Dressians, Tropical Grassmannians, and Their Rays Michael Joswig

w/ Sven Herrmann

Explain the Title

- Tropical Plücker Vectors
- Tropical Grassmannians
- Hypersimplices Δ(d, n) and Matroid Polytopes
- Planes and Points
 - Parameterization of Tropical Planes
 - Point Configurations
- Tight Spans of Rays
 - Tropical Rigidity

Definition (Speyer 2005) $\pi \in \mathbb{R}^{\binom{n}{d}}$ (finite) tropical Plücker vector : \Leftrightarrow for every $S \in \binom{[n]}{d-2}$ and every i, j, k, l in $[n] \setminus S$ (pairwise distinct):

 $\min\{\pi_{Sij} + \pi_{Skl}, \pi_{Sik} + \pi_{Sjl}, \pi_{Sil} + \pi_{Sjk}\}$ attained at least twice

Definition

Dressian Dr(*d*, *n*) : set of all finite tropical Plücker vectors

- tropical pre-variety arising as intersection of all tropical hypersurfaces corresponding to 3-term Plücker relations
- Kapranov 1993: --- Chow quotients of Grassmannians
- Speyer 2005: tropical pre-Grassmannian

Definition (Speyer 2005) $\pi \in \mathbb{R}^{\binom{n}{d}}$ (finite) tropical Plücker vector : \Leftrightarrow for every $S \in \binom{[n]}{d-2}$ and every i, j, k, l in $[n] \setminus S$ (pairwise distinct):

 $\min\{\pi_{Sij} + \pi_{Skl}, \pi_{Sik} + \pi_{Sjl}, \pi_{Sil} + \pi_{Sjk}\}$ attained at least twice

Definition

Dressian Dr(d, n) : set of all finite tropical Plücker vectors

- tropical pre-variety arising as intersection of all tropical hypersurfaces corresponding to 3-term Plücker relations
- Kapranov 1993: ~ Chow quotients of Grassmannians
- Speyer 2005: tropical pre-Grassmannian

Definition (Speyer 2005) $\pi \in \mathbb{R}^{\binom{n}{d}}$ (finite) tropical Plücker vector : \Leftrightarrow for every $S \in \binom{[n]}{d-2}$ and every i, j, k, l in $[n] \setminus S$ (pairwise distinct):

 $\pi \in \mathcal{T}(p_{Sij}p_{Skl} - p_{Sik}p_{Sjl} + p_{Sil}p_{Sjk})$

Definition

Dressian Dr(d, n): set of all finite tropical Plücker vectors

- tropical pre-variety arising as intersection of all tropical hypersurfaces corresponding to 3-term Plücker relations
- Kapranov 1993: --> Chow quotients of Grassmannians
- Speyer 2005: tropical pre-Grassmannian

Definition (Speyer 2005) $\pi \in \mathbb{R}^{\binom{n}{d}}$ (finite) tropical Plücker vector : \Leftrightarrow for every $S \in \binom{[n]}{d-2}$ and every i, j, k, l in $[n] \setminus S$ (pairwise distinct):

 $\min\{\pi_{Sij} + \pi_{Skl}, \pi_{Sik} + \pi_{Sjl}, \pi_{Sil} + \pi_{Sjk}\} \text{ attained at least twice}$

Definition

Dressian Dr(d, n): set of all finite tropical Plücker vectors

- tropical pre-variety arising as intersection of all tropical hypersurfaces corresponding to 3-term Plücker relations
- Kapranov 1993: ~→ Chow quotients of Grassmannians
- Speyer 2005: tropical pre-Grassmannian

 $\mathbb{Z}[p] := \mathbb{Z}[p_{i_1,\ldots,i_d} \mid 1 \le i_1 < i_2 < \cdots < i_d \le n]$ $p_{i_1,\ldots,i_d} : d \times d \text{-minor of generic } d \times n \text{-matrix with columns } (i_1, i_2, \ldots, i_d)$ Plücker ideal $I_{d,n}$: algebraic relations

Definition (Speyer & Sturmfels 2004) $Gr_{K}(d, n) := \mathcal{T}(I_{d,n} \otimes K)$ for *K* an infinite field

