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Tropical Arithmetic
tropical semi-ring: (R ∪ {∞}︸ ︷︷ ︸

Tmin

,⊕,�) where

x ⊕ y := min(x , y) and x � y := x + y

Example

(3⊕ 5)� 2 = 3 + 2 = 5 = min(5, 7) = (3� 2)⊕ (5� 2)

History

• can be traced back (at least) to the 1960s
• e.g., see monography [Cunningham-Green 1979]

• optimization, functional analysis, signal processing, . . .

• recent development (since 2002) initiated by Kapranov, Mikhalkin,
Sturmfels, . . .



Tropical Polynomials

• read ordinary (Laurent) polynomial with real coefficients as function

• replace operations “+” and “·” by “⊕” and “�”

Example

F (x) = (3� x�3)⊕ (1� x�2)⊕ (2� x)⊕ 4
= min(3 + 3x , 1 + 2x , 2 + x , 4)

• tropical polynomial F vanishes at p :⇔ there are at least two terms
where the minimum F (p) is attained

Example

F (1) = min(3 + 3, 1+2 , 2+1 , 4) = 3



Tropical Hypersurfaces

• tropical semi-module (Rd ,⊕,�)
• componentwise tropical addition
• tropical scalar multiplication

• tropical hypersurface T (F ) := vanishing locus of (multi-variate)
tropical polynomial F

Example

F (x) =
(3� x�3)⊕ (1� x�2)⊕ (2� x)⊕ 4

T (F ) = {−2, 1, 2} ⊂ R1

(−2,−3)

(1, 3)

(2, 4)

3 + 3x1 + 2x

2 + x

4

−2 1 2



Polyhedral Combinatorics

Proposition

For a tropical polynomial F : Rd → R the dome

D(F ) :=
{

(p, s) ∈ Rd+1
∣∣∣ p ∈ Rd , s ∈ R, s ≤ F (p)

}
is an unbounded convex polyhedron of dimension d + 1.

Corollary

The tropical hypersurface T (F ) coincides with the image of the
codimension-2-skeleton of the polyhedron D(F ) in Rd under the
orthogonal projection which omits the last coordinate.



The Extended Newton Polyhedron

• extended Newton polyhedron Ñ (F ) = convex hull of the support
supp(F ) lifted by coefficients + upwards ray

Theorem

Tropical hypersurface T (F ) is dual to the 1-coskeleton of Ñ (F ).

(−2,−3)

(1, 3)

(2, 4)

3 + 3x1 + 2x

2 + x

4

−2 1 2

(0, 4)

(1, 2)

(2, 1)

(3, 3)

0 1 2 3



The Tropical Torus

tropical polynomial F homogeneous of degree δ if for all p ∈ Rd and
λ ∈ R:

F (λ� p) = F (λ · 1 + p) = λ�δ � F (p) = δ · λ+ F (p)

Definition

tropical (d − 1)-torus Rd/R1

map

(x1, x2, . . . , xd) + R1 = (0, x2 − x1, . . . , xd − x1) + R1
7→ (x2 − x1, . . . , xd − x1)

defines homeomorphism Rd/R1 ≈ Rd−1



Tropical Hyperplanes

F (x) = (α1 � x1)⊕ (α2 � x2)⊕ (α3 � x3) linear homogeneous

T (F ) = −(α1, α2, α3) + (R≥0e1 ∪ R≥0e2 ∪ R≥0e3) + R1
= (0, α1 − α2, α1 − α3) + (R≥0(−e2 − e3) ∪ R≥0e2 ∪ R≥0e3)

−α



Tropical Conics
general tropical conic

(a200 � x�21 )⊕ (a110 � x1 � x2)⊕ (a101 � x1 � x3)

⊕ (a020 � x�22 )⊕ (a011 � x2 � x3)⊕ (a002 � x�23 )

Example

(a200, a110, a101, a020, a011, a002) = (6, 5, 5, 6, 5, 7)
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Max-Tropical Hyperplanes
duality between min and max:

max(−x ,−y) = −min(x , y)

Remark

T is min-trop. hypersurface ⇐⇒ −T is max-trop. hypersurface

−α α

min/max



Fields of Puiseux Series

Puiseux series with complex coefficients:

C{{t}} =

{ ∞∑
k=m

ak · tk/N
∣∣∣∣∣ m ∈ Z,N ∈ N×, ak ∈ C

}

• Newton-Puiseux-Theorem: C{{t}} isomorphic to algebraic closure of
Laurent series C((t))

• isomorphic to C by [Steinitz 1910]



The Valuation Map

valuation map
val : C{{t}} → Q ∪ {∞}

maps Puiseux series γ(t) =
∑∞

k=m ak · tk/N to lowest degree
min {k/N | k ∈ Z, ak 6= 0}; setting val(0) :=∞

val(γ(t) + δ(t)) ≥ min{val(γ(t)), val(δ(t))}
val(γ(t) · δ(t)) = val(γ(t)) + val(δ(t)) .

Remark

inequality becomes equation if no cancellation occurs



A Lifting Theorem I

Theorem (Einsiedler, Kapranov & Lind 2006)

For f ∈ K[x±11 , x±12 , . . . , x±1d ] the tropical hypersurface T (trop(f )) ∩Qd

(over the rationals) equals the set val(V (〈f 〉)).

“Tropical geometry is a piece-wise linear shadow of classical
geometry.”



A Lifting Theorem II

Proof of easy inclusion “T (trop(f )) ⊇ val(V (〈f 〉))”.

• let f =
∑

i∈I γix
i for I ⊂ Nd with tropicalization F

• consider zero u ∈ (K×)d of f

• for i ∈ I we have val(γiu
i ) = val(γi ) + 〈i , val(u)〉 = val(γi )� val(u)�i

• minimum
F (val(u)) =

⊕
i∈I

val(γi )� val(u)�i

attained at least twice since otherwise the terms γiu
i cannot cancel

to yield zero



Example

Consider f (x) = t3x3 − (t + t4 + t5)x2 + (t2 + t3 + t6)x − t4.
This factors as

f (x) = (x − t−2) · (x − t) · (x − t2) · t3 .

The tropicalization F = trop(f ) reads

F (x) = (3� x�3)⊕ (1� x�2)⊕ (2� x)⊕ 4

= min(3 + 3x , 1 + 2x , 2 + x , 4) .

T (F ) = {−2, 1, 2}



Conclusion I

• tropicalization of (homogeneous) polynomial F

• tropical hypersurface T (F )
• codimension-2-skeleton of unbounded convex polyhedron
• extended Newton polyhedron Ñ (F )

• tropical hypersurface = image of ordinary hypersurface under
valuation map



Tropical Convexity
[Zimmermann 1977] [Develin & Sturmfels 2004] [J. & Loho 2016] . . .

for x , y ∈ Td let

[x , y ]trop := {(λ� x)⊕ (µ� y) | λ, µ ∈ R}

• S ⊆ Td tropically convex: [x , y ]trop ⊆ S for all x , y ∈ S

• S tropically convex ⇒ λ� S = λ1 + S ⊆ S for all λ ∈ R
• consider tropically convex sets in TPd−1 = (Td \ {∞1})/R1
• recall: we identify

(x0, x1, . . . , xd) + R1 = (0, x1 − x0, . . . , xd − x0) + R1

with (x1 − x0, . . . , xd − x0)

• tropical polytope := tropical convex hull of finitely many points

in TPd−1 ⊃ Rd/R1 ≈ Rd−1



Example: Tropical Line Segment in R3/R1

[(0, 2, 0), (0,−2,−2)]trop
= {λ� (0, 2, 0)⊕ µ� (0,−2,−2) | λ, µ ∈ R}
= {(min(λ, µ),min(λ+ 2, µ− 2),min(λ, µ− 2))}
= {(λ, λ+ 2, λ) | λ ≤ µ− 4}
∪ {(λ, µ− 2, λ) | µ− 4 ≤ λ ≤ µ− 2}
∪ {(λ, µ− 2, µ− 2) | µ− 2 ≤ λ ≤ µ}
∪ {(µ, µ− 2, µ− 2) | µ ≤ λ}

= {(0, µ− λ− 2, 0) | 2 ≤ µ− λ ≤ 4}
∪ {(0, µ− λ− 2, µ− λ− 2) | 0 ≤ µ− λ ≤ 2}

Case Distinction

λ ∈ (−∞, µ−4]∪ [µ−4, µ−2]∪ [µ−2, µ]∪ [µ,∞)

(0,−2,−2)

(0, 0, 0) (0, 2, 0)

(0,−2,−2)

(0, 0, 0) (0, 2, 0)



The Running Example

n = 4, d = 3
v1 = (0, 1, 0)>, v2 = (0, 4, 1)>, v3 = (0, 3, 3)>, v4 = (0, 0, 2)>

-1 0 1 2 3 4 5
-1

0

1

2

3

4

v(1)

v(2)

v(3)

v(4)

w(1)

w(2)

w(3)

w(4)

w(5)

w(6)



Covectors

consider V ∈ Td×n (and read columns as points in TPd−1)

Definition

covector of p ∈ Rd/R1 w.r.t. V given by TV (p) = (T1,T2, . . . ,Td) with

k ∈ Ti ⇐⇒ i ∈ argmin { j ∈ [d ] | vjk − pj}
⇐⇒ i ∈ argmax { j ∈ [d ] | pj − vjk}

Example

V =

0 0 0 0
1 4 3 0
0 1 3 2

 TV

0
2
0

 = ({2, 3}, {1, 4}, ∅)



Covector Decomposition of Rd/R1

-1 0 1 2 3 4 5
-1

0

1

2

3

4

v(1)

v(2)

v(3)

v(4)

(1234, ∅, ∅) (123, 4, ∅) (23, 14, ∅) (2, 134, ∅) (∅, 1234, ∅)

(234, ∅, 1)

(34, ∅, 12)

(3, ∅, 124)

(∅, ∅, 1234) (∅, 4, 123) (∅, 34, 12)

(23, 4, 1)

(3, 4, 12)

(3, 14, 2)

(∅, 134, 2)

. . . induced by max-tropical hyperplane arrangement A(V )



Recall: Max-Tropical Hyperplanes
duality between min and max:

max(−x ,−y) = −min(x , y)

Remark

T is min-trop. hypersurface ⇔ −T is max-trop. hypersurface

−α α

min/max



Structure Theorem of Tropical Convexity

Theorem (Develin & Sturmfels 2004;
Fink & Rincón 2015; J. & Loho 2016)

The covector decomposition T (V ) of Rd induced by V ∈ Td×n

1 is dual to a regular subdivision of

conv
{

(ei , ej) ∈ Rd × Rn
∣∣∣ vij 6=∞

}
,

2 and it induces a polyhedral decomposition of tconv(V ).



Covector Decomposition of Standard Example
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w(3)

w(4)

w(5)

w(6)
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(1234, ∅, ∅) (123, 4, ∅) (23, 14, ∅) (2, 134, ∅) (∅, 1234, ∅)

(234, ∅, 1)

(34, ∅, 12)
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(∅, ∅, 1234) (∅, 4, 123) (∅, 34, 12)

(23, 4, 1)

(3, 4, 12)

(3, 14, 2)

(∅, 134, 2)



Products of Simplices and Their Subpolytopes

• tconv{v1, . . . , vn} ⊂ Rd/R1 dual to regular subdivision of
∆d−1 ×∆n−1 defined by lifting ei × ej to height vij

• general position ←→ triangulation

• lifting vertices to ∞ defines subpolytope
(on remaining vertices)

• extra feature from swapping factors  tconv(rows) ∼= tconv(columns)

recall: regular
subdivision

∆2 ×∆1

{ab, ca}

aa ba

bb

cb

tconv(2 points in R3/R1)



Mixed Subdivisions

• P,Q : polytopes in Rd

• P + Q = {p + q | p ∈ P, q ∈ Q} Minkowski sum

• Minkowski cell of P + Q = full-dimensional subpolytope which is
Minkowski sum of subpolytopes of P and Q

Definition

Polytopal subdivision of P + Q into Minkowski cells is mixed if for any
two of its cells P ′ + Q ′ and P ′′ + Q ′′ the intersections P ′ ∩ P ′′ and
Q ′ ∩ Q ′′ both are faces.

• fine = cannot be refined (as a mixed subdivision!)

• can be generalized to finitely many summands



Example With 4 Summands

fine mixed subdivision of dilated simplex ∆2 + ∆2 + ∆2 + ∆2 = 4∆2



Cayley Trick, General Form

• e1, e2, . . . , en : affine basis of Rn−1

• φk : Rd → Rn−1 × Rd embedding p 7→ (ek , p)

• Cayley embedding of P1,P2, . . . ,Pn :

C(P1,P2, . . . ,Pn) = conv
n⋃

i=1

φi (Pi ) .

Theorem (Sturmfels 1994; Huber, Rambau & Santos 2000)

1 For any polyhedral subdivision of C(P1,P2, . . . ,Pn) the intersection
of its cells with { 1n

∑
ei} × Rd yields a mixed subdivision of 1

n

∑
Pi .

2 This correspondence is a poset isomorphism from the subdivisions of
C(P1,P2, . . . ,Pn) to the mixed subdivisions of

∑
Pi . Further, the

coherent mixed subdivisions are bijectively mapped to the regular
subdivisions.



Cayley Trick for Products of Simplices

• consider P1 = P2 = · · · = Pn = ∆d−1 = conv{e1, e2, . . . , ed}
• C(∆d−1,∆d−1, . . . ,∆d−1︸ ︷︷ ︸

n

) ∼= ∆d−1 ×∆n−1

Corollary

1 For any polyhedral subdivision of ∆d−1×∆n−1 the intersection of its
cells with { 1n

∑
ei} × Rd yields a mixed subdivision of 1

n · (n∆d−1).

2 This correspondence is a poset isomorphism from the subdivisions of
∆d−1 ×∆n−1 to the mixed subdivisions of n∆d−1. Further, the
coherent mixed subdivisions are bijectively mapped to the regular
subdivisions.



Back to Standard Example

-1 0 1 2 3 4 5
-1

0

1

2

3

4

(4, 0, 0) (3, 1, 0) (2, 2, 0) (1, 3, 0) (0, 4, 0)

(3, 0, 1)

(2, 0, 2)

(1, 0, 3)

(0, 0, 4) (0, 1, 3) (0, 2, 2)

(2, 1, 1)

(1, 1, 2)

(1, 2, 1)

(0, 3, 1)

004

013

022

031

040

103

112

121

130

202

211

220

301

310400

• (fine) covectors  coarse covectors
• replace sets Tk by their cardinality

• coarse covectors of maximal cells = vertex coordinates of mixed
subdivision



A Tropical Proof of the Cayley Trick . . .
for products of simplices

• point vi ∈ Td−1 = apex of unique max-tropical hyperplane Hmax(vi )

• homogeneous linear form hi ∈ C{{t}}[x1, xx , . . . , xd ];

h := h1 · h2 · · · hn

Proposition

The tropical hypersurface defined by tropmax(h) is the union of the
max-tropical hyperplanes in A(V ).

• dual subdivision of Newton polytope n∆d−1

Corollary

Let p ∈ Td−1 \ A(V ) be a generic point. Then its coarse covector tV (p)
equals the exponent of the monomial in h which defines the unique facet
of D(tropmax(h)) above p.



Conclusion II

• configuration of n points in TPd−1
min corresponds to

arrangement of n tropical hyperplanes in TPd−1
max

• tropical polytope = union of bounded cells (for finite coordinates)

• covector decomposition dual to regular subdivision of subpolytope
∆n−1 ×∆d−1

• tropical proof of special case of Cayley Trick



What is a Tropical Linear Program?

