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Abstract. It is conjectured that every 4-connected plane triangulation has a triangle contact
representation with homothetic triangles. We outline a roadmap for a proof of this conjecture
and report on partial results and experimental evidence.

1 Introduction

Our interest in this paper are triangle contact representations of planar graphs with homothetic
triangles, i.e, vertices are represented by a set of disjoint triangles that are identical up to scal-
ings and translations, two triangles touch exactly if there is an edge between the corresponding
vertices. See Figure 1. For brevity we will refer to such a representation as a htc-representation.
Using an affine map a htc-representation can be transformed into a htc-representation with equi-
lateral triangles. The big conjecture is:

Conjecture 1 Every 4-connected planar triangulation has a triangle contact representation with
homothetic triangles, i.e., a htc-representation.
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Figure 1: A homothetic triangle contact representation of a planar graph.

The conjecture came up during the Graph Drawing workshop in Bertinoro 2007. In [4] it was
shown that max-tolerance graphs are the intersection graphs of homothetic triangles. Lehmann
asked whether every planar graph is a max-tolerance graph. Kratochv́ıl asked for contact repre-
sentations. A result of the workshop was that planar partial 3-trees (also known as subgraphs of
stacked triangulations), and hence also series-parallel graphs, are contact graphs of homothetic
triangles, see [1].

De Fraysseix et al. [2] have shown that relaxing the condition on the triangles from equilateral
to isosceles allows a contact representation for every planar graph. See Figure 2. Actually, they
show that such a representation is possible such that each contact is of the type corner vs. side,
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Figure 2: A isocseles triangle contact representation of the octahedron graph.

we call such a contact a pure contact. If we ask for a htc-representation of the octahedron graph,
then we have to use triangles of equal size for the inner vertices u, v and w. Consequently, there
is a point where three corners meet and the 3-face formed by u, v and w is only represented by
their mutual contact point, it is degenerated to size 0. This implies that graphs obtained from the
octahedron by glueing a triangulation H into the face u, v, w can only have htc-representations
where the triangles representing the inner vertices of H are of size 0. We shall not allow this. The
kind of degeneracy described with this example of the octahedron graph depend on the existence
of separating 3-cycles, i.e., they can only occur if the graph is not 4-connected. This is why we
have the restriction in the conjecture.

An essential role in our investigations will be played by Schnyder woods:

Definition 1 An orientation and coloring of the inner edges of T with colors red, green and blue
is a Schnyder wