Matroids From Hypersimplex Splits

Michael Joswig

TU Berlin

Gent, 24 June 2017

joint w/ Benjamin Schröter

Matroid polytopes Split matroids

2 Recall: Polytopes and Their Splits Regular subdivisions

3 Tropical Geometry Tropical Plücker vectors Dressians and their rays

Matroids and Their Polytopes

Definition (matroids via bases axioms) (d, n)-matroid = subset of $\binom{[n]}{d}$ subject to an exchange condition

• generalizes bases of column space of rank-d-matrix with n cols

```
Definition (matroid polytope)P(M) = \text{convex hull of char. vectors of bases of matroid } MExample (uniform matroid)U_{d,n} = {[n] \choose d}P(U_{d,n}) = \Delta(d, n)P(M_5) = \text{pyramid}
```

Matroids Explained via Polytopes

Proposition (Edmonds 1970; Feichtner & Sturmfels 2005)

$$P(M) = \left\{ x \in \Delta(d, n) \mid \sum_{i \in F} x_i \leq \operatorname{rank}(F), \text{ for } F \text{ flat} \right\}$$

Example and Definition

Second Example: The Fano Matroid

$$d = 3, n = 7, F = \{124, 125, 126, 127, \dots, 567\}, \#F = 28$$

- flacets = lines
- P(F) = 6-polytope with 28 vertices and

$$21 = 2 \cdot 7 + \textbf{7}$$

facets

Key New Concept: Split Matroids

- each flacet spans a split hyperplane
- paving matroids (and their duals) are of this type; e.g., Fano matroid

```
Conjecture (Oxley)
Asymptotically almost all matroids are
paving.
```


Percentage of Split Matroids

$d \setminus n$	4	5	6	7	8	9	10	11	12
2	100	100	100	100	100	100	100	100	100
3	100	100	89	75	60	52	61	80	91
4	100	100	100	75	60	82	_	_	_
5		100	100	100	60	82	_	_	_
6			100	100	100	52	_	—	—
7				100	100	100	61	_	_
8					100	100	100	80	_
9						100	100	100	91
10							100	100	100
11								100	100

isomorphism classes of (d, n)-matroids: Matsumoto, Moriyama, Imai & Bremner 2012

Forbidden Minors for Split Matroids

Regular Subdivisions

- polytopal subdivision: cells meet face-to-face
- regular: induced by weight/lifting function
- tight span = dual (polytopal) complex

Splits and Their Compatibility

Let P be a polytope. split = (regular) subdivision of P with exactly two maximal cells

$$w_1 = (0, 0, 1, 1, 0, 0) w_2 = (0, 0, 2, 3, 2, 0)$$

- coherent or weakly compatible: common refinement exists
- compatible: split hyperplanes do not meet in relint *P*

Lemma The tight span $\Sigma_P(\cdot)^*$ of a sum of compatible splits is a tree.

Tropical Arithmetic

tropical semi-ring: $\mathbb{T}=\mathbb{T}(\mathbb{R})=(\mathbb{R}\cup\{\infty\},\oplus,\odot)$ where

 $x \oplus y := \min(x, y)$ and $x \odot y := x + y$

Example
$$(3 \oplus 5) \odot 2 = 3 + 2 = 5 = \min(5,7) = (3 \odot 2) \oplus (5 \odot 2)$$

History

- can be traced back (at least) to the 1960s
 - e.g., see [Cunningham-Green 1979]
- optimization, functional analysis, signal processing, ...
- modern development (since 2002) initiated by Kapranov, Mikhalkin, Sturmfels, Viro, ...