• sub-fan of Gröbner fan of $I_{d,n}$ in $\mathbb{R}^{\binom{n}{d}}$

• contained in Dr(d, n)

factorize by lineality space / intersect with sphere

• \rightarrow spherical polytopal complex of dimension $nd - n - d^2$

points in Gr_K(d, n) correspond to realizable tropical linear spaces

 $\mathbb{Z}[p] := \mathbb{Z}[p_{i_1,\ldots,i_d} \mid 1 \le i_1 < i_2 < \cdots < i_d \le n]$ $p_{i_1,\ldots,i_d} : d \times d \text{-minor of generic } d \times n \text{-matrix with columns } (i_1, i_2, \ldots, i_d)$ Plücker ideal $I_{d,n}$: algebraic relations

Definition (Speyer & Sturmfels 2004) $Gr_{K}(d, n) := \mathcal{T}(I_{d,n} \otimes K)$ for *K* an infinite field

- sub-fan of Gröbner fan of $I_{d,n}$ in $\mathbb{R}^{\binom{n}{d}}$
 - contained in Dr(d, n)
- factorize by lineality space / intersect with sphere

• \rightarrow spherical polytopal complex of dimension $nd - n - d^2$

points in Gr_K(d, n) correspond to realizable tropical linear spaces

 $\mathbb{Z}[p] := \mathbb{Z}[p_{i_1,\ldots,i_d} \mid 1 \le i_1 < i_2 < \cdots < i_d \le n]$ $p_{i_1,\ldots,i_d} : d \times d \text{-minor of generic } d \times n \text{-matrix with columns } (i_1, i_2, \ldots, i_d)$ Plücker ideal $I_{d,n}$: algebraic relations

Definition (Speyer & Sturmfels 2004) $Gr_K(d, n) := \mathcal{T}(I_{d,n} \otimes K)$ for K an infinite field

- sub-fan of Gröbner fan of $I_{d,n}$ in $\mathbb{R}^{\binom{n}{d}}$
 - contained in Dr(d, n)
- factorize by lineality space / intersect with sphere
 - \rightsquigarrow spherical polytopal complex of dimension $nd n d^2$
- points in Gr_K(d, n) correspond to realizable tropical linear spaces

 $\mathbb{Z}[p] := \mathbb{Z}[p_{i_1,\ldots,i_d} \mid 1 \le i_1 < i_2 < \cdots < i_d \le n]$ $p_{i_1,\ldots,i_d} : d \times d \text{-minor of generic } d \times n \text{-matrix with columns } (i_1, i_2, \ldots, i_d)$ Plücker ideal $I_{d,n}$: algebraic relations

Definition (Speyer & Sturmfels 2004) $Gr_K(d, n) := \mathcal{T}(I_{d,n} \otimes K)$ for K an infinite field

- sub-fan of Gröbner fan of $I_{d,n}$ in $\mathbb{R}^{\binom{n}{d}}$
 - contained in Dr(d, n)
- factorize by lineality space / intersect with sphere
 - \rightsquigarrow spherical polytopal complex of dimension $nd n d^2$
- points in Gr_K(d, n) correspond to realizable tropical linear spaces

Matroid Polytopes and Matroid Subdivisions

Theorem/Definition (Gel'fand et al. 1987)

A (d, n)-matroid polytope is a subpolytope of $\Delta(d, n)$ whose edges are parallel to $e_i - e_j$.

- hypersimplex $\Delta(d, n)$
 - convex hull of 0/1-vectors of length n with exactly d ones
 - Δ(2, 4) octahedron
 - uniform matroid of rank d on n points
 - polytopal subdivision into matroid polytopes
 - ⇔ polytopal subdivision without new edges

Matroid Polytopes and Matroid Subdivisions

Theorem/Definition (Gel'fand et al. 1987)

A (d, n)-matroid polytope is a subpolytope of $\Delta(d, n)$ whose edges are parallel to $e_i - e_j$.

