Dressians, Tropical Grassmannians, and Their Rays

Michael Joswig

w/ Sven Herrmann
(1) Explain the Title

- Tropical Plücker Vectors
- Tropical Grassmannians
- Hypersimplices $\Delta(d, n)$ and Matroid Polytopes
(2) Planes and Points
- Parameterization of Tropical Planes
- Point Configurations
(3) Tight Spans of Rays
- Tropical Rigidity

Tropical Plücker Vectors and Dressians

Definition (Speyer 2005)

$\pi \in \mathbb{R}\binom{n}{d}$ (finite) tropical Plücker vector
$: \Leftrightarrow$ for every $S \in\binom{[n]}{d-2}$ and every i, j, k, l in $[n] \backslash S$ (pairwise distinct):
$\min \left\{\pi_{S i j}+\pi_{S k}, \pi_{S i k}+\pi_{S j l}, \pi_{S i l}+\pi_{S j k}\right\}$ attained at least twice

Tropical Plücker Vectors and Dressians

```
Definition (Speyer 2005)
\pi\in\mathbb{R}(\begin{array}{l}{n}\\{d}\end{array})\mathrm{ (finite) tropical Plücker vector}
    :\Leftrightarrow for every S &(\begin{array}{c}{[n]}\\{d-2}\end{array})\mathrm{ and every i,j,k,l in [n]\S (pairwise distinct):}
                min{}{\mp@subsup{\pi}{Sij}{}+\mp@subsup{\pi}{Skl}{},\mp@subsup{\pi}{Sik}{}+\mp@subsup{\pi}{Sjl}{},\mp@subsup{\pi}{Sil}{}+\mp@subsup{\pi}{Sjk}{}}\mathrm{ attained at least twice
```

Definition

Dressian $\operatorname{Dr}(d, n)$: set of all finite tropical Plücker vectors

Tropical Plücker Vectors and Dressians

Definition (Speyer 2005)

$\pi \in \mathbb{R}\binom{n}{d}$ (finite) tropical Plücker vector
$: \Leftrightarrow$ for every $S \in\binom{[n]}{d-2}$ and every i, j, k, l in $[n] \backslash S$ (pairwise distinct):

$$
\pi \in \mathcal{T}\left(p_{s i j} p_{S k l}-p_{s i k} p_{S j l}+p_{s i l} p_{s j k}\right)
$$

Definition

Dressian $\operatorname{Dr}(d, n)$: set of all finite tropical Plücker vectors

- tropical pre-variety arising as intersection of all tropical hypersurfaces corresponding to 3 -term Plücker relations

Tropical Plücker Vectors and Dressians

Definition (Speyer 2005)

$\pi \in \mathbb{R}\binom{n}{d}$ (finite) tropical Plücker vector
$: \Leftrightarrow$ for every $S \in\binom{[n]}{d-2}$ and every i, j, k, l in $[n] \backslash S$ (pairwise distinct):

$$
\min \left\{\pi_{S i j}+\pi_{S k l}, \pi_{S i k}+\pi_{S j l}, \pi_{S i l}+\pi_{S j k}\right\} \text { attained at least twice }
$$

Definition

Dressian $\operatorname{Dr}(d, n)$: set of all finite tropical Plücker vectors

- tropical pre-variety arising as intersection of all tropical hypersurfaces corresponding to 3 -term Plücker relations
- Kapranov 1993: \rightsquigarrow Chow quotients of Grassmannians
- Speyer 2005: tropical pre-Grassmannian

Tropical Grassmannians

$\mathbb{Z}[p]:=\mathbb{Z}\left[p_{i_{1}, \ldots, i_{d}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n\right]$
$p_{i_{1}, \ldots, i_{d}}: d \times d$-minor of generic $d \times n$-matrix with columns $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$
Plücker ideal $I_{d, n}$: algebraic relations

Definition (Speyer \& Sturmfels 2004)
$\operatorname{Gr}_{K}(d, n):=\mathcal{T}\left(I_{d, n} \otimes K\right) \quad$ for K an infinite field

