Tropical Combinatorics

Michael Joswig

TU Berlin

HCM Bonn, May 9-11, 2016

Overview

(1) Tropical Hypersurfaces

The tropical semi-ring
Polyhedral combinatorics
Puiseux series
(2) Tropical Convexity

Tropical polytopes
Covector decompositions
Products of simplices and mixed subdivisions
(3) Tropical Linear Programming

Tropical polyhedra
The interior point method for ordinary LPs
The tropical central path
Long and winding central paths

Tropical Arithmetic

$$
\begin{aligned}
& \text { tropical semi-ring: }(\underbrace{\mathbb{R} \cup\{\infty\}}_{\mathbb{T}_{\text {min }}}, \oplus, \odot) \text { where } \\
& \qquad x \oplus y:=\min (x, y) \quad \text { and } \quad x \odot y:=x+y
\end{aligned}
$$

```
Example
\((3 \oplus 5) \odot 2=3+2=5=\min (5,7)=(3 \odot 2) \oplus(5 \odot 2)\)
```


History

- can be traced back (at least) to the 1960s
- e.g., see monography [Cunningham-Green 1979]
- optimization, functional analysis, signal processing, ...
- recent development (since 2002) initiated by Kapranov, Mikhalkin, Sturmfels, ...

Tropical Polynomials

- read ordinary (Laurent) polynomial with real coefficients as function
- replace operations "+" and "." by " \oplus " and " \odot "

$$
\begin{aligned}
& \text { Example } \\
& F(x)=\left(3 \odot x^{\odot} 3\right) \oplus\left(1 \odot x^{\odot} 2\right) \oplus(2 \odot x) \oplus 4 \\
& =\min (3+3 x, 1+2 x, 2+x, 4)
\end{aligned}
$$

- tropical polynomial F vanishes at $p: \Leftrightarrow$ there are at least two terms where the minimum $F(p)$ is attained

Example
 $F(1)=\min (3+3,1+2,2+1,4)=3$

Tropical Hypersurfaces

- tropical semi-module $\left(\mathbb{R}^{d}, \oplus, \odot\right)$
- componentwise tropical addition
- tropical scalar multiplication
- tropical hypersurface $\mathcal{T}(F):=$ vanishing locus of (multi-variate) tropical polynomial F

$$
\begin{aligned}
& \text { Example } \\
& F(x)= \\
& \left(3 \odot x^{\odot} 3\right) \oplus\left(1 \odot x^{\odot 2}\right) \oplus(2 \odot x) \oplus 4 \\
& \mathcal{T}(F)=\{-2,1,2\} \subset \mathbb{R}^{1}
\end{aligned}
$$

Polyhedral Combinatorics

Proposition
For a tropical polynomial $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ the dome

$$
\mathcal{D}(F):=\left\{(p, s) \in \mathbb{R}^{d+1} \mid p \in \mathbb{R}^{d}, s \in \mathbb{R}, s \leq F(p)\right\}
$$

is an unbounded convex polyhedron of dimension $d+1$.

Corollary
The tropical hypersurface $\mathcal{T}(F)$ coincides with the image of the codimension-2-skeleton of the polyhedron $\mathcal{D}(F)$ in \mathbb{R}^{d} under the orthogonal projection which omits the last coordinate.

The Extended Newton Polyhedron

- extended Newton polyhedron $\widetilde{\mathcal{N}}(F)=$ convex hull of the support $\operatorname{supp}(F)$ lifted by coefficients + upwards ray

Theorem
Tropical hypersurface $\mathcal{T}(F)$ is dual to the 1-coskeleton of $\tilde{\mathcal{N}}(F)$.

