polymake: software for polytope constructions in linear and integer optimization

Michael Joswig

TU Berlin
CO@Work, ZIB, 29 September 2015
joint w/ polymake team
(1) polymake Basics

Solving an integer linear program

(2) One Special Feature

Highly symmetric integer programs
The core point method
Computational results
(3) Convex Hull Experiments

Some rules of thumb
(4) Epilogue

polymake Overview

most recent version 2.14 of March 2015

- software for research in mathematics
- geometric combinatorics: convex polytopes, matroids, ...
- linear/combinatorial optimization
- toric/tropical geometry
- combinatorial topology
- open source, GNU Public License
- supported platforms: Linux, FreeBSD, MacOS X
- about 150,000 uloc (C++, Perl, C, Java)
- interfaces to many other software systems
- co-authored (since 1996) w/ Ewgenij Gawrilow
- contributions by Benjamin Assarf, Simon Hampe, Katrin Herr, Silke Horn, Lars Kastner, Georg Loho, Benjamin Lorenz, Andreas Paffenholz, Julian Pfeifle, Thomas Rehn, Thilo Rörig, Benjamin Schröter, André Wagner and others

The Basic Definition

A (convex) polytope is the convex hull of finitely many points (in \mathbb{R}^{d}).

- = intersection of finitely many closed halfspaces (if bounded)
- = set of feasible points of a linear program (if bounded for all choices of linear objective functions)

The Basic Definition

A (convex) polytope is the convex hull of finitely many points (in \mathbb{R}^{d}).

- = intersection of finitely many closed halfspaces (if bounded)
- = set of feasible points of a linear program (if bounded for all choices of linear objective functions)

- conversion from points to inqualities (or vice versa) conceptually simple but still has its challenges

Example: Knapsack Problem

$\begin{array}{ll}\max & \sum_{i=1}^{d} u_{i} x_{i} \\ \text { s.t. } & \sum_{i=1}^{d} w_{i} x_{i} \leq b\end{array}$

- $d=\#$ items
- $u_{i}=$ utility of item i
- $w_{i}=$ weight of item i
- $b=$ total weight bound

$$
x_{i} \in \mathbb{N} \quad \text { for all } i \in[d]
$$

Algorithm Overview (Selection)

- convex polytopes, polyhedra and fans
- convex hulls: cdd, lrs, normaliz, ppl, beneath-and-beyond
- Voronoi diagrams, Delone decompositions
- Hasse diagrams of face lattices
- \rightsquigarrow lattice polytopes/toric varieties
- optimization
- Hilbert bases: normaliz, 4ti2
- Gomory-Chvátal closures
- enumerating integer points: LattE, bounding box/by projection
- simplicial complexes
- tropical geometry
- graphs, matroids, permutation groups, ...

The Setup

We consider linear programs $\operatorname{LP}(A, b, c)$ of the form

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & A x \leq b, x \in \mathbb{R}^{d}
\end{array}
$$

where $A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{d}$.

Assumptions:

- $P(A, b):=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$ not empty
- optimal solution exists, that is, $\operatorname{LP}(A, b, c)$ bounded
- $c \neq 0$

The Setup

We consider linear programs $\operatorname{LP}(A, b, c)$ of the form

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & A x \leq b, x \in \mathbb{R}^{d}
\end{array}
$$

where $A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{d}$.

Assumptions:

- $P(A, b):=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$ not empty
- optimal solution exists, that is, $\operatorname{LP}(A, b, c)$ bounded
- $c \neq 0$

Notation: $\operatorname{ILP}(A, b, c)$ if additionally $x \in \mathbb{Z}^{d}$ required

Symmetric Integer Linear Programs

Definition

symmetry of $\operatorname{ILP}(A, b, c)=$ linear automorphism of $\operatorname{LP}(A, b, c)$

- which acts on signed standard basis $\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{d}\right\}$ of \mathbb{R}^{d} as signed permutation

Symmetric Integer Linear Programs

Definition

symmetry of $\operatorname{ILP}(A, b, c)=$ linear automorphism of $\operatorname{LP}(A, b, c)$

- which acts on signed standard basis $\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{d}\right\}$ of \mathbb{R}^{d} as signed permutation

Facts:

- signed permutations: $O_{n} \mathbb{Z} \cong \mathbb{Z}_{2} \prec \operatorname{Sym}(d)=\left(\mathbb{Z}_{2}\right)^{d} \rtimes \operatorname{Sym}(d)$
- group of combinatorial automorphisms of standard cube/cross polytope

Symmetric Integer Linear Programs

Definition

symmetry of $\operatorname{ILP}(A, b, c)=$ linear automorphism of $\operatorname{LP}(A, b, c)$

- which acts on signed standard basis $\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{d}\right\}$ of \mathbb{R}^{d} as signed permutation

Facts:

- signed permutations: $\mathrm{O}_{n} \mathbb{Z} \cong \mathbb{Z}_{2} \prec \operatorname{Sym}(d)=\left(\mathbb{Z}_{2}\right)^{d} \rtimes \operatorname{Sym}(d)$
- group of combinatorial automorphisms of standard cube/cross polytope

Margot 2002; Friedman 2007; Kaibel \& Pfetsch 2008; Ostrowski \& al. 2011; ...

The Core Point Method

Consider $\operatorname{ILP}(A, b, c)$ as above.
Assume that the entire group $\operatorname{Sym}(d)$ acts as symmetries.

Theorem (Bödi, J. \& Herr 2013)
Then the ILP can be solved to optimality in $O\left(m d^{2}\right)$ time.

The Core Point Method

Consider $\operatorname{ILP}(A, b, c)$ as above.
Assume that the entire group $\operatorname{Sym}(d)$ acts as symmetries.

Theorem (Bödi, J. \& Herr 2013)
Then the ILP can be solved to optimality in $O\left(m d^{2}\right)$ time.

- Herr, Rehn \& Schürmann 2013: extension of core point algorithm solves MIPLIB 2010 problem toll-like w/ polymake and Gurobi

Computational Results

Wild Input

	CPLEX 12.1.0		polymake 2.13	
d	time LP (s)	time IP (s)	time LP (s)	time IP (s)
3	0.00	0.01	0.00	0.00
4	0.00	0.06	0.01	0.00
5	0.00	0.17	0.01	0.02
6	0.05	0.74	0.04	0.04
7	0.13	2.71	0.09	0.13
8	0.62	10.15	0.24	0.38
9	2.08	42.06	0.69	1.03
10	8.02	135.51	1.86	2.89

Example: Max-Cut

- combinatorial optimization problem on $\Gamma=(V, E)$ finite graph
- maximum over all partitions $S \sqcup T=V$
- $w=$ weight function on E
$\max \sum_{s \in S, t \in T,\{s, t\} \in E} w(s, t)$
- each cut $S \sqcup T$ gives rise to subset of E, which can be encoded by its characteristic vector
- $\rightsquigarrow 0 / 1$-polytope

Example: Max-Cut

- combinatorial optimization problem on $\Gamma=(V, E)$ finite graph
- maximum over all partitions $S \sqcup T=V$
- $w=$ weight function on E

- each cut $S \sqcup T$ gives rise to subset of E, which can be encoded by its characteristic vector
- $\rightsquigarrow 0 / 1$-polytope
- goal: determine facets of the cut polytopes

Barahona \& al. 1988; Avis, Imai \& Ito 2008; Bonato \& al. 2014; ...

Facets of Cut Polytopes

variable dimension

- $d=k+6$
- $n=2^{k+5}=\#$ cuts
- $m=2 d+8=2 k+20$
- Barahona 1983: facets known if no K_{5}-minor

Knapsack Integer Hulls

fixed dimension, variable right hand side

$$
\begin{aligned}
& a_{1}=2, a_{2}=3, a_{i}=a_{i-2}+a_{i-1} \\
& \quad F_{d}(b)=\left\{x \in \mathbb{R}_{\geq 0}^{d} \mid a^{\top} x \leq b\right\}
\end{aligned}
$$

- $d=5$
- $n=1366,3173,6509$, 12182, 21245, 35025, 55157
- $m=12,15,12,12,8$, 13, 15

Voronoi Diagrams of Random Points in a Box

variable dimension, variable number of points

Some Rules of Thumb

(1) If you do not know anything about your input, try double description.

- cdd, ppl, nmz
(2) Do use double description for computing the facets of 0/1-polytopes.
- cdd, ppl
(3) On random input beneath-and-beyond often behaves very well.
- bb
(4) Use reverse search for partial information and non-degenerate input.
- lrs

References

圊 Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig, Benjamin Lorenz, Andreas Paffenholz, and Thomas Rehn, polymake in linear and integer programming, 2014, Preprint arXiv:1408.4653.
Richard Bödi, Katrin Herr, and Michael Joswig, Algorithms for highly symmetric linear and integer programs, Math. Program. 137 (2013), no. 1-2, Ser. A, 65-90. MR 3010420
Katrin Herr, Thomas Rehn, and Achill Schürmann, Exploiting symmetry in integer convex optimization using core points, Oper. Res. Lett. 41 (2013), no. 3, 298-304. MR 3048847