Tropical Grassmannians

$\mathbb{Z}[p]:=\mathbb{Z}\left[p_{i_{1}, \ldots, i_{d}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n\right]$
$p_{i_{1}, \ldots, i_{d}}: d \times d$-minor of generic $d \times n$-matrix with columns $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$
Plücker ideal $I_{d, n}$: algebraic relations

Definition (Speyer \& Sturmfels 2004)
$\operatorname{Gr}_{K}(d, n):=\mathcal{T}\left(I_{d, n} \otimes K\right) \quad$ for K an infinite field

- sub-fan of Gröbner fan of $I_{d, n}$ in $\mathbb{R}\binom{n}{d}$
- contained in $\operatorname{Dr}(d, n)$

Tropical Grassmannians

$\mathbb{Z}[p]:=\mathbb{Z}\left[p_{i_{1}, \ldots, i_{d}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n\right]$
$p_{i_{1}, \ldots, i_{d}}: d \times d$-minor of generic $d \times n$-matrix with columns $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$
Plücker ideal $I_{d, n}$: algebraic relations

Definition (Speyer \& Sturmfels 2004)

$\operatorname{Gr}_{K}(d, n):=\mathcal{T}\left(I_{d, n} \otimes K\right) \quad$ for K an infinite field

- sub-fan of Gröbner fan of $I_{d, n}$ in $\mathbb{R}^{\binom{n}{d}}$
- contained in $\operatorname{Dr}(d, n)$
- factorize by lineality space / intersect with sphere
- \rightsquigarrow spherical polytopal complex of dimension $n d-n-d^{2}$

Tropical Grassmannians

$\mathbb{Z}[p]:=\mathbb{Z}\left[p_{i_{1}, \ldots, i_{d}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n\right]$
$p_{i_{1}, \ldots, i_{d}}: d \times d$-minor of generic $d \times n$-matrix with columns $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$
Plücker ideal $I_{d, n}$: algebraic relations

Definition (Speyer \& Sturmfels 2004)

$\operatorname{Gr}_{K}(d, n):=\mathcal{T}\left(l_{d, n} \otimes K\right) \quad$ for K an infinite field

- sub-fan of Gröbner fan of $I_{d, n}$ in $\mathbb{R}\binom{n}{d}$
- contained in $\operatorname{Dr}(d, n)$
- factorize by lineality space / intersect with sphere
- \rightsquigarrow spherical polytopal complex of dimension $n d-n-d^{2}$
- points in $\operatorname{Gr}_{k}(d, n)$ correspond to realizable tropical linear spaces

Matroid Polytopes and Matroid Subdivisions

Theorem/Definition (Gel'fand et al. 1987)

A (d, n)-matroid polytope is a subpolytope of $\Delta(d, n)$ whose edges are parallel to $e_{i}-e_{j}$.

- hypersimplex $\Delta(d, n)$
- convex hull of $0 / 1$-vectors of length n with exactly d ones
- $\Delta(2,4)$ octahedron
- uniform matroid of rank d on n points

Matroid Polytopes and Matroid Subdivisions

Theorem/Definition (Gel'fand et al. 1987)

A (d, n)-matroid polytope is a subpolytope of $\Delta(d, n)$ whose edges are parallel to $e_{i}-e_{j}$.

- hypersimplex $\Delta(d, n)$
- convex hull of $0 / 1$-vectors of length n with exactly d ones
- $\Delta(2,4)$ octahedron
- uniform matroid of rank d on n points
- matroid subdivision
- polytopal subdivision into matroid polytopes
- \Leftrightarrow polytopal subdivision without new edges

Tight Spans

Example: Tropical Polytopes

tight span = cell complex dual to polytopal subdivision

Tight Spans

Example: Tropical Polytopes

tight span = cell complex dual to polytopal subdivision

- if subdivision regular then tight span polytopal

Tight Spans

Example: Tropical Polytopes

tight span = cell complex dual to polytopal subdivision

- if subdivision regular then tight span polytopal
- Develin \& Sturmfels 2004: $\operatorname{tconv}\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{T}^{d-1}$ dual to regular subdivision of $\Delta_{n-1} \times \Delta_{d-1}$ defined by lifting $e_{i} \times e_{j}$ to height $v_{i j}$
- general position \longleftrightarrow triangulation