An ordinary linear program is an optimization problem like

minimize c> x
s.t. Ax ≥ b

x ∈ Rn

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

Definition

A tropical linear program LP(A, b, c) is an optimization problem like

minimize c> � x
s.t. A+ � x ⊕ b+ ≥ A− � x ⊕ b−

x ∈ Tn

where A± ∈ Tm×n, b± ∈ Tm, c ∈ Tn.



Min-max optimization over tropical polyhedra
Beware: now ⊕ = max

• feasible set defined by

A+ � x ⊕ b+ ≥ A− � x ⊕ b−

is a tropical polyhedron; denoted P(A, b)

• each defining inequality corresponds to a tropical half-space

• level sets have apices, located on the line (−c) + R1
• optimal solution(s) form tropical polyhedron, too

minimize max(−1 + x1, x2)

s.t.



max(x1 − 5, x2 − 2) ≥ 0

0 ≥ max(x1 − 8, x2 − 6)

x1 − 2 ≥ max(x2 − 5, 0)

max(x2 − 4, 0) ≥ x1 − 7

x2 ≥ 1 x1

x2



Fact sheet: Tropical polyhedra

• can also be represented in terms of vertices and rays
[Gaubert 1992] [J. 2005] [Gaubert & Katz 2011], . . .

• tropical polytopes special case of tropical polyhedron defined by
homogeneous tropical inequalities A+ � x ≥ A− � x

• arbitrary tropical polyhedra can be homogenized

• tropical linear programming [Butković & Aminu 2008]

• tropical fractional linear programming
[Gaubert, Katz & Sergeev 2012]

• tropical LP feasibility equivalent to mean payoff games
[Akian, Gaubert & Gutermann 2012]



Main Lemma of Tropical Linear Programming
where K is some field of real Puiseux series

Let P = {x ∈ Kn | Ax + b ≥ 0} be contained in Kn
≥0.

Lemma (Develin & Yu 2007; ABGJ 2015)

If tropicalization of (A,b) is sign generic then

val(P) = {x ∈ tropn | A+ � x ⊕ b+ ≥ A− � x ⊕ b−} ,

where (A+ b+) = val(A+b+) and (A− b−) = val(A− b−).

Moreover, for any I ⊂ [m], we have:

val ({x ∈ P | AIx + bI = 0}) = {x ∈ val(P) | A+
I �x⊕b

+
I = A−I �x⊕b

−
I } .

where (AI bI ) submatrix of (A b) formed by rows with indices in I .



The Interior Point Method of Linear Programming
[von Neumann] [Karmarkar 1984]

• start at analytic center

• trace central path by solving
auxiliary (non-linear)
optimization problems via
Newton’s method

• optimality characterized by
Karush–Kuhn–Tucker
conditions

• Karmarkar 1984: polynomial time algorithm

• method depends on barrier function
• no STRONGLY polynomial time algorithm known for LP
• Smale’s 9th problem



Fact Sheet: Interior Point Method

• method depends on barrier function
• no STRONGLY polynomial time algorithm known

• Karmarkar 1984: polynomial time algorithm
• Khachiyan 1979: ellipsoid method

• Nesterov & Nemirovski 1994: generalization to non-linear convex
programming

Conjecture (Deza, Terlaky and Zinchenko (2008))

The total curvature of the central path is bounded by O(n).
“Continuous Hirsch Conjecture”

• Dedieu, Malajovich & Shub 2005: true “on the average”

• De Loera, Sturmfels & Vinzant 2012: similar result

• disproved by Allamigeon, Benchimol, Gaubert & J. 2014+



Long and Winding Central Paths

Theorem (Allamigeon, Benchimol, Gaubert & J. 2014+)

There is a family of ordinary linear programs with m = 3r + 4 linear
inequalities in n = 2r + 2 variables such that the total curvature of the
central path is at least Ω(2r ).