- hypersimplex $\Delta(d, n)$
 - convex hull of 0/1-vectors of length n with exactly d ones
 - Δ(2, 4) octahedron
 - uniform matroid of rank d on n points
- matroid subdivision
 - polytopal subdivision into matroid polytopes
 - ⇔ polytopal subdivision without new edges

tight span = cell complex dual to polytopal subdivision

- if subdivision regular then tight span polytopal
- Develin & Sturmfels 2004: tconv{v₁,..., v_n} ⊂ T^{d-1} dual to regular subdivision of Δ_{n-1} × Δ_{d-1} defined by lifting e_i × e_i to height v_{ii}
 - general position ↔ triangulation

tight span = cell complex dual to polytopal subdivision

- if subdivision regular then tight span polytopal
- Develin & Sturmfels 2004: tconv{v₁,..., v_n} ⊂ T^{d-1} dual to regular subdivision of Δ_{n-1} × Δ_{d-1} defined by lifting e_i × e_i to height v_{ii}

general position ↔ triangulation

tight span = cell complex dual to polytopal subdivision

- if subdivision regular then tight span polytopal
- Develin & Sturmfels 2004: tconv{v₁,..., v_n} ⊂ T^{d-1} dual to regular subdivision of Δ_{n-1} × Δ_{d-1} defined by lifting e_i × e_i to height v_{ii}
 - general position \longleftrightarrow triangulation

tight span = cell complex dual to polytopal subdivision

- if subdivision regular then tight span polytopal
- Develin & Sturmfels 2004: tconv{v₁,..., v_n} ⊂ T^{d-1} dual to regular subdivision of Δ_{n-1} × Δ_{d-1} defined by lifting e_i × e_j to height v_{ij}

• general position \longleftrightarrow triangulation

Lifting Functions on Hypersimplices

- interpret point in $\mathbb{R}^{\binom{n}{d}}$ as height function on vertices of hypersimplex $\Delta(d, n)$
- tropical Plücker vector gives (regular) matroid decomposition
- imposes fan structure on Dr(d, n)

Example

d = 2, n = 4, and

$$\pi: S \mapsto \begin{cases} 1 & \text{if } S \in \{12, 13, 14\} \\ 2 & \text{if } S \in \{23, 24\} \\ 3 & \text{if } S = 34 \end{cases}$$

corresponds to a ray of Dr(2, 4) = Gr(2, 4)tight span = line segment

Tropical (d - 1)-Planes in (n - 1)-Space

Theorem (Speyer & Sturmfels 2004)

The tropical Grassmannian Gr(d, n) parameterizes tropical (d - 1)-planes in \mathbb{T}^{n-1} . Proof.

• fix point $\pi \in \operatorname{Gr}(d, n)$ considered as element of $\mathbb{R}^{\binom{n}{d}}/\mathbb{R}(1, 1, ..., 1)$

• for $J \in {[n] \choose d+1}$ consider tropical polynomial

$$F_J(x_1,\ldots,x_n) = \sum_{j\in J} \pi_{J\setminus\{j\}} \cdot x_j$$

- L_{π} := intersection of all tropical hyperplanes $\mathcal{T}(F_J)$
 - turns out to be tropicalization of a linear space
 - map $\pi \mapsto L_{\pi}$ bijective

Tropical (d-1)-Planes in (n-1)-Space

Theorem (Speyer & Sturmfels 2004)

The tropical Grassmannian Gr(d, n) parameterizes tropical (d - 1)-planes in \mathbb{T}^{n-1} . Proof.

- fix point $\pi \in Gr(d, n)$ considered as element of $\mathbb{R}^{\binom{n}{d}}/\mathbb{R}(1, 1, ..., 1)$
- for $J \in {[n] \choose d+1}$ consider tropical polynomial

$$F_J(x_1,\ldots,x_n) = \sum_{j\in J} \pi_{J\setminus\{j\}} \cdot x_j$$

- L_{π} := intersection of all tropical hyperplanes $\mathcal{T}(F_J)$
 - turns out to be tropicalization of a linear space
 - map $\pi \mapsto L_{\pi}$ bijective

Tropical (d - 1)-Planes in (n - 1)-Space

Theorem (Speyer & Sturmfels 2004)

The tropical Grassmannian Gr(d, n) parameterizes tropical (d - 1)-planes in \mathbb{T}^{n-1} . Proof.