Tight Spans

Example: Tropical Polytopes

tight span = cell complex dual to polytopal subdivision

- if subdivision regular then tight span polytopal
- Develin \& Sturmfels 2004: tconv $\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{T}^{d-1}$ dual to regular subdivision of $\Delta_{n-1} \times \Delta_{d-1}$ defined by lifting $e_{i} \times e_{j}$ to height $v_{i j}$
- general position \longleftrightarrow triangulation

$\Delta_{1} \times \Delta_{2}$

tconv(2 points in \mathbb{T}^{2})

Lifting Functions on Hypersimplices

- interpret point in $\mathbb{R}\binom{n}{d}$ as height function on vertices of hypersimplex $\Delta(d, n)$
- tropical Plücker vector gives (regular) matroid decomposition
- imposes fan structure on $\operatorname{Dr}(d, n)$

Example

$d=2, n=4$, and

$$
\pi: S \mapsto \begin{cases}1 & \text { if } S \in\{12,13,14\} \\ 2 & \text { if } S \in\{23,24\} \\ 3 & \text { if } S=34\end{cases}
$$

corresponds to a ray of $\operatorname{Dr}(2,4)=\operatorname{Gr}(2,4)$
 tight span = line segment

Tropical (d-1)-Planes in ($n-1$)-Space

Theorem (Speyer \& Sturmfels 2004)

The tropical Grassmannian $\operatorname{Gr}(d, n)$ parameterizes tropical $(d-1)$-planes in \mathbb{T}^{n-1}.

Proof.

- fix point $\pi \in \operatorname{Gr}(d, n)$ considered as element of $\mathbb{R}\binom{n}{d} / \mathbb{R}(1,1, \ldots, 1)$

Tropical (d-1)-Planes in ($n-1$)-Space

Theorem (Speyer \& Sturmfels 2004)

The tropical Grassmannian $\operatorname{Gr}(d, n)$ parameterizes tropical $(d-1)$-planes in \mathbb{T}^{n-1}.

Proof.

- fix point $\pi \in \operatorname{Gr}(d, n)$ considered as element of $\mathbb{R}\binom{n}{d} / \mathbb{R}(1,1, \ldots, 1)$
- for $J \in\left(\begin{array}{c}{\left[\begin{array}{c}{[n]} \\ d+1\end{array}\right)}\end{array}\right)$ consider tropical polynomial

$$
F_{J}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j \in J} \pi_{\backslash \backslash j\}} \cdot x_{j}
$$

Tropical (d-1)-Planes in ($n-1$)-Space

Theorem (Speyer \& Sturmfels 2004)

The tropical Grassmannian $\operatorname{Gr}(d, n)$ parameterizes tropical $(d-1)$-planes in \mathbb{T}^{n-1}.

Proof.

- fix point $\pi \in \operatorname{Gr}(d, n)$ considered as element of $\mathbb{R}\binom{n}{d} / \mathbb{R}(1,1, \ldots, 1)$
- for $J \in\left(\begin{array}{c}{\left[\begin{array}{c}{[n]} \\ d+1\end{array}\right)}\end{array}\right)$ consider tropical polynomial

$$
F_{J}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j \in J} \pi_{\backslash\{j\}} \cdot x_{j}
$$

- $L_{\pi}:=$ intersection of all tropical hyperplanes $\mathcal{T}\left(F_{J}\right)$
- turns out to be tropicalization of a linear space
- map $\pi \mapsto L_{\pi}$ bijective

Example $d=2$ and $n=4$, continued

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

Example $d=2$ and $n=4$, continued

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

Example $d=2$ and $n=4$, continued

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

- $F_{123}=2 x_{1}+1 x_{2}+1 x_{3}+\infty x_{4}$

Example $d=2$ and $n=4$, continued

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

- $F_{123}=2 x_{1}+1 x_{2}+1 x_{3}+\infty x_{4}$
- $F_{124}=2 x_{1}+1 x_{2}+\infty x_{3}+1 x_{4}$