• counter-example to the “Continuous Hirsch Conjecture” of Deza,
Terlaky and Zinchenko (2008)

• Smale’s 9th problem



Interior Point Method: Our Setup
Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn, µ > 0.

primal linear program: assume bounded w/ non-empty interior

minimize c>x

subject to Ax ≤ b, x ≥ 0, x ∈ Rn LP(A, b, c)

dual linear program:

maximize − b>y

subject to − A>y ≤ c , y ≥ 0, y ∈ Rm

associated logarithmic barrier problem:

minimize
c>x

µ
−

n∑
j=1

log(xj)−
m∑
i=1

log(wi )

subject to Ax + w = b, x > 0,w > 0



A System of Polynomial Equations
logarithmic barrier problem

minimize
c>x

µ
−

n∑
j=1

log(xj)−
m∑
i=1

log(wi )

subject to Ax + w = b, x > 0,w > 0

for µ > 0 has unique optimal solution (xµ,wµ) characterized by

Ax + w = b

−A>y + s = c

wiyi = µ for all i ∈ [m]

xjsj = µ for all j ∈ [n]

x ,w , y , s > 0

That is, there uniquely exist yµ and sµ such that (xµ,wµ, yµ, sµ) is a
solution . . .



The Central Path

Definition

The central path is the image of the map

CA,b,c : R>0 → R2m+2n , µ 7→ (xµ,wµ, yµ, sµ) .

• primal central path = projection onto x-coordinates

• dual central path = projection onto y -coordinates

Conjecture (Deza, Terlaky & Zinchenko 2008)

The total curvature of the primal central path is at most O(m).

• Dedieu, Malajovich & Shub 2005: O(n) holds on the average

• De Loera, Sturmfels & Vinzant 2012:
similar result via matroid theory



A Simple Example . . .

Consider the Puiseux polyhedron P ⊂ K2 defined by:

x1 + x2 ≤ 2

tx1 ≤ 1 + t2x2
tx2 ≤ 1 + t3x1
x1 ≤ t2x2

x1, x2 ≥ 0 .

(1)

Then the set val(P) is described by the tropical linear inequalities:

max(x1, x2) ≤ 0

1 + x1 ≤ max(0, 2 + x2)

1 + x2 ≤ max(0, 3 + x1)

x1 ≤ 2 + x2 .

(2)



. . . and Two of Its Primal Tropical Central Paths

−4 −3 −2 −1 0
−4

−3

−2

−1

0

x1

x2

−4 −3 −2 −1 0
−4

−3

−2

−1

0

x1

x2

min x1 min tx1 + x2



A Family of Linear Programs

. . . with 2r + 2 variables u0, v0,u1, v1, . . . ,ur , vr and 3r + 4 inequalities:

min v0
s.t. u0 ≤ t

v0 ≤ t2

vi ≤ t
1− 1

2i (ui−1 + vi−1) for i ∈ [r ]

ui ≤ tui−1 for i ∈ [r ]

ui ≤ tvi−1 for i ∈ [r ]

ur ≥ 0, vr ≥ 0

depending on a real parameter t > 0

primal central path has total curvature at least Ω(2r ) for t � 0



The Primal Tropical Central Paths of Our Examples
lifting a construction by Bezem, Nieuwenhuis and Rodŕıguez-Carbonell, 2008

0 1 2
0

1

2

3

λ

u1

v1
u2

v2 total curvature Ω(2r )

• left: r = 2

• below: r = 1

(0, 0, 0, 0)

(t, 0, 0, 0)

(t
, t
, t
2 , 0

)

(0, t2, 0, 0)

(t, 0, 0, t3/2)

(t, t2, 0, 0)

(t
, t
, t
2 , 2

t
3/
2 )

(0, t2, 0, t3/2)

(t, t2, t2, 0)

(t, t2, t2, t5/2 + t3/2)

(t, t2, 0, t5/2 + t3/2)



Conclusion III

• tropical geometry yields new results for classical linear programs

• in specific situations possible to derive metric information from
tropicalization

• tropical linear programs are interesting from a computational
complexity perspective
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