Monomial tropical cones for multicriteria optimization

Michael Joswig

TU Berlin
20 February 2018
joint w/ Georg Loho
arXiv:1707. 09305

Overview

(1) Multicriteria Optimization

The problem
A first result
(2) Enter Tropical Convexity

Basic concepts
Our key result
The algorithm
(3) Miscellaneous

Complexity
Monomials ideals

Multicriteria Optimization

A multicriteria optimization problem is of the form

$$
\begin{array}{ll}
\min & f(x)=\left(f_{1}(x), \ldots, f_{d}(x)\right) \\
\text { subject to } & x \in X .
\end{array}
$$

- feasible set X, contained in decision space, which may be any set
- i th objective function $f_{i}: X \rightarrow \mathbb{R}$
- outcome space $Z=f(X) \subseteq \mathbb{R}^{d}$

Definition

A point $z \in Z$ is nondominated if there is no point $w \in Z$ such that $w_{i} \leq z_{i}$ for all $i \in[d]$ and $w_{\ell}<z_{\ell}$ for at least one $\ell \in[d]$.

A "Fast" Algorithm for Nondominated Points

Let $Z \subset \mathbb{R}^{d}$ be finite, with n nondominated points.

Theorem (Dächert et al. 2017; J. \& Loho 2017+)
There is an algorithm which returns the set of nondominated points of Z with $\Theta\left(n^{\lfloor d / 2\rfloor}\right)$ scalarizations.

- asymptotically worst-case optimal

An Example

$$
\min \left(\begin{array}{ccc}
-3 & 1 & 1 \\
2 & 1 & 1
\end{array}\right) \cdot x \quad \text { subject to } x \in\{0,1\}^{3}
$$

- feasible set $X=\{0,1\}^{3}$ in the decision space \mathbb{Z}^{3}
- outcome space

$$
\begin{aligned}
Z=\{ & (-3,2),(-2,3),(-1,4), \\
& (0,0),(1,1),(2,2)\} \subset \mathbb{R}^{2}
\end{aligned}
$$

- nondominated points

$$
g=(0,0) \text { and } h=(-3,2)
$$

- $d=n=2$

Tropical Convexity

$\mathbb{T}=(\mathbb{T}, \oplus, \odot)$ tropical semiring

- $C \subset \mathbb{T}^{d+1}$ tropical cone $: \Longleftrightarrow(\lambda \odot x) \oplus(\mu \odot y) \in C$ for all $\lambda, \mu \in \mathbb{T}$ and $x, y \in C$
- Gaubert 1992; Allamigeon, Gaubert \& Katz 2011: can be described in terms of finitely many tropical linear inequalities
- Develin \& Yu 2007; Allamigeon, Benchimol, Gaubert \& J. 2015: tropical cone $=$ ord(ordinary cone over Puiseux series)
- Develin \& Sturmfels 2004; Fink \& Rincón 2015; J. \& Loho 2016: combinatorial description via regular subdivisions of products of simplices
$\mathbb{T}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,+) \quad$ or $\quad \mathbb{T}_{\text {min }}=(\mathbb{R} \cup\{\infty\}, \min ,+)$

Monomial Tropical Cones

Assume $G \subseteq \mathbb{T}_{\max }^{d+1}$ finite such that 0 contained in the support of each point. We let

$$
\overline{\mathrm{M}}(G)=\bigcup_{g \in G}\left\{x \in \mathbb{T}_{\max }^{d+1} \mid x_{0}-g_{0} \leq \min \left(x_{j}-g_{j} \mid j \in \operatorname{supp}(g) \backslash\{0\}\right)\right\}
$$

Definition (Monomial max-tropical cone)

$$
\mathrm{M}(G)=\overline{\mathrm{M}}(G) \cap \mathbb{R}^{d+1}
$$

- $M(G)=$ finite union of min-tropical sectors in \mathbb{R}^{d+1}
- also finite intersection of max-tropical halfspaces in \mathbb{R}^{d+1}
- but apices may lie in $\mathbb{T}_{\text {max }}^{d+1} \backslash \mathbb{R}^{d+1}$
- if $G \subset\{0\} \times \mathbb{N}^{d}$: integral points in $\mathrm{M}(G)$ with zero first coordinate correspond to monomial ideal generated by G

Key Complementarity Result

Let $W(G)$ be the closure of the complement of the max-tropical cone $\mathrm{M}(G)$ in \mathbb{R}^{d+1}.