Example $d=2$ and $n=4$, continued

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

- $F_{123}=2 x_{1}+1 x_{2}+1 x_{3}+\infty x_{4}$
- $F_{124}=2 x_{1}+1 x_{2}+\infty x_{3}+1 x_{4}$
- $F_{134}=3 x_{1}+\infty x_{2}+1 x_{3}+1 x_{4}$
- $F_{234}=\infty x_{1}+3 x_{2}+2 x_{3}+2 x_{4}$

Example $d=2$ and $n=4$, continued

- consider

$$
\pi=\left\{\begin{array}{l}
12 \mapsto 1 \\
13 \mapsto 1 \\
14 \mapsto 1 \\
23 \mapsto 2 \\
24 \mapsto 2 \\
34 \mapsto 3
\end{array}\right.
$$

- $F_{123}=2 x_{1}+1 x_{2}+1 x_{3}+\infty x_{4}$
- $F_{124}=2 x_{1}+1 x_{2}+\infty x_{3}+1 x_{4}$
- $F_{134}=3 x_{1}+\infty x_{2}+1 x_{3}+1 x_{4}$
- $F_{234}=\infty x_{1}+3 x_{2}+2 x_{3}+2 x_{4}$

Spaces of Trees

Theorem (Kapranov 1993; Speyer \& Sturmfels 2004)

$\operatorname{Dr}(2, n) \cong$ space of trivalent metric trees with n marked leaves

interior edges $=$ splits

- $\operatorname{Dr}(2, n)=\operatorname{Gr}(2, n)$ as fans

Constructing Points on $\operatorname{Gr}(d, n)$

 From Tropical Polytopes to Realizable Tropical Plücker Vectors
Theorem (~Kapranov 1993)

Each regular subdivision Γ of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision Σ of $\Delta(d, n)$; in fact, this yields a point in $\operatorname{Gr}(d, n)$.

Constructing Points on $\operatorname{Gr}(d, n)$

 From Tropical Polytopes to Realizable Tropical Plücker Vectors
Theorem (~Kapranov 1993)

Each regular subdivision Γ of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision Σ of $\Delta(d, n)$; in fact, this yields a point in $\operatorname{Gr}(d, n)$.

- choose arbitrary $V \in \mathbb{R}^{d \times(n-d)}$ as lifting of $\Delta_{d-1} \times \Delta_{n-d-1}$

$$
V=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
3 & 5 & 0 & 5 \\
6 & 2 & 1 & 0
\end{array}\right.
$$

here: $d=3$ and $n=7$

Constructing Points on $\operatorname{Gr}(d, n)$

 From Tropical Polytopes to Realizable Tropical Plücker Vectors
Theorem (~Kapranov 1993)

Each regular subdivision Γ of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision Σ of $\Delta(d, n)$; in fact, this yields a point in $\operatorname{Gr}(d, n)$.

- choose arbitrary $V \in \mathbb{R}^{d \times(n-d)}$ as lifting of $\Delta_{d-1} \times \Delta_{n-d-1}$
- concatenate with tropical $d \times d$-unit matrix

$$
\bar{V}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & \infty & \infty \\
3 & 5 & 0 & 5 & \infty & 0 & \infty \\
6 & 2 & 1 & 0 & \infty & \infty & 0
\end{array}\right)
$$

here: $d=3$ and $n=7$

Constructing Points on $\operatorname{Gr}(d, n)$ From Tropical Polytopes to Realizable Tropical Plücker Vectors

Theorem (~ Kapranov 1993)

Each regular subdivision Γ of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision Σ of $\Delta(d, n)$; in fact, this yields a point in $\operatorname{Gr}(d, n)$.

- choose arbitrary $V \in \mathbb{R}^{d \times(n-d)}$ as lifting of $\Delta_{d-1} \times \Delta_{n-d-1}$
- concatenate with tropical $d \times d$-unit matrix
- for each set of d columns compute tropical determinant to define tropical Plücker vector $\pi: \mathbb{R}^{\binom{n}{d}} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \bar{V}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & \infty & \infty \\
3 & \frac{5}{2} & 0 & 5 & \infty & 0 & \infty \\
6 & 2 & 1 & 0 & \infty & \infty & 0
\end{array}\right) \\
& \text { e.g., } \pi(245)=\min (0+5+0,0+5+2)=5 \\
& \text { here: } d=3 \text { and } n=7
\end{aligned}
$$