The Linear Assignment Problem

• assignment = choice of coefficients, one per column/row

best =
$$\min_{\omega \in \text{Sym}(4)} a_{1,\omega(1)} + a_{2,\omega(2)} + a_{3,\omega(3)} + a_{4,\omega(4)}$$

= $\bigoplus_{\omega \in \text{Sym}(4)} a_{1,\omega(1)} \odot a_{2,\omega(2)} \odot a_{3,\omega(3)} \odot a_{4,\omega(4)}$

Definition (tropical determinant) tdet = trop(det)

Tropicalized Plücker Vectors

Consider a matrix $A \in \mathbb{R}^{d \times n}$. Each $d \times d$ -submatrix B can be assigned the tropical determinant

$$\mathsf{tdet}\,B \;=\; \min_{\sigma\in\mathsf{Sym}(d)} \big\{ b_{1,\sigma(1)} + b_{2,\sigma(2)} + \cdots + b_{d,\sigma(d)} \big\} \;\;.$$

This yields the tropicalized Plücker vector

$$\pi(A) = (\operatorname{tdet} A(I) \mid I \in {\binom{[n]}{d}})$$

Example

$$A = \begin{pmatrix} 0 & 5 & 0 & 0 \\ 0 & 0 & 10 & 1 \end{pmatrix}, \quad \pi(A) = (0, 0, 0, 0, 0, 1)$$

Tropical Plücker Vectors

a.k.a. "valuated matroids"

Definition

A vector $\pi : {\binom{[n]}{d}} \to \mathbb{R}$ is a tropical Plücker vector if each cell of the regular division $\Sigma_{\Delta(d,n)}(\pi)$ is a matroid polytope.

- tropicalized Plücker vector = realizable tropical Plücker vector
- tight span $\sum_{\Delta(d,n)} (\pi)^*$ is a tropical linear space
- each compatible family of splits of any matroid polytope P(M) yields matroid subdivision of P(M)

[Dress & Wenzel 1992] [Kapranov 1992] [Speyer & Sturmfels 2004]

Dressians and Tropical Grassmannians

- Dressian Dr(d, n) := moduli space of tropical Plücker vectors
 - subfan of secondary fan of Δ(d, n) corresponding to matroid subdivisions
 - Dr(2, n) = space of metric trees with n marked leaves
- tropical Grassmannian TGr_p(d, n) := tropical variety defined by (d, n)-Plücker ideal over algebraically closed field of characteristic p ≥ 0
 - images of classical Plücker vectors under the valuation map are tropicalized Plücker vectors
 - TGr_p(d, n) ⊂ Dr(d, n) as sets

```
Example (Fano Matroid)
Its flacets (form compatible family of splits of \Delta(3,7) and thus)
yield tropical Plücker vector, which lies in Dr(3,7) \setminus TGr_p(3,7)
unless p = 2.
```

[Speyer & Sturmfels 2004] [Herrmann, Jensen, J. & Sturmfels 2009] [Fink & Rincón 2015] ...

Constructing a Class of Tropical Plücker Vectors

Let M be a (d, n)-matroid.

 series-free lift sf M := free extension followed by parallel co-extension yields (d + 1, n + 2)-matroid

Theorem (J. & Schröter 2017) If M is a split matroid then the map $ho_M : inom{[n+2]}{d+1} o \mathbb{R} \,, \, S \mapsto d-\mathsf{rank}_{\mathsf{sf}\,M}(S)$ is a tropical Plücker vector which corresponds to a most degenerate tropical linear space. The matroid M is realizable if and only if ρ_M is.

One of Several Consequences

Theorem (J. & Schröter 2017) If M is a split matroid then the map $\rho_M : \binom{\lfloor n+2 \rfloor}{d+1} \to \mathbb{R}, \ S \mapsto d - \operatorname{rank}_{\operatorname{sf} M}(S)$ is a tropical Plücker vector which corresponds to a most degenerate tropical linear space. The matroid M is realizable if and only if ρ_M is. Corollary The tropical Plücker vector ρ_F is a ray of Dr(4,9), which lies in $TGr_p(4,9)$ if and only if p = 2.

Conclusion

- new class of matroids, which is large
- suffices to answer previously open questions on Dressians and tropical Grassmannians
- simple characterization in terms of forbidden minors

J. & Schröter: *Matroids from hypersimplex splits*, Journal of Combinatorial Theory, Series A (2017)

 $\mathsf{Dr}(2,5) = \mathsf{TGr}(2,5)$

Tight Spans of Finest Matroid Subdivisions of $\Delta(3,6)$