The Tropical Torus

tropical polynomial F homogeneous of degree δ if for all $p \in \mathbb{R}^{d}$ and $\lambda \in \mathbb{R}$:

$$
F(\lambda \odot p)=F(\lambda \cdot \mathbf{1}+p)=\lambda^{\odot \delta} \odot F(p)=\delta \cdot \lambda+F(p)
$$

Definition
tropical $(d-1)$-torus $\mathbb{R}^{d} / \mathbb{R} \mathbf{1}$
map

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{d}\right)+\mathbb{R} \mathbf{1} & =\left(0, x_{2}-x_{1}, \ldots, x_{d}-x_{1}\right)+\mathbb{R} \mathbf{1} \\
& \mapsto\left(x_{2}-x_{1}, \ldots, x_{d}-x_{1}\right)
\end{aligned}
$$

defines homeomorphism $\mathbb{R}^{d} / \mathbb{R} \mathbf{1} \approx \mathbb{R}^{d-1}$

Tropical Hyperplanes

$F(x)=\left(\alpha_{1} \odot x_{1}\right) \oplus\left(\alpha_{2} \odot x_{2}\right) \oplus\left(\alpha_{3} \odot x_{3}\right)$ linear homogeneous

$$
\begin{aligned}
\mathcal{T}(F) & =-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)+\left(\mathbb{R}_{\geq 0} e_{1} \cup \mathbb{R}_{\geq 0} e_{2} \cup \mathbb{R}_{\geq 0} e_{3}\right)+\mathbb{R} \mathbf{1} \\
& =\left(0, \alpha_{1}-\alpha_{2}, \alpha_{1}-\alpha_{3}\right)+\left(\mathbb{R}_{\geq 0}\left(-e_{2}-e_{3}\right) \cup \mathbb{R}_{\geq 0} e_{2} \cup \mathbb{R}_{\geq 0} e_{3}\right)
\end{aligned}
$$

Tropical Conics

general tropical conic

$$
\begin{aligned}
\left(a_{200} \odot x_{1}^{\odot 2}\right) & \oplus\left(a_{110} \odot x_{1} \odot x_{2}\right) \oplus\left(a_{101} \odot x_{1} \odot x_{3}\right) \\
& \oplus\left(a_{020} \odot x_{2}^{\odot 2}\right) \oplus\left(a_{011} \odot x_{2} \odot x_{3}\right) \oplus\left(a_{002} \odot x_{3}^{\odot 2}\right)
\end{aligned}
$$

Example

$\left(a_{200}, a_{110}, a_{101}, a_{020}, a_{011}, a_{002}\right)=(6,5,5,6,5,7)$

Max-Tropical Hyperplanes

duality between min and max:

$$
\max (-x,-y)=-\min (x, y)
$$

Remark
\mathcal{T} is min-trop. hypersurface $\Longleftrightarrow-\mathcal{T}$ is max-trop. hypersurface

\min / \max

Fields of Puiseux Series

Puiseux series with complex coefficients:

$$
\mathbb{C}\{\{t\}\}=\left\{\sum_{k=m}^{\infty} a_{k} \cdot t^{k / N} \mid m \in \mathbb{Z}, N \in \mathbb{N}^{\times}, a_{k} \in \mathbb{C}\right\}
$$

- Newton-Puiseux-Theorem: $\mathbb{C}\{\{t\}\}$ isomorphic to algebraic closure of Laurent series $\mathbb{C}((t))$
- isomorphic to \mathbb{C} by [Steinitz 1910]

The Valuation Map

valuation map

$$
\text { val : } \mathbb{C}\{\{t\}\} \rightarrow \mathbb{Q} \cup\{\infty\}
$$

maps Puiseux series $\gamma(t)=\sum_{k=m}^{\infty} a_{k} \cdot t^{k / N}$ to lowest degree $\min \left\{k / N \mid k \in \mathbb{Z}, a_{k} \neq 0\right\} ;$ setting $\operatorname{val}(0):=\infty$

$$
\begin{aligned}
\operatorname{val}(\gamma(t)+\delta(t)) & \geq \min \{\operatorname{val}(\gamma(t)), \operatorname{val}(\delta(t))\} \\
\operatorname{val}(\gamma(t) \cdot \delta(t)) & =\operatorname{val}(\gamma(t))+\operatorname{val}(\delta(t))
\end{aligned}
$$

Remark
 inequality becomes equation if no cancellation occurs

A Lifting Theorem I

Theorem (Einsiedler, Kapranov \& Lind 2006)
For $f \in \mathbb{K}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]$ the tropical hypersurface $\mathcal{T}(\operatorname{trop}(f)) \cap \mathbb{Q}^{d}$ (over the rationals) equals the set val $(V(\langle f\rangle))$.
"Tropical geometry is a piece-wise linear shadow of classical geometry."