- fix point $\pi \in \operatorname{Gr}(d, n)$ considered as element of $\mathbb{R}^{\binom{n}{d}}/\mathbb{R}(1, 1, ..., 1)$
- for $J \in {[n] \choose d+1}$ consider tropical polynomial

$$F_J(x_1, \ldots, x_n) = \sum_{j \in J} \pi_{J \setminus \{j\}} \cdot x_j$$

- L_{π} := intersection of all tropical hyperplanes $\mathcal{T}(F_J)$
 - turns out to be tropicalization of a linear space
 - map $\pi \mapsto L_{\pi}$ bijective

consider

$$\pi = \begin{cases} 12 \mapsto 1\\ 13 \mapsto 1\\ 14 \mapsto 1\\ 23 \mapsto 2\\ 24 \mapsto 2\\ 34 \mapsto 3 \end{cases}$$

• $F_{123} = 2x_1 + 1x_2 + 1x_3 + \infty x_4$ • $F_{124} = 2x_1 + 1x_2 + \infty x_3 + 1x_4$ • $F_{134} = 3x_1 + \infty x_2 + 1x_3 + 1x_4$ • $F_{234} = \infty x_1 + 3x_2 + 2x_3 + 2x_4$

consider

$$\pi = \begin{cases} 12 \mapsto 1\\ 13 \mapsto 1\\ 14 \mapsto 1\\ 23 \mapsto 2\\ 24 \mapsto 2\\ 34 \mapsto 3 \end{cases}$$

F₁₂₃ = 2x₁ + 1x₂ + 1x₃ + ∞x₄
F₁₂₄ = 2x₁ + 1x₂ + ∞x₃ + 1x₄
F₁₃₄ = 3x₁ + ∞x₂ + 1x₃ + 1x₄
F₂₃₄ = ∞x₁ + 3x₂ + 2x₃ + 2x₄

consider

$$\pi = \begin{cases} 12 \mapsto 1\\ 13 \mapsto 1\\ 14 \mapsto 1\\ 23 \mapsto 2\\ 24 \mapsto 2\\ 34 \mapsto 3 \end{cases}$$

- $F_{123} = 2x_1 + 1x_2 + 1x_3 + \infty x_4$
- $F_{124} = 2x_1 + 1x_2 + \infty x_3 + 1x_4$ • $F_{134} = 3x_1 + \infty x_2 + 1x_3 + 1x_4$
- $F_{234} = \infty x_1 + 3x_2 + 2x_3 + 2x_4$

consider

$$\pi = \begin{cases} 12 \mapsto 1\\ 13 \mapsto 1\\ 14 \mapsto 1\\ 23 \mapsto 2\\ 24 \mapsto 2\\ 34 \mapsto 3 \end{cases}$$

•
$$F_{123} = 2x_1 + 1x_2 + 1x_3 + \infty x_4$$

• $F_{124} = 2x_1 + 1x_2 + \infty x_3 + 1x_4$

 $F_{234} = \infty x_1 + 3x_2 + 2x_3 + 2x_4$

consider

$$\pi = \begin{cases} 12 \mapsto 1\\ 13 \mapsto 1\\ 14 \mapsto 1\\ 23 \mapsto 2\\ 24 \mapsto 2\\ 34 \mapsto 3 \end{cases}$$

- $F_{123} = 2x_1 + 1x_2 + 1x_3 + \infty x_4$
- $F_{124} = 2x_1 + 1x_2 + \infty x_3 + 1x_4$
- $F_{134} = 3x_1 + \infty x_2 + 1x_3 + 1x_4$
- $F_{234} = \infty x_1 + 3x_2 + 2x_3 + 2x_4$

consider

$$\pi = \begin{cases} 12 \mapsto 1\\ 13 \mapsto 1\\ 14 \mapsto 1\\ 23 \mapsto 2\\ 24 \mapsto 2\\ 34 \mapsto 3 \end{cases}$$

- $F_{123} = 2x_1 + 1x_2 + 1x_3 + \infty x_4$
- $F_{124} = 2x_1 + 1x_2 + \infty x_3 + 1x_4$
- $F_{134} = 3x_1 + \infty x_2 + 1x_3 + 1x_4$
- $F_{234} = \infty x_1 + 3x_2 + 2x_3 + 2x_4$

Spaces of Trees

Theorem (Kapranov 1993; Speyer & Sturmfels 2004)