T Theorem (J. \& Loho 2017+)
Then $W(G)$ is a min-tropical cone in \mathbb{R}^{d+1}. More precisely, if \mathcal{H} is a set of max-tropical halfspaces such that $\bigcap \mathcal{H}=\mathrm{M}(G)$, then

$$
\mathrm{W}(G)=-\mathrm{M}(-A)
$$

where $A \subset \mathbb{T}_{\min }^{d+1}$ is the set of apices of the tropical halfspaces in \mathcal{H}.
' In particular, the set $A \cup \mathcal{E}_{\min }$ generates $\bar{W}(G)$.
$\mathcal{E}_{\text {min }}=\left\{e^{(1)}, e^{(2)}, \ldots, e^{(d)}\right\} \subseteq \mathbb{T}_{\text {min }}^{d+1}$

Example: Complementary Pair of Monomial Tropical Cones

$$
\begin{array}{rlll}
a=(0,1,0), & b=(0,0,2), & c=(0,-3, \infty) & \text { in } \mathbb{T}_{\min }^{3}
\end{array} \quad \text { and }
$$

- $\overline{\mathrm{M}}(f, g, h)=$ max-tropical cone generated by $\left\{f, g, h,-e^{(1)},-e^{(2)}\right\}$
- $\bar{W}(a, b, c)=$ min-tropical cone generated by $\left\{a, b, c, e^{(1)}, e^{(2)}\right\}$

Computing All Nondominated Points

Input: Outcome space $Z \subset \mathbb{R}^{d}$, implicitly given by objective function and a description of feasible set.
Output: The set of nondominated points.
1: $A \leftarrow \mathcal{E}_{\text {min }} \cup e^{(0)}$
2: $G \leftarrow \emptyset$
3: $\Omega \leftarrow \mathcal{E}_{\text {min }}$
4: while $A \neq \Omega$ do
5: \quad pick a in $A \backslash \Omega$
6: $\quad g \leftarrow \operatorname{NextNonDominated}(Z, a)$
7: if $g \neq$ None then
8: $\quad A \leftarrow \operatorname{NewExtremals}(G, A, g)$
9: $\quad G \leftarrow G \cup\{g\}$
10: else
11: $\quad \Omega \leftarrow \Omega \cup\{a\}$
12: end if
13: end while
14: return G

Example: Computing the Nondominated Points

 or something slightly more general- the search region is the entire space
- scalarization: first nondominated point
- description via max-tropical inequalities
- scalarization: next nondominated point
- update max-tropical inequalities
- scalarization: next nondominated point
- update max-tropical inequalities

Scalarizations to Produce Next Nondominated Point

 ϵ-constraint method- $N^{\prime}=$ some set of nondominated points (maybe empty)
- $A^{\prime} \subset \mathbb{T}_{\text {min }}^{d+1}=$ set of extremal generators of $W\left(N^{\prime}\right)$

For $a \in A^{\prime}$ and $i \in[d]$ consider

$$
\begin{array}{ll}
\min & z_{i} \\
\text { subject to } & z_{j}<a_{j} \tag{1}\\
& z \in Z
\end{array} \quad \text { for all } j \in \operatorname{supp}(a) \backslash\{0, i\}
$$

If (1) infeasible then there is no nondominated point in $Z \cap\left(a-\mathbb{R}_{>0}^{d}\right)$. For $w \in \mathbb{R}^{d}$ feasible w.r.t. (1) consider

$$
\begin{array}{ll}
\min & \sum_{j=1}^{d} z_{j} \\
\text { subject to } & z_{k} \leq w_{k} \tag{2}\\
& z \in Z .
\end{array} \quad \text { for all } k \in[d]
$$

Optimal solution of (2) is a new nondominated point in $N \backslash N^{\prime}$.