A Lifting Theorem II

'Proof of easy inclusion " $\mathcal{T}(\operatorname{trop}(f)) \supseteq \operatorname{val}(V(\langle f\rangle))$ ".

- let $f=\sum_{i \in I} \gamma_{i} x^{i}$ for $I \subset \mathbb{N}^{d}$ with tropicalization F
- consider zero $u \in\left(\mathbb{K}^{\times}\right)^{d}$ of f
- for $i \in I$ we have $\operatorname{val}\left(\gamma_{i} u^{i}\right)=\operatorname{val}\left(\gamma_{i}\right)+\langle i, \operatorname{val}(u)\rangle=\operatorname{val}\left(\gamma_{i}\right) \odot \operatorname{val}(u)^{\odot i}$
- minimum

$$
F(\operatorname{val}(u))=\bigoplus_{i \in I} \operatorname{val}\left(\gamma_{i}\right) \odot \operatorname{val}(u)^{\odot i}
$$

attained at least twice since otherwise the terms $\gamma_{i} u^{i}$ cannot cancel to yield zero

Example

Consider $f(x)=t^{3} x^{3}-\left(t+t^{4}+t^{5}\right) x^{2}+\left(t^{2}+t^{3}+t^{6}\right) x-t^{4}$.
This factors as

$$
f(x)=\left(x-t^{-2}\right) \cdot(x-t) \cdot\left(x-t^{2}\right) \cdot t^{3}
$$

The tropicalization $F=\operatorname{trop}(f)$ reads

$$
\begin{aligned}
F(x) & =\left(3 \odot x^{\odot 3}\right) \oplus\left(1 \odot x^{\odot 2}\right) \oplus(2 \odot x) \oplus 4 \\
& =\min (3+3 x, 1+2 x, 2+x, 4)
\end{aligned}
$$

$$
\mathcal{T}(F)=\{-2,1,2\}
$$

Conclusion I

- tropicalization of (homogeneous) polynomial F
- tropical hypersurface $\mathcal{T}(F)$
- codimension-2-skeleton of unbounded convex polyhedron
- extended Newton polyhedron $\widetilde{\mathcal{N}}(F)$
- tropical hypersurface $=$ image of ordinary hypersurface under valuation map

Tropical Convexity

[Zimmermann 1977] [Develin \& Sturmfels 2004] [J. \& Loho 2016] ... for $x, y \in \mathbb{T}^{d}$ let

$$
[x, y]_{\text {trop }}:=\{(\lambda \odot x) \oplus(\mu \odot y) \mid \lambda, \mu \in \mathbb{R}\}
$$

- $S \subseteq \mathbb{T}^{d}$ tropically convex: $[x, y]_{\text {trop }} \subseteq S$ for all $x, y \in S$
- S tropically convex $\Rightarrow \lambda \odot S=\lambda \mathbf{1}+S \subseteq S$ for all $\lambda \in \mathbb{R}$
- consider tropically convex sets in $\mathbb{T P ^ { d - 1 }}=\left(\mathbb{T}^{d} \backslash\{\infty \mathbf{1}\}\right) / \mathbb{R} \mathbf{1}$
- recall: we identify

$$
\left(x_{0}, x_{1}, \ldots, x_{d}\right)+\mathbb{R} \mathbf{1}=\left(0, x_{1}-x_{0}, \ldots, x_{d}-x_{0}\right)+\mathbb{R} \mathbf{1}
$$

$$
\text { with }\left(x_{1}-x_{0}, \ldots, x_{d}-x_{0}\right)
$$

- tropical polytope $:=$ tropical convex hull of finitely many points in $\mathbb{T P}^{d-1} \supset \mathbb{R}^{d} / \mathbb{R} \mathbf{1} \approx \mathbb{R}^{d-1}$

