Matroids From Hypersimplex Splits

Michael Joswig

TU Berlin
Gent, 24 June 2017
joint w/ Benjamin Schröter
(1) Matroids

Matroid polytopes
Split matroids
(2) Recall: Polytopes and Their Splits

Regular subdivisions
(3) Tropical Geometry

Tropical Plücker vectors
Dressians and their rays

Matroids and Their Polytopes

$\left\{\begin{array}{l}\text { Definition (matroids via bases axioms) } \\ (d, n) \text {-matroid }=\text { subset of }\binom{[n]}{d} \text { subject to an exchange condition }\end{array}\right.$

- generalizes bases of column space of rank- d-matrix with n cols

Definition (matroid polytope)
$P(M)=$ convex hull of char. vectors of bases of matroid M

Example (uniform matroid)

$$
\begin{aligned}
& U_{d, n}=\binom{[n]}{d} \\
& P\left(U_{d, n}\right) \stackrel{=}{=} \Delta(d, n)
\end{aligned}
$$

```
Example (d=2,n=4)
M5 ={12,13,14,23,24}
P(M5) = pyramid
```


Matroids Explained via Polytopes

; Proposition (Edmonds 1970; Gel'fand et al. 1987)
A polytope P is a (d, n)-matroid polytope if and only if it is a ; subpolytope of $\Delta(d, n)$ whose edges are parallel to $e_{i}-e_{j}$.

$$
P(M)=\left\{x \in \Delta(d, n) \mid \sum_{i \in F} x_{i} \leq \operatorname{rank}(F), \text { for } F \text { flat }\right\}
$$

Example and Definition

$$
d=2, n=4, M_{5}=\{12,13,14,23,24\}
$$

Second Example: The Fano Matroid

$$
d=3, n=7, F=\{124,125,126,127, \ldots, 567\}, \# F=28
$$

- flacets $=$ lines
- $P(F)=6$-polytope with 28 vertices and

$$
21=2 \cdot 7+7
$$

facets

Key New Concept: Split Matroids

; Definition (J. \& Schröter 2017)
M split matroid : $\Longleftrightarrow \quad$ flacets of $P(M)$ form compatible set of hypersimplex splits

- each flacet spans a split hyperplane
- paving matroids (and their duals) are of this type; e.g., Fano matroid

Percentage of Split Matroids

$d \backslash n$	4	5	6	7	8	9	10	11	12
2	100	100	100	100	100	100	100	100	100
3	100	100	89	75	60	52	61	80	91
4	100	100	100	75	60	82	-	-	-
5		100	100	100	60	82	-	-	-
6			100	100	100	52	-	-	-
7				100	100	100	61	-	-
8					100	100	100	80	-
9						100	100	100	91
10							100	100	100
11								100	100

isomorphism classes of (d, n)-matroids:
Matsumoto, Moriyama, Imai \& Bremner 2012

Forbidden Minors for Split Matroids

Theorem (Cameron \& Myhew 2017+)
The only disconnected forbidden minor is $S_{0}=M_{5} \oplus M_{5}$, and there are precisely four connected forbidden minors:

Regular Subdivisions

- polytopal subdivision: cells meet face-to-face
- regular: induced by weight/lifting function
- tight span $=$ dual (polytopal) complex

Splits and Their Compatibility

Let P be a polytope.
split $=$ (regular) subdivision of P with exactly two maximal cells

$$
\begin{aligned}
& w_{1}=(0,0,1,1,0,0) \\
& w_{2}=(0,0,2,3,2,0)
\end{aligned}
$$

- coherent or weakly compatible: common refinement exists
- compatible: split hyperplanes do not meet in relint P

Lemma
The tight span $\Sigma_{P}(\cdot)^{*}$ of a sum of
compatible splits is a tree.

Tropical Arithmetic

tropical semi-ring: $\mathbb{T}=\mathbb{T}(\mathbb{R})=(\mathbb{R} \cup\{\infty\}, \oplus, \odot)$ where

$$
x \oplus y:=\min (x, y) \quad \text { and } \quad x \odot y:=x+y
$$

Example
$(3 \oplus 5) \odot 2=3+2=5=\min (5,7)=(3 \odot 2) \oplus(5 \odot 2)$
, History

- can be traced back (at least) to the 1960s
- e.g., see [Cunningham-Green 1979]
- optimization, functional analysis, signal processing, ...
- modern development (since 2002) initiated by Kapranov, Mikhalkin, Sturmfels, Viro, ...