A Matroid Subdivision of $\Delta(3,7)$

| label | matroid bases |
| :--- | :--- | :--- | :--- | :--- | :--- |
| v_{1} | 125126135136145146156157167256356456567 |
| v_{2} | 124125127145157234235237245246256257267345357456567 |
| v_{3} | 134136137146167234236237246267345346356357367456567 |
| v_{4} | 124127145147157234237246247267345347357456457467567 |
| w_{1} | 134137146167234237246267345346347357367456467567 |
| w_{2} | 124127145157234237245246247257267345357456457567 |
| w_{3} | 123124125126127134137145146157167234235237246256267345357456567 |
| w_{4} | 123125126134135136137145146157167235256345356357456567 |
| w_{5} | 124127134137145146147157167234237246267345347357456467567 |
| w_{6} | 123126134136137146167234235236237246256267345356357456567 |

Computational Results for $\operatorname{Dr}(3, n)$

polymake

TECHNISCHE UNIVERSITATT DARMSTADT

n	dim	f-vector $\bmod \operatorname{Sym}(n)$	
4	$\underline{0}$	(1)	
5	$\underline{1}$	$(1,1)$	SS 04
6	$\frac{3}{2}$	$(9,8,3,1)$	HJJS 09
7	6	$(5,30,107,217,218,94,1)$	HJ $11+$
8	8	$(12 ; 155 ; 1,149 ; 5,013 ; 12,737 ; 18,802 ; 14,727 ; 4,788 ; 14)$	HJJS 09
n	$\sim n^{2}$		

$\operatorname{dim} \operatorname{Gr}(3, n)=2 n-9$

$$
\begin{aligned}
f(\operatorname{Dr}(3,8))= & (15,470 ; 642,677 ; 8,892,898 ; 57,394,505 ; 194,258,750 ; \\
& 353,149,650 ; 324,404,880 ; 117,594,645 ; 113,400)
\end{aligned}
$$

Computational Results for $\operatorname{Dr}(3, n)$

polymake

TECHNISCHE

n	dim	f-vector $\bmod \operatorname{Sym}(n)$	
4	$\underline{0}$	(1)	
5	$\underline{1}$	$(1,1)$	SS 04
6	$\frac{3}{2}$	$(9,8,3,1)$	HJJS 09
7	6	$(5,30,107,217,218,94,1)$	HJ $11+$
8	8	$(12 ; 155 ; 1,149 ; 5,013 ; 12,737 ; 18,802 ; 14,727 ; 4,788 ; 14)$	HJJS 09
n	$\sim n^{2}$		

$\operatorname{dim} \operatorname{Gr}(3, n)=2 n-9$

$$
\begin{aligned}
f(\operatorname{Dr}(3,8))= & (15,470 ; 642,677 ; 8,892,898 ; 57,394,505 ; 194,258,750 ; \\
& 353,149,650 ; 324,404,880 ; 117,594,645 ; 113,400)
\end{aligned}
$$

Tropical Rigidity

Definition

$V \in \mathbb{R}^{d \times(n-d)}$ tropically rigid $: \Leftrightarrow$ regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induced by V is coarsest

Proposition (Herrmann \& J, 2011+)

Let $d=3$. If V is tropically rigid, then π_{v} is a ray of $\operatorname{Dr}(3, n)$.

Tropical Rigidity

Definition

$V \in \mathbb{R}^{d \times(n-d)}$ tropically rigid $: \Leftrightarrow$ regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induced by V is coarsest

Proposition (Herrmann \& J, 2011+)

Let $d=3$. If V is tropically rigid, then π_{v} is a ray of $\operatorname{Dr}(3, n)$.

- Conjecture: True for all d.

Tropical Rigidity

Definition

$V \in \mathbb{R}^{d \times(n-d)}$ tropically rigid $: \Leftrightarrow$ regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induced by V is coarsest

Theorem (Herrmann \& J, 2011+; Speyer, EST 13 Dec 2011 13:11:08) Let $d=3$. If V is tropically rigid, then π_{v} is a ray of $\operatorname{Dr}(d, n)$.

