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polymake Basics



polymake Overview
most recent version 2.14 of March 2015

• software for research in mathematics
• geometric combinatorics: convex polytopes, matroids, . . .
• linear/combinatorial optimization
• toric/tropical geometry
• combinatorial topology

• open source, GNU Public License
• supported platforms: Linux, FreeBSD, MacOS X
• about 150,000 uloc (C++, Perl, C, Java)
• interfaces to many other software systems

• co-authored (since 1996) w/ Ewgenij Gawrilow
• contributions by Benjamin Assarf, Simon Hampe, Katrin Herr, Silke

Horn, Lars Kastner, Georg Loho, Benjamin Lorenz, Andreas Paffenholz,
Julian Pfeifle, Thomas Rehn, Thilo Rörig, Benjamin Schröter, André
Wagner and others

www.polymake.org

www.polymake.org


The Basic Definition

A (convex) polytope is the convex hull of finitely many points (in Rd).

• = intersection of finitely many
closed halfspaces (if bounded)

• = set of feasible points of a linear
program (if bounded for all choices
of linear objective functions)

• conversion from points to inqualities (or vice versa) conceptually
simple but still has its challenges
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Example: Knapsack Problem

max
d∑

i=1

uixi

s.t.
d∑

i=1

wixi ≤ b

xi ∈ N for all i ∈ [d ]

• d = # items

• ui = utility of item i

• wi = weight of item i

• b = total weight bound
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Algorithm Overview (Selection)

• convex polytopes, polyhedra and fans
• convex hulls: cdd, lrs, normaliz, ppl, beneath-and-beyond
• Voronoi diagrams, Delone decompositions
• Hasse diagrams of face lattices
•  lattice polytopes/toric varieties

• optimization
• Hilbert bases: normaliz, 4ti2
• Gomory–Chvátal closures
• enumerating integer points: LattE, bounding box/by projection

• simplicial complexes

• tropical geometry

• graphs, matroids, permutation groups, . . .



One Special Feature



The Setup

We consider linear programs LP(A, b, c) of the form

max c>x
s.t. Ax ≤ b , x ∈ Rd

where A ∈ Rm×d , b ∈ Rm, and c ∈ Rd .

Assumptions:

• P(A, b) :=
{
x ∈ Rd |Ax ≤ b

}
not empty

• optimal solution exists, that is, LP(A, b, c) bounded

• c 6= 0

Notation: ILP(A, b, c) if additionally x ∈ Zd required
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Symmetric Integer Linear Programs

Definition

symmetry of ILP(A, b, c) = linear automorphism of LP(A, b, c)

• which acts on signed standard basis {±e1,±e2, . . . ,±ed} of Rd

as signed permutation

Facts:

• signed permutations: OnZ ∼= Z2 o Sym(d) = (Z2)d o Sym(d)

• group of combinatorial automorphisms of standard cube/cross
polytope

Margot 2002; Friedman 2007; Kaibel & Pfetsch 2008;
Ostrowski & al. 2011; . . .
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The Core Point Method
Consider ILP(A, b, c) as above.
Assume that the entire group Sym(d) acts as symmetries.

Theorem (Bödi, J. & Herr 2013)

Then the ILP can be solved to
optimality in O(md2) time.

d = 1d = 0

z

x∗

• Herr, Rehn & Schürmann 2013: extension of core point algorithm
solves MIPLIB 2010 problem toll-like w/ polymake and Gurobi
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Computational Results
Wild Input

CPLEX 12.1.0 polymake 2.13
d time LP (s) time IP (s) time LP (s) time IP (s)

3 0.00 0.01 0.00 0.00
4 0.00 0.06 0.01 0.00
5 0.00 0.17 0.01 0.02
6 0.05 0.74 0.04 0.04
7 0.13 2.71 0.09 0.13
8 0.62 10.15 0.24 0.38
9 2.08 42.06 0.69 1.03

10 8.02 135.51 1.86 2.89



Convex Hull Experiments



Example: Max-Cut

• combinatorial optimization problem on Γ = (V ,E ) finite graph

max
∑

s∈S, t∈T , {s,t}∈E

w(s, t)

◦ maximum over all partitions
S t T = V

◦ w = weight function on E

◦ each cut S t T gives rise to
subset of E , which can be
encoded by its characteristic
vector

•  0/1-polytope

• goal: determine facets of the cut polytopes

Barahona & al. 1988; Avis, Imai & Ito 2008; Bonato & al. 2014; . . .
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Facets of Cut Polytopes
variable dimension

. . .

length k

0 2 4 6 8 10 12 14
10−3

10−2

10−1

100
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103

104

bb
cdd
lrs
nmz6
ppl

• d = k + 6

• n = 2k+5 = # cuts

• m = 2d + 8 = 2k + 20

• Barahona 1983:
facets known if no
K5-minor



Knapsack Integer Hulls
fixed dimension, variable right hand side

a1 = 2, a2 = 3, ai = ai−2 + ai−1
Fd(b) = {x ∈ Rd

≥0 | a>x ≤ b}
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• d = 5

• n = 1366, 3173, 6509,
12182, 21245, 35025,
55157

• m = 12, 15, 12, 12, 8,
13, 15



Voronoi Diagrams of Random Points in a Box
variable dimension, variable number of points
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Some Rules of Thumb

1 If you do not know anything about your input, try double description.
• cdd, ppl, nmz

2 Do use double description for computing the facets of 0/1-polytopes.
• cdd, ppl

3 On random input beneath-and-beyond often behaves very well.
• bb

4 Use reverse search for partial information and non-degenerate input.
• lrs



Epilogue
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