Example: Tropical Line Segment in $\mathbb{R}^{3} / \mathbb{R} \mathbf{1}$

$$
\begin{aligned}
& {[(0,2,0),(0,-2,-2)]_{\text {trop }} } \\
&=\{\lambda \odot(0,2,0) \oplus \mu \odot(0,-2,-2) \mid \lambda, \mu \in \mathbb{R}\} \\
&=\{(\min (\lambda, \mu), \min (\lambda+2, \mu-2), \min (\lambda, \mu-2))\} \\
&=\{(\lambda, \lambda+2, \lambda) \mid \lambda \leq \mu-4\} \\
& \cup\{(\lambda, \mu-2, \lambda) \mid \mu-4 \leq \lambda \leq \mu-2\} \\
& \cup\{(\lambda, \mu-2, \mu-2) \mid \mu-2 \leq \lambda \leq \mu\} \\
& \cup\{(\mu, \mu-2, \mu-2) \mid \mu \leq \lambda\} \\
&=\{(0, \mu-\lambda-2,0) \mid 2 \leq \mu-\lambda \leq 4\} \\
& \cup\{(0, \mu-\lambda-2, \mu-\lambda-2) \mid 0 \leq \mu-\lambda \leq 2\}
\end{aligned}
$$

The Running Example

$$
\begin{aligned}
& n=4, d=3 \\
& v_{1}=(0,1,0)^{\top}, v_{2}=(0,4,1)^{\top}, v_{3}=(0,3,3)^{\top}, v_{4}=(0,0,2)^{\top}
\end{aligned}
$$

Covectors

consider $V \in \mathbb{T}^{d \times n}$ (and read columns as points in $\mathbb{T P}^{d-1}$)
Definition
covector of $p \in \mathbb{R}^{d} / \mathbb{R} \mathbf{1}$ w.r.t. V given by $T_{V}(p)=\left(T_{1}, T_{2}, \ldots, T_{d}\right)$ with .

$$
\begin{aligned}
k \in T_{i} & \Longleftrightarrow i \in \operatorname{argmin}\left\{j \in[d] \mid v_{j k}-p_{j}\right\} \\
& \Longleftrightarrow i \in \operatorname{argmax}\left\{j \in[d] \mid p_{j}-v_{j k}\right\}
\end{aligned}
$$

Example

$$
V=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 4 & 3 & 0 \\
0 & 1 & 3 & 2
\end{array}\right) \quad T_{V}\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)=(\{2,3\},\{1,4\}, \emptyset)
$$

Covector Decomposition of $\mathbb{R}^{d} / \mathbb{R} \mathbf{1}$

... induced by max-tropical hyperplane arrangement $\mathfrak{A}(V)$

Recall: Max-Tropical Hyperplanes

duality between min and max:

$$
\max (-x,-y)=-\min (x, y)
$$

Remark
\mathcal{T} is min-trop. hypersurface $\Leftrightarrow-\mathcal{T}$ is max-trop. hypersurface

\min / \max

Structure Theorem of Tropical Convexity

Theorem (Develin \& Sturmfels 2004;
Fink \& Rincón 2015; J. \& Loho 2016)
The covector decomposition $\mathcal{T}(V)$ of \mathbb{R}^{d} induced by $V \in \mathbb{T}^{d \times n}$
(1) is dual to a regular subdivision of

$$
\operatorname{conv}\left\{\left(e_{i}, e_{j}\right) \in \mathbb{R}^{d} \times \mathbb{R}^{n} \mid v_{i j} \neq \infty\right\},
$$

(2) and it induces a polyhedral decomposition of $\operatorname{tconv}(V)$.