- Gonjecture: True for all d.

Tropical Rigidity

Definition

$V \in \mathbb{R}^{d \times(n-d)}$ tropically rigid $: \Leftrightarrow$ regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induced by V is coarsest

Theorem (Herrmann \& J, 2011+; Speyer, EST 13 Dec 2011 13:11:08) Let $d=3$. If V is tropically rigid, then π_{v} is a ray of $\operatorname{Dr}(d, n)$.

- Gonjecture: True for all d.
- Suffices to check diagonal cases where $n=2 d$.
- Original proof for $d=3$ by induction on n with $n=6$ as the base case.

Examples
 Rays of $\operatorname{Dr}(3,8)$

- these make up for $2+2+1+1=6$ types of rays of $\operatorname{Dr}(3,8)$
- 1 more tropical quadrangle
- 4 types of splits
- 1 ray with a non-planar tight span
- all of them contained in $\operatorname{Gr}(3,8)$
\rightsquigarrow gives 12 as the grand total
[Macaulay2]

Main Results

Theorem (Herrmann \& J. 2011+)

For arbitrary $V \in \mathbb{R}^{3 \times(n-3)}$ the tight span of the matroid subdivision of $\operatorname{Dr}(3, n)$ induced by π_{v} coincides with (the natural polytopal subdivision of) tconv V.

Main Results

Theorem (Herrmann \& J. 2011+)

For arbitrary $V \in \mathbb{R}^{3 \times(n-3)}$ the tight span of the matroid subdivision of $\operatorname{Dr}(3, n)$ induced by π_{V} coincides with (the natural polytopal subdivision of) tconv V.

Theorem (Herrmann \& J. 2011+)

The tight span of a ray of $\operatorname{Dr}(3, n)$ is either a line segment (and the ray is a split) or a pure two-dimensional simplicial complex which is contractible.

Main Results

TECHNISCHE

Theorem (Herrmann \& J. 2011+)

For arbitrary $V \in \mathbb{R}^{3 \times(n-3)}$ the tight span of the matroid subdivision of $\operatorname{Dr}(3, n)$ induced by π_{v} coincides with (the natural polytopal subdivision of) tconv V.

Theorem (Herrmann \& J. 2011+)

The tight span of a ray of $\operatorname{Dr}(3, n)$ is either a line segment (and the ray is a split) or a pure two-dimensional simplicial complex which is contractible.

- splits of $\Delta(d, n)$ were known [Herrmann \& J. 2008]

Open Questions

TECHNISCHE UNIVERSITATT DARMSTADT

- Does the tropical complex always coincide with the tight span of the induced matroid subdivision, that is, for arbitrary $d \geq 4$?
- suffices to look at the diagonal cases where $n=2 d$
- would show that tropically rigid point configurations can always be raised to rays of the Grassmannian

Open Questions

TECHNISCHE UNIVERSITATT DARMSTADT

- Does the tropical complex always coincide with the tight span of the induced matroid subdivision, that is, for arbitrary $d \geq 4$?
- suffices to look at the diagonal cases where $n=2 d$
- does show that tropically rigid point configurations can always be raised to rays of the Grassmannian

Open Questions

TECHNISCHE UNIVERSITATT DARMSTADT

- Does the tropical complex always coincide with the tight span of the induced matroid subdivision, that is, for arbitrary $d \geq 4$?
- suffices to look at the diagonal cases where $n=2 d$
- does show that tropically rigid point configurations can always be raised to rays of the Grassmannian
- Are all rays with a non-planar tight span induced by tropical point configurations?

Open Questions

- Does the tropical complex always coincide with the tight span of the induced matroid subdivision, that is, for arbitrary $d \geq 4$?
- suffices to look at the diagonal cases where $n=2 d$
- does show that tropically rigid point configurations can always be raised to rays of the Grassmannian
- Are all rays with a non-planar tight span induced by tropical point configurations?
- Can you relate the tight span of any ray of the Dressian to a membrane in a Bruhat-Tits-building of type \widetilde{A}_{d-1} ?
- consider Plücker embedding of (tropical) Grassmannian
- (weaker) combinatorial version: Is the tight span a flag simplicial complex?