The Linear Assignment Problem

;'Problem
 Given 4 soccer players ' and 4 positions, what is the best formation?

$$
A=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- assignment $=$ choice of coefficients, one per column/row

$$
\begin{aligned}
\text { best } & =\min _{\omega \in \operatorname{Sym}(4)} a_{1, \omega(1)}+a_{2, \omega(2)}+a_{3, \omega(3)}+a_{4, \omega(4)} \\
& =\bigoplus_{\omega \in \operatorname{Sym}(4)} a_{1, \omega(1)} \odot a_{2, \omega(2)} \odot a_{3, \omega(3)} \odot a_{4, \omega(4)}
\end{aligned}
$$

Definition (tropical determinant)
tdet $=$ trop $($ det $)$

Tropicalized Plücker Vectors

Consider a matrix $A \in \mathbb{R}^{d \times n}$. Each $d \times d$-submatrix B can be assigned the tropical determinant

$$
\operatorname{tdet} B=\min _{\sigma \in \operatorname{Sym}(d)}\left\{b_{1, \sigma(1)}+b_{2, \sigma(2)}+\cdots+b_{d, \sigma(d)}\right\}
$$

This yields the tropicalized Plücker vector

$$
\pi(A)=\left(\operatorname{tdet} A(I) \left\lvert\, I \in\binom{[n]}{d}\right.\right)
$$

Example

$$
A=\left(\begin{array}{cccc}
0 & 5 & 0 & 0 \\
0 & 0 & 10 & 1
\end{array}\right), \quad \pi(A)=(0,0,0,0,0,1)
$$

Tropical Plücker Vectors

a.k.a. "valuated matroids"

Definition
A vector $\pi:\binom{[n]}{d} \rightarrow \mathbb{R}$ is a tropical Plücker vector if each cell of ' the regular division $\Sigma_{\Delta(d, n)}(\pi)$ is a matroid polytope.

- tropicalized Plücker vector $=$ realizable tropical Plücker vector
- tight span $\Sigma_{\Delta(d, n)}(\pi)^{*}$ is a tropical linear space
- each compatible family of splits of any matroid polytope $P(M)$ yields matroid
 subdivision of $P(M)$
[Dress \& Wenzel 1992] [Kapranov 1992] [Speyer \& Sturmfels 2004]

Dressians and Tropical Grassmannians

- Dressian $\operatorname{Dr}(d, n):=$ moduli space of tropical Plücker vectors
- subfan of secondary fan of $\Delta(d, n)$ corresponding to matroid subdivisions
- $\operatorname{Dr}(2, n)=$ space of metric trees with n marked leaves
- tropical Grassmannian $\operatorname{TGr}_{p}(d, n):=$ tropical variety defined by (d, n)-Plücker ideal over algebraically closed field of characteristic $p \geq 0$
- images of classical Plücker vectors under the valuation map are tropicalized Plücker vectors
- $\operatorname{TGr}_{p}(d, n) \subset \operatorname{Dr}(d, n)$ as sets

Example (Fano Matroid)

Its flacets (form compatible family of splits of $\Delta(3,7)$ and thus) yield tropical Plücker vector, which lies in $\operatorname{Dr}(3,7) \backslash \operatorname{TGr}_{p}(3,7)$ unless $p=2$.
[Speyer \& Sturmfels 2004] [Herrmann, Jensen, J. \& Sturmfels 2009] [Fink \& Rincón 2015] ...

Constructing a Class of Tropical Plücker Vectors

Let M be a (d, n)-matroid.

- series-free lift sf $M:=$ free extension followed by parallel co-extension yields ($d+1, n+2$)-matroid
T Theorem (J. \& Schröter 2017)
If M is a split matroid then the map $\rho_{M}:\binom{[n+2]}{d+1} \rightarrow \mathbb{R}, S \mapsto d-\operatorname{rank}_{\text {sf } M}(S)$
' is a tropical Plücker vector which corresponds to a most degenerate tropical linear space. The matroid M is : realizable if and only if ρ_{M} is.

One of Several Consequences

Theorem (J. \& Schröter 2017)
If M is a split matroid then the map

$$
\rho_{M}:\binom{[n+2]}{d+1} \rightarrow \mathbb{R}, S \mapsto d-\operatorname{rank}_{\mathrm{sf} M}(S)
$$

is a tropical Plücker vector which corresponds to a most
degenerate tropical linear space.
The matroid M is realizable if and only if ρ_{M} is.

Corollary
The tropical Plücker vector ρ_{F} is a ray of $\operatorname{Dr}(4,9)$, which lies in
$\operatorname{TGr}_{p}(4,9)$ if and only if $p=2$.

Conclusion

- new class of matroids, which is large
- suffices to answer previously open questions on Dressians and tropical Grassmannians
- simple characterization in terms of forbidden minors
J. \& Schröter: Matroids from hypersimplex splits, Journal of Combinatorial Theory, Series A (2017)

$\operatorname{Dr}(2,5)=\operatorname{TGr}(2,5)$

Tight Spans of Finest Matroid Subdivisions of $\Delta(3,6)$

FFFGG:

