\max}^{d+1}$ finite such that 0 contained in the support of each point. We let

$$\overline{\mathsf{M}}(G) = \bigcup_{g \in G} \left\{ x \in \mathbb{T}_{\max}^{d+1} \mid x_0 - g_0 \le \min(x_j - g_j \mid j \in \operatorname{supp}(g) \setminus \{0\}) \right\}$$

Definition (Monomial max-tropical cone)
$$\mathsf{M}(G) = \overline{\mathsf{M}}(G) \cap \mathbb{R}^{d+1}$$

- M(G) = finite union of min-tropical sectors in \mathbb{R}^{d+1}
- also finite intersection of max-tropical halfspaces in \mathbb{R}^{d+1}
 - but apices may lie in $\mathbb{T}_{\mathsf{max}}^{d+1} \setminus \mathbb{R}^{d+1}$
- if G ⊂ {0} × N^d: integral points in M(G) with zero first coordinate correspond to monomial ideal generated by G

Key Complementarity Result

Let W(G) be the closure of the complement of the max-tropical cone M(G) in \mathbb{R}^{d+1} .

Theorem (J. & Loho 2017+)

Then W(G) is a min-tropical cone in \mathbb{R}^{d+1} . More precisely, if \mathcal{H} is a set of max-tropical halfspaces such that $\bigcap \mathcal{H} = M(G)$, then

$$\mathsf{W}(G) \ = \ -\mathsf{M}(-A) \ ,$$

where $A \subset \mathbb{T}_{\min}^{d+1}$ is the set of apices of the tropical halfspaces in \mathcal{H} . In particular, the set $A \cup \mathcal{E}_{\min}$ generates $\overline{W}(G)$.

 $\mathcal{E}_{\min} = \left\{ e^{(1)}, e^{(2)}, \dots, e^{(d)}
ight\} \subseteq \mathbb{T}_{\min}^{d+1}$

Example: Complementary Pair of Monomial Tropical Cones

Computing All Nondominated Points

Input: Outcome space $Z \subset \mathbb{R}^d$, implicitly given by objective function and a description of feasible set.

Output: The set of nondominated points.

- 1: $A \leftarrow \mathcal{E}_{\min} \cup e^{(0)}$ 2: $G \leftarrow \emptyset$ 3: $\Omega \leftarrow \mathcal{E}_{\min}$ 4: while $A \neq \Omega$ do 5: pick a in $A \setminus \Omega$ 6: $g \leftarrow \text{NEXTNONDOMINATED}(Z, a)$ if $g \neq$ None then 7: $A \leftarrow \text{NewExtremals}(G, A, g)$ 8: $G \leftarrow G \cup \{g\}$ 9: else 10: $\Omega \leftarrow \Omega \cup \{a\}$ 11:
- 12: end if
- 13: end while
- 14: return G

Example: Computing the Nondominated Points

or something slightly more general

- the search region is the entire space
- scalarization: first nondominated point
- description via max-tropical inequalities
- scalarization: next nondominated point
- update max-tropical inequalities
- scalarization: next nondominated point
- update max-tropical inequalities

Scalarizations to Produce Next Nondominated Point ϵ -constraint method

- N' = some set of nondominated points (maybe empty)
- $A' \subset \mathbb{T}_{\min}^{d+1} =$ set of extremal generators of $\mathsf{W}(N')$

For $a \in A'$ and $i \in [d]$ consider

$$\begin{array}{ll} \min & z_i \\ \text{subject to} & z_j < a_j \\ & z \in Z \end{array} \quad \quad \text{for all } j \in \text{supp}(a) \setminus \{0, i\} \quad . \qquad (1)$$

If (1) infeasible then there is no nondominated point in $Z \cap (a - \mathbb{R}^d_{\geq 0})$. For $w \in \mathbb{R}^d$ feasible w.r.t. (1) consider

$$\begin{array}{ll} \min & \sum_{j=1}^{d} z_{j} \\ \text{subject to} & z_{k} \leq w_{k} \\ & z \in Z \end{array} \quad \text{for all } k \in [d] \\ \end{array} \tag{2}$$

Optimal solution of (2) is a new nondominated point in $N \setminus N'$.

An Upper Bound

Theorem (Allamigeon, Gaubert and Katz 2011)

The number of extreme rays of a tropical cone in \mathbb{T}^{d+1} defined as the intersection of n tropical halfspaces is bounded by U(n+d,d).

$$U(m,k) = \binom{m - \lceil k/2 \rceil}{\lfloor k/2 \rfloor} + \binom{m - \lfloor k/2 \rfloor - 1}{\lceil k/2 \rceil - 1} \in \Theta(m^{\lfloor k/2 \rfloor})$$

Proving That Upper Bound

Proof. (Allamigeon, Gaubert & Katz 2011; J. & Loho 2017+). Let C be a tropical cone given as the intersection of the tropical halfspaces H_1, \ldots, H_n . By Allamigeon et al. 2015, there are halfspaces H_1, \ldots, H_n in $\mathbb{R}\{\!\{t^{\mathbb{R}}\}\!\}^{d+1}$ with $\operatorname{ord}(H_i) = H_i$, for $i \in [n]$, such that ord $\left(\bigcap_{i=1}^{n} H_{j} \cap \bigcap_{i=1}^{d} \{x_{i} \geq 0\}\right) = \bigcap_{i=1}^{n} H_{j}$, and, additionally, the generators of the ordinary cone $\boldsymbol{C} = \bigcap \boldsymbol{H}_i$ are mapped onto the generators of the tropical cone C. The ordinary cone C has at most n + d facets, and thus the claim follows from McMullen's upper bound theorem.

Monomial Ideals

Consider $R = K[x_1, \ldots, x_d]$, where K is any field.

• identify monomial $x_1^{a_1}x_2^{a_2}\cdots x_d^{a_d}$ with lattice point $(0, a_1, a_2, \dots, a_d)$ in $\mathbb{N}^{d+1} \subset \mathbb{R}_{>0}^{d+1}$

Let M be some set of monomials in R.

- Gordan–Dickson Lemma: M contains unique finite subset which minimally generates J = (M)
 - \rightsquigarrow extremal generators of the monomial max-tropical cone M(M)
- complementarity of monomial tropical cones generalizes Alexander duality of monomial ideals
 - squarefree case = Alexander duality of finite simplicial complexes

Example: "Staircase Diagram"

(Artinian) monomial ideal • $M = \{x^4, y^4, z^4, x^3y^2z, xy^3z^2, x^2yz^3\}$

irreducible decomposition

•
$$J = \langle M \rangle$$

= $\langle x^4, y^4, z \rangle \cap \langle x^4, y, z^4 \rangle$
 $\cap \langle x, y^4, z^4 \rangle \cap \langle x^4, y^2, z^3 \rangle$
 $\cap \langle x^3, y^4, z^2 \rangle \cap \langle x^2, y^3, z^4 \rangle$
 $\cap \langle x^3, y^3, z^3 \rangle$

Alexander dual

•
$$J^* = \langle x^4 y^4 z, x^4 y z^4, x^4 y^2 z^3, x^3 y^4 z^2, x^2 y^3 z^4, x^3 y^3 z^3 \rangle$$

Conclusion

- tropical geometry brings in lots of new tools to (parts of) combinatorial optimization
- computing tropical convex hulls
 - solves multicriteria optimization problems
 - yields the Alexander dual of a monomial ideal

References