Covector Decomposition of Standard Example

Products of Simplices and Their Subpolytopes

- tconv $\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d} / \mathbb{R} \mathbf{1}$ dual to regular subdivision of $\Delta_{d-1} \times \Delta_{n-1}$ defined by lifting $e_{i} \times e_{j}$ to height $v_{i j}$
- general position \longleftrightarrow triangulation
- lifting vertices to ∞ defines subpolytope (on remaining vertices)
- extra feature from swapping factors $\rightsquigarrow \operatorname{tconv(rows)~} \cong$ tconv(columns)

recall: regular subdivision

$\Delta_{2} \times \Delta_{1}$

$\operatorname{tconv}\left(2\right.$ points in $\left.\mathbb{R}^{\mathbf{3}} / \mathbb{R} \mathbf{1}\right)$

Mixed Subdivisions

- P, Q : polytopes in \mathbb{R}^{d}
- $P+Q=\{p+q \mid p \in P, q \in Q\}$ Minkowski sum
- Minkowski cell of $P+Q=$ full-dimensional subpolytope which is Minkowski sum of subpolytopes of P and Q

Definition

Polytopal subdivision of $P+Q$ into Minkowski cells is mixed if for any two of its cells $P^{\prime}+Q^{\prime}$ and $P^{\prime \prime}+Q^{\prime \prime}$ the intersections $P^{\prime} \cap P^{\prime \prime}$ and $Q^{\prime} \cap Q^{\prime \prime}$ both are faces.

- fine $=$ cannot be refined (as a mixed subdivision!)
- can be generalized to finitely many summands

Example With 4 Summands

fine mixed subdivision of dilated simplex $\Delta_{2}+\Delta_{2}+\Delta_{2}+\Delta_{2}=4 \Delta_{2}$

Cayley Trick, General Form

- $e_{1}, e_{2}, \ldots, e_{n}$: affine basis of \mathbb{R}^{n-1}
- $\phi_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n-1} \times \mathbb{R}^{d}$ embedding $p \mapsto\left(e_{k}, p\right)$
- Cayley embedding of $P_{1}, P_{2}, \ldots, P_{n}$:

$$
\mathcal{C}\left(P_{1}, P_{2}, \ldots, P_{n}\right)=\operatorname{conv} \bigcup_{i=1}^{n} \phi_{i}\left(P_{i}\right)
$$

Theorem (Sturmfels 1994; Huber, Rambau \& Santos 2000)
(1) For any polyhedral subdivision of $\mathcal{C}\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ the intersection of its cells with $\left\{\frac{1}{n} \sum e_{i}\right\} \times \mathbb{R}^{d}$ yields a mixed subdivision of $\frac{1}{n} \sum P_{i}$.
(2) This correspondence is a poset isomorphism from the subdivisions of $\mathcal{C}\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ to the mixed subdivisions of $\sum P_{i}$. Further, the coherent mixed subdivisions are bijectively mapped to the regular subdivisions.

Cayley Trick for Products of Simplices

- consider $P_{1}=P_{2}=\cdots=P_{n}=\Delta_{d-1}=\operatorname{conv}\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$
- $\mathcal{C}(\underbrace{\Delta_{d-1}, \Delta_{d-1}, \ldots, \Delta_{d-1}}_{n}) \cong \Delta_{d-1} \times \Delta_{n-1}$

Corollary

(1) For any polyhedral subdivision of $\Delta_{d-1} \times \Delta_{n-1}$ the intersection of its cells with $\left\{\frac{1}{n} \sum e_{i}\right\} \times \mathbb{R}^{d}$ yields a mixed subdivision of $\frac{1}{n} \cdot\left(n \Delta_{d-1}\right)$.
(2) This correspondence is a poset isomorphism from the subdivisions of $\Delta_{d-1} \times \Delta_{n-1}$ to the mixed subdivisions of $n \Delta_{d-1}$. Further, the coherent mixed subdivisions are bijectively mapped to the regular subdivisions.

Back to Standard Example

- (fine) covectors \rightsquigarrow coarse covectors
- replace sets T_{k} by their cardinality
- coarse covectors of maximal cells $=$ vertex coordinates of mixed subdivision

A Tropical Proof of the Cayley Trick ...

for products of simplices

- point $v_{i} \in \mathbb{T}^{d-1}=$ apex of unique max-tropical hyperplane $H^{\max }\left(v_{i}\right)$
- homogeneous linear form $h_{i} \in \mathbb{C}\{\{t\}\}\left[x_{1}, x_{x}, \ldots, x_{d}\right]$;

$$
h:=h_{1} \cdot h_{2} \cdots h_{n}
$$

Proposition

The tropical hypersurface defined by $\operatorname{trop}^{\max }(h)$ is the union of the max-tropical hyperplanes in $\mathfrak{A}(V)$.

- dual subdivision of Newton polytope $n \Delta_{d-1}$

Corollary

Let $p \in \mathbb{T}^{d-1} \backslash \mathfrak{A}(V)$ be a generic point. Then its coarse covector $\mathbf{t}_{V}(p)$ equals the exponent of the monomial in h which defines the unique facet ! of $\mathcal{D}\left(\operatorname{trop}^{\max }(h)\right)$ above p.

Conclusion II

- configuration of n points in $\mathbb{T P}_{\text {min }}^{d-1}$ corresponds to arrangement of n tropical hyperplanes in $\mathbb{T} \mathbb{P}_{\text {max }}^{d-1}$
- tropical polytope $=$ union of bounded cells (for finite coordinates)
- covector decomposition dual to regular subdivision of subpolytope $\Delta_{n-1} \times \Delta_{d-1}$
- tropical proof of special case of Cayley Trick

What is a Tropical Linear Program?

An ordinary linear program is an optimization problem like

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { s.t. } & A x \geq b \\
& x \in \mathbb{R}^{n}
\end{array}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.

Definition
A tropical linear program $\operatorname{LP}(A, b, c)$ is an optimization problem like

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} \odot x \\
\text { s.t. } & A^{+} \odot x \oplus b^{+} \geq A^{-} \odot x \oplus b^{-} \\
& x \in \mathbb{T}^{n}
\end{array}
$$

' where $A^{ \pm} \in \mathbb{T}^{m \times n}, b^{ \pm} \in \mathbb{T}^{m}, c \in \mathbb{T}^{n}$.

Min-max optimization over tropical polyhedra

Beware: now $\oplus=\max$

- feasible set defined by

$$
A^{+} \odot x \oplus b^{+} \geq A^{-} \odot x \oplus b^{-}
$$

is a tropical polyhedron; denoted $\mathcal{P}(A, b)$

- each defining inequality corresponds to a tropical half-space
- level sets have apices, located on the line $(-c)+\mathbb{R} \mathbf{1}$
- optimal solution(s) form tropical polyhedron, too $\operatorname{minimize} \max \left(-1+x_{1}, x_{2}\right)$

Fact sheet: Tropical polyhedra

- can also be represented in terms of vertices and rays [Gaubert 1992] [J. 2005] [Gaubert \& Katz 2011], ...
- tropical polytopes special case of tropical polyhedron defined by homogeneous tropical inequalities $A^{+} \odot x \geq A^{-} \odot x$
- arbitrary tropical polyhedra can be homogenized
- tropical linear programming
[Butković \& Aminu 2008]
- tropical fractional linear programming
[Gaubert, Katz \& Sergeev 2012]
- tropical LP feasibility equivalent to mean payoff games
[Akian, Gaubert \& Gutermann 2012]

Main Lemma of Tropical Linear Programming

 where \mathbb{K} is some field of real Puiseux seriesLet $\mathcal{P}=\left\{\boldsymbol{x} \in \mathbb{K}^{n} \mid \boldsymbol{A x}+\boldsymbol{b} \geq 0\right\}$ be contained in $\mathbb{K}_{\geq 0}^{n}$.
Lemma (Develin \& Yu 2007; ABGJ 2015)
If tropicalization of $(\boldsymbol{A}, \boldsymbol{b})$ is sign generic then

$$
\operatorname{val}(\mathcal{P})=\left\{x \in \operatorname{trop}^{n} \mid A^{+} \odot x \oplus b^{+} \geq A^{-} \odot x \oplus b^{-}\right\}
$$

where $\left(A^{+} b^{+}\right)=\operatorname{val}\left(\boldsymbol{A}^{+} \boldsymbol{b}^{+}\right)$and $\left(A^{-} b^{-}\right)=\operatorname{val}\left(\boldsymbol{A}^{-} \boldsymbol{b}^{-}\right)$.

Moreover, for any $I \subset[m]$, we have:
$\operatorname{val}\left(\left\{\boldsymbol{x} \in \mathcal{P} \mid \boldsymbol{A}_{l} \boldsymbol{x}+\boldsymbol{b}_{I}=0\right\}\right)=\left\{x \in \operatorname{val}(\mathcal{P}) \mid A_{l}^{+} \odot x \oplus b_{l}^{+}=A_{I}^{-} \odot x \oplus b_{l}^{-}\right\}$.
where $\left(\boldsymbol{A}_{l} \boldsymbol{b}_{l}\right)$ submatrix of $(\boldsymbol{A} \boldsymbol{b})$ formed by rows with indices in I.

The Interior Point Method of Linear Programming

 [von Neumann] [Karmarkar 1984]

- start at analytic center
- trace central path by solving auxiliary (non-linear) optimization problems via Newton's method
- optimality characterized by Karush-Kuhn-Tucker conditions
- Karmarkar 1984: polynomial time algorithm
- method depends on barrier function
- no STRONGLY polynomial time algorithm known for LP
- Smale's 9th problem

Fact Sheet: Interior Point Method

- method depends on barrier function
- no STRONGLY polynomial time algorithm known
- Karmarkar 1984: polynomial time algorithm
- Khachiyan 1979: ellipsoid method
- Nesterov \& Nemirovski 1994: generalization to non-linear convex programming

Conjecture (Deza, Terlaky and Zinchenko (2008))
The total curvature of the central path is bounded by $O(n)$.
"Continuous Hirsch Conjecture"

- Dedieu, Malajovich \& Shub 2005: true "on the average"
- De Loera, Sturmfels \& Vinzant 2012: similar result
- disproved by Allamigeon, Benchimol, Gaubert \& J. 2014+

Long and Winding Central Paths

Theorem (Allamigeon, Benchimol, Gaubert \& J. 2014+)
There is a family of ordinary linear programs with $m=3 r+4$ linear inequalities in $n=2 r+2$ variables such that the total curvature of the central path is at least $\Omega\left(2^{r}\right)$.

- counter-example to the "Continuous Hirsch Conjecture" of Deza, Terlaky and Zinchenko (2008)
- Smale's 9th problem

Interior Point Method: Our Setup

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}, \mu>0$. primal linear program:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leq b, x \geq 0, x \in \mathbb{R}^{n}
\end{array}
$$

dual linear program:

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{\top} y \\
\text { subject to } & -A^{\top} y \leq c, y \geq 0, y \in \mathbb{R}^{m}
\end{array}
$$

associated logarithmic barrier problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{c^{\top} x}{\mu}-\sum_{j=1}^{n} \log \left(x_{j}\right)-\sum_{i=1}^{m} \log \left(w_{i}\right) \\
\text { subject to } & A x+w=b, x>0, w>0
\end{array}
$$

A System of Polynomial Equations

logarithmic barrier problem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{c^{\top} x}{\mu}-\sum_{j=1}^{n} \log \left(x_{j}\right)-\sum_{i=1}^{m} \log \left(w_{i}\right) \\
\text { subject to } & A x+w=b, x>0, w>0
\end{array}
$$

for $\mu>0$ has unique optimal solution (x^{μ}, w^{μ}) characterized by

$$
\begin{aligned}
A x+w=b & \\
-A^{\top} y+s=c & \\
w_{i} y_{i}=\mu & \text { for all } i \in[m] \\
x_{j} s_{j}=\mu & \text { for all } j \in[n] \\
x, w, y, s>0 &
\end{aligned}
$$

That is, there uniquely exist y^{μ} and s^{μ} such that $\left(x^{\mu}, w^{\mu}, y^{\mu}, s^{\mu}\right)$ is a solution ...