An Upper Bound

Theorem (Allamigeon, Gaubert and Katz 2011)
The number of extreme rays of a tropical cone in \mathbb{T}^{d+1} defined as the intersection of n tropical halfspaces is bounded by $U(n+d, d)$.

$$
U(m, k)=\binom{m-\lceil k / 2\rceil}{\lfloor k / 2\rfloor}+\binom{m-\lfloor k / 2\rfloor-1}{\lceil k / 2\rceil-1} \in \Theta\left(m^{\lfloor k / 2\rfloor}\right)
$$

Proving That Upper Bound

Proof. (Allamigeon, Gaubert \& Katz 2011; J. \& Loho 2017+).
Let C be a tropical cone given as the intersection of the tropical halfspaces H_{1}, \ldots, H_{n}. By Allamigeon et al. 2015, there are halfspaces $\boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{n}$ in $\mathbb{R}\left\{\left\{\mathbb{R}^{\mathbb{R}}\right\}\right\}^{d+1}$ with $\operatorname{ord}\left(\boldsymbol{H}_{j}\right)=\boldsymbol{H}_{j}$, for $j \in[n]$, such that

$$
\operatorname{ord}\left(\bigcap_{j=1}^{n} \boldsymbol{H}_{j} \cap \bigcap_{i=1}^{d}\left\{\boldsymbol{x}_{i} \geq \mathbf{0}\right\}\right)=\bigcap_{j=1}^{n} H_{j},
$$

and, additionally, the generators of the ordinary cone $\boldsymbol{C}=\bigcap \boldsymbol{H}_{j}$ are mapped onto the generators of the tropical cone C. The ordinary cone C has at most $n+d$ facets, and thus the claim follows from McMullen's: upper bound theorem.

Monomial Ideals

Consider $R=K\left[x_{1}, \ldots, x_{d}\right]$, where K is any field.

- identify monomial $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}}$ with lattice point $\left(0, a_{1}, a_{2}, \ldots, a_{d}\right)$ in $\mathbb{N}^{d+1} \subset \mathbb{R}_{\geq 0}^{d+1}$

Let M be some set of monomials in R.

- Gordan-Dickson Lemma: M contains unique finite subset which minimally generates $J=\langle M\rangle$
- \rightsquigarrow extremal generators of the monomial max-tropical cone $\mathrm{M}(M)$
- complementarity of monomial tropical cones generalizes Alexander duality of monomial ideals
- squarefree case $=$ Alexander duality of finite simplicial complexes

Example: $d=3$, "Staircase Diagram"

Example: "Staircase Diagram"

(Artinian) monomial ideal

- $M=\left\{x^{4}, y^{4}, z^{4}, x^{3} y^{2} z, x y^{3} z^{2}, x^{2} y z^{3}\right\}$
irreducible decomposition
- $J=\langle M\rangle$

$$
\begin{aligned}
& =\left\langle x^{4}, y^{4}, z\right\rangle \cap\left\langle x^{4}, y, z^{4}\right\rangle \\
& \cap\left\langle x, y^{4}, z^{4}\right\rangle \cap\left\langle x^{4}, y^{2}, z^{3}\right\rangle \\
& \cap\left\langle x^{3}, y^{4}, z^{2}\right\rangle \cap\left\langle x^{2}, y^{3}, z^{4}\right\rangle \\
& \cap\left\langle x^{3}, y^{3}, z^{3}\right\rangle
\end{aligned}
$$

Alexander dual

- $J^{*}=\left\langle x^{4} y^{4} z, x^{4} y z^{4}\right.$, $x y^{4} z^{4}, x^{4} y^{2} z^{3}$, $x^{3} y^{4} z^{2}, x^{2} y^{3} z^{4}$, $\left.x^{3} y^{3} z^{3}\right\rangle$

Conclusion

- tropical geometry brings in lots of new tools to (parts of) combinatorial optimization
- computing tropical convex hulls
- solves multicriteria optimization problems
- yields the Alexander dual of a monomial ideal

References