$Dr(2, n) \cong$ space of trivalent metric trees with n marked leaves

Theorem (\sim Kapranov 1993)

Each regular subdivision Γ of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision Σ of $\Delta(d, n)$; in fact, this yields a point in Gr(d, n).

choose arbitrary V ∈ ℝ^{a×(a) a} as litting of Δ_{d-1} × Δ_{n-d-1}
 concatenate with tropical d×d-unit matrix
 for each set of d columns compute *tropical determinant* to define tropical Plücker vector π : ℝ^(ⁿ)→ ℝ

$$V = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 3 & 5 & 0 & 5 \\ 6 & 2 & 1 & 0 \end{pmatrix}$$

here: d = 3 and n = 7

Theorem (\sim Kapranov 1993)

Each regular subdivision Γ of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision Σ of $\Delta(d, n)$; in fact, this yields a point in Gr(d, n).

- choose arbitrary $V \in \mathbb{R}^{d \times (n-d)}$ as lifting of $\Delta_{d-1} \times \Delta_{n-d-1}$
- for each set of *d* columns compute *tropical determinant* to define tropical Plücker vector $\pi : \mathbb{R}^{\binom{d}{d}} \to \mathbb{R}$

$$V = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 3 & 5 & 0 & 5 \\ 6 & 2 & 1 & 0 \end{pmatrix}$$

here: d = 3 and n = 7

Theorem (\sim Kapranov 1993)

Each regular subdivision Γ of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision Σ of $\Delta(d, n)$; in fact, this yields a point in Gr(d, n).

- choose arbitrary $V \in \mathbb{R}^{d \times (n-d)}$ as lifting of $\Delta_{d-1} \times \Delta_{n-d-1}$
- concatenate with tropical $d \times d$ -unit matrix

• for each set of *d* columns compute *tropical determinant* to define tropical Plücker vector $\pi : \mathbb{R}^{\binom{n}{d}} \to \mathbb{R}$

$$\bar{V} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & \infty & \infty \\ 3 & 5 & 0 & 5 & \infty & 0 & \infty \\ 6 & 2 & 1 & 0 & \infty & \infty & 0 \end{pmatrix}$$

here: d = 3 and n = 7

Theorem (\sim Kapranov 1993)

Each regular subdivision Γ of $\Delta_{d-1} \times \Delta_{n-d-1}$ induces a regular matroid subdivision Σ of $\Delta(d, n)$; in fact, this yields a point in Gr(d, n).

- choose arbitrary $V \in \mathbb{R}^{d \times (n-d)}$ as lifting of $\Delta_{d-1} \times \Delta_{n-d-1}$
- concatenate with tropical *d*×*d*-unit matrix
- for each set of *d* columns compute *tropical determinant* to define tropical Plücker vector $\pi : \mathbb{R}^{\binom{n}{d}} \to \mathbb{R}$

$$\bar{V} = \begin{pmatrix} 0 & 0 & 0 & 1 & \underline{0} & \infty & \infty \\ 3 & \underline{5} & 0 & 5 & \infty & 0 & \infty \\ 6 & 2 & 1 & \underline{0} & \infty & \infty & 0 \end{pmatrix}$$

e.g., π (245) = min(0 + 5 + 0, 0 + 5 + 2) = 5
here: $d = 3$ and $n = 7$

A Matroid Subdivision of $\Delta(3,7)$

label	matroid bases
v ₁	
v2 v3	134 136 137 146 167 234 236 237 246 267 345 346 356 357 367 456 567
v ₄ w ₁	124 127 145 147 157 234 237 246 247 267 345 347 357 456 457 467 567 134 137 146 167 234 237 246 267 345 346 347 357 367 456 467 567
w2	124 127 145 157 234 237 245 246 247 257 267 345 357 456 457 567 123 124 125 126 127 134 137 145 146 157 167 234 235 237 246 256 267 345 357 456 567
w ₃ w ₄ w ₅ w ₆	123 125 126 134 135 136 137 145 146 157 167 235 256 345 356 357 456 567 124 127 134 137 145 146 147 157 167 234 237 246 267 345 347 357 456 467 567
w5 w6	124 127 134 137 145 146 147 157 167 234 237 246 267 345 347 357 456 467 567 123 126 134 136 137 146 167 234 235 236 237 246 256 267 345 356 357 456 567

CIEM, 14 December 2011 | TUD | Joswig | 11

Computational Results for Dr(3, n)

polymake

n	dim	f-vector mod Sym(n)	
4	<u>0</u>	(1)	
5	<u>1</u>	(1,1)	
6	<u>3</u>	(9, 8, 3, 1)	SS 04
7	6	(5, 30, 107, 217, 218, 94, 1)	HJJS 09
8	8	(12; 155; 1,149; 5,013; 12,737; 18,802; 14,727; 4,788; 14)	HJ 11+
n	$\sim n^2$		HJJS 09

 $\dim Gr(3, n) = 2n - 9$

f(Dr(3,8)) = (15,470;642,677;8,892,898;57,394,505;194,258,750;353,149,650;324,404,880;117,594,645;113,400)

Computational Results for Dr(3, n)

polymake

n	dim	f-vector mod Sym(n)	
4	<u>0</u>	(1)	
5	<u>1</u>	(1,1)	
6	<u>3</u>	(9, 8, 3, 1)	SS 04
7	6	(5, 30, 107, 217, 218, 94, 1)	HJJS 09
8	8	(12; 155; 1,149; 5,013; 12,737; 18,802; 14,727; 4,788; 14)	HJ 11+
n	$\sim {\it n}^2$		HJJS 09

 $\dim Gr(3, n) = 2n - 9$

f(Dr(3,8)) = (15,470;642,677;8,892,898;57,394,505;194,258,750;353,149,650;324,404,880;117,594,645;113,400)

Definition $M = \mathbb{D}^{d \times (n-d)}$

 $V \in \mathbb{R}^{d \times (n-d)}$ tropically rigid : \Leftrightarrow regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induced by V is coarsest

Proposition (Herrmann & J, 2011+)

Let d = 3. If V is tropically rigid, then π_V is a ray of Dr(3, n).

True for all *d*.
 Suffices to check *diagonal cases* where *n* = 2*d*.
 Original proof for *d* = 3 by induction on *n* with *n* = 6 as the base cases.

Definition $V \in \mathbb{D}^{d \times (n-d)}$ to

 $V \in \mathbb{R}^{d \times (n-d)}$ tropically rigid : \Leftrightarrow regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induced by V is coarsest

Proposition (Herrmann & J, 2011+)

Let d = 3. If V is tropically rigid, then π_V is a ray of Dr(3, n).

• Conjecture: True for all d.

Suffices to check diagonal cases where n = 2d.

• Original proof for d = 3 by induction on *n* with n = 6 as the base case.

Definition $V \in \mathbb{R}^{d \times (n-d)}$ tropically rigid : \Leftrightarrow regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induced by V is coarsest

Theorem (Herrmann & J, 2011+; Speyer, EST 13 Dec 2011 13:11:08) Let d = 3. If V is tropically rigid, then π_V is a ray of Dr(d, n).

• Conjecture: True for all d.

[done]

- Suffices to check *diagonal cases* where n = 2d.
 - Original proof for d = 3 by induction on n with n = 6 as the base case.

Definition $V \in \mathbb{R}^{d \times (n-d)}$ tropically rigid : \Leftrightarrow regular subdivision of $\Delta_{d-1} \times \Delta_{n-d-1}$ induced by V is coarsest

Theorem (Herrmann & J, 2011+; Speyer, EST 13 Dec 2011 13:11:08) Let d = 3. If V is tropically rigid, then π_V is a ray of Dr(d, n).

• Conjecture: True for all d.

[done]

- Suffices to check *diagonal cases* where *n* = 2*d*.
 - Original proof for d = 3 by induction on n with n = 6 as the base case.

Examples Rays of Dr(3, 8)

• these make up for 2 + 2 + 1 + 1 = 6 types of rays of Dr(3, 8)

- 1 more tropical quadrangle
- 4 types of splits
- 1 ray with a non-planar tight span
- all of them contained in Gr(3, 8)

(tropically rigid) (tropically rigid)

(tropically rigid)

 \rightsquigarrow gives 12 as the grand total

[Macaulay2]

Main Results

Theorem (Herrmann & J. 2011+)

For arbitrary $V \in \mathbb{R}^{3 \times (n-3)}$ the tight span of the matroid subdivision of Dr(3, n) induced by π_V coincides with (the natural polytopal subdivision of) tconv V.