The Central Path

Definition
The central path is the image of the map

$$
\mathcal{C}_{A, b, c}: \mathbb{R}_{>0} \rightarrow \mathbb{R}^{2 m+2 n}, \quad \mu \mapsto\left(x^{\mu}, w^{\mu}, y^{\mu}, s^{\mu}\right)
$$

- primal central path $=$ projection onto x-coordinates
- dual central path $=$ projection onto y-coordinates

Conjecture (Deza, Terlaky \& Zinchenko 2008)
The total curvature of the primal central path is at most $O(m)$.

- Dedieu, Malajovich \& Shub 2005: $O(n)$ holds on the average
- De Loera, Sturmfels \& Vinzant 2012: similar result via matroid theory

A Simple Example ...

Consider the Puiseux polyhedron $\mathcal{P} \subset \mathbb{K}^{2}$ defined by:

$$
\begin{align*}
\boldsymbol{x}_{1}+\boldsymbol{x}_{2} & \leq 2 \\
t \boldsymbol{x}_{1} & \leq 1+t^{2} \boldsymbol{x}_{2} \\
t \boldsymbol{x}_{2} & \leq 1+t^{3} \boldsymbol{x}_{1} \tag{1}\\
\boldsymbol{x}_{1} & \leq t^{2} \boldsymbol{x}_{2} \\
\boldsymbol{x}_{1}, \boldsymbol{x}_{2} & \geq 0 .
\end{align*}
$$

Then the set $\operatorname{val}(\mathcal{P})$ is described by the tropical linear inequalities:

$$
\begin{align*}
\max \left(x_{1}, x_{2}\right) & \leq 0 \\
1+x_{1} & \leq \max \left(0,2+x_{2}\right) \\
1+x_{2} & \leq \max \left(0,3+x_{1}\right) \tag{2}\\
x_{1} & \leq 2+x_{2} .
\end{align*}
$$

... and Two of Its Primal Tropical Central Paths

A Family of Linear Programs

\ldots with $2 r+2$ variables $\boldsymbol{u}_{0}, \boldsymbol{v}_{0}, \boldsymbol{u}_{1}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{u}_{r}, \boldsymbol{v}_{r}$ and $3 r+4$ inequalities:

$$
\begin{array}{cll}
\min & \boldsymbol{v}_{0} & \\
\text { s.t. } & \boldsymbol{u}_{0} \leq t & \\
& \boldsymbol{v}_{0} \leq t^{2} & \\
& \boldsymbol{v}_{i} \leq t^{1-\frac{1}{2^{i}}}\left(\boldsymbol{u}_{i-1}+\boldsymbol{v}_{i-1}\right) & \text { for } i \in[r] \\
& \boldsymbol{u}_{i} \leq t \boldsymbol{u}_{i-1} & \text { for } i \in[r] \\
& \boldsymbol{u}_{i} \leq t \boldsymbol{v}_{i-1} & \text { for } i \in[r] \\
& \boldsymbol{u}_{r} \geq 0, \boldsymbol{v}_{r} \geq 0 &
\end{array}
$$

depending on a real parameter $t>0$
primal central path has total curvature at least $\Omega\left(2^{r}\right)$ for $t \gg 0$

The Primal Tropical Central Paths of Our Examples

lifting a construction by Bezem, Nieuwenhuis and Rodríguez-Carbonell, 2008

total curvature $\Omega\left(2^{r}\right)$

- left: $r=2$
- below: $r=1$

Conclusion III

- tropical geometry yields new results for classical linear programs
- in specific situations possible to derive metric information from tropicalization
- tropical linear programs are interesting from a computational complexity perspective