Theorem (Herrmann & J. 2011+)

The tight span of a ray of Dr(3, n) is either a line segment (and the ray is a split) or a pure two-dimensional simplicial complex which is contractible.

• splits of $\Delta(d, n)$ were known [Herrmann & J. 2008]

Main Results

Theorem (Herrmann & J. 2011+)

For arbitrary $V \in \mathbb{R}^{3 \times (n-3)}$ the tight span of the matroid subdivision of Dr(3, n) induced by π_V coincides with (the natural polytopal subdivision of) tconv V.

Theorem (Herrmann & J. 2011+)

The tight span of a ray of Dr(3, n) is either a line segment (and the ray is a split) or a pure two-dimensional simplicial complex which is contractible.

• splits of $\Delta(d, n)$ were known [Herrmann & J. 2008]

Main Results

Theorem (Herrmann & J. 2011+)

For arbitrary $V \in \mathbb{R}^{3 \times (n-3)}$ the tight span of the matroid subdivision of Dr(3, n) induced by π_V coincides with (the natural polytopal subdivision of) tconv V.

Theorem (Herrmann & J. 2011+)

The tight span of a ray of Dr(3, n) is either a line segment (and the ray is a split) or a pure two-dimensional simplicial complex which is contractible.

• splits of $\Delta(d, n)$ were known [Herrmann & J. 2008]

- Does the tropical complex always coincide with the tight span of the induced matroid subdivision, that is, for arbitrary *d* ≥ 4?
 - suffices to look at the diagonal cases where n = 2d
 - would show that tropically rigid point configurations can always be raised to rays of the Grassmannian
- Are all rays with a non-planar tight span induced by tropical point configurations?
- Can you relate the tight span of any ray of the Dressian to a membrane in a Bruhat–Tits-building of type A_{d-1}?
 - consider Plücker embedding of (tropical) Grassmannian
 - (weaker) combinatorial version: Is the tight span a flag simplicial complex?

[irrelevant]

- Does the tropical complex always coincide with the tight span of the induced matroid subdivision, that is, for arbitrary *d* ≥ 4? [Speyer: YES!]
 - suffices to look at the diagonal cases where n = 2d
 - does show that tropically rigid point configurations can always be raised to rays of the Grassmannian
- Are all rays with a non-planar tight span induced by tropical point configurations?
- Can you relate the tight span of any ray of the Dressian to a membrane in a Bruhat–Tits-building of type \tilde{A}_{d-1} ? [Werner]
 - consider Plücker embedding of (tropical) Grassmannian
 - (weaker) combinatorial version: Is the tight span a flag simplicial complex?

[irrelevant]

- Does the tropical complex always coincide with the tight span of the induced matroid subdivision, that is, for arbitrary *d* ≥ 4? [Speyer: YES!]
 - suffices to look at the *diagonal cases* where *n* = 2*d*
 - does show that tropically rigid point configurations can always be raised to rays of the Grassmannian
- Are all rays with a non-planar tight span induced by tropical point configurations?
- Can you relate the tight span of any ray of the Dressian to a membrane in a Bruhat–Tits-building of type A_{d-1}? [Werner]
 - consider Plücker embedding of (tropical) Grassmannian
 - (weaker) combinatorial version: Is the tight span a flag simplicial complex?

[irrelevant]

- Does the tropical complex always coincide with the tight span of the induced matroid subdivision, that is, for arbitrary *d* ≥ 4? [Speyer: YES!]
 - suffices to look at the *diagonal cases* where *n* = 2*d*
 - does show that tropically rigid point configurations can always be raised to rays of the Grassmannian
- Are all rays with a non-planar tight span induced by tropical point configurations?
- Can you relate the tight span of any ray of the Dressian to a membrane in a Bruhat–Tits-building of type \widetilde{A}_{d-1} ? [Werner]
 - consider Plücker embedding of (tropical) Grassmannian
 - (weaker) combinatorial version: Is the tight span a flag simplicial complex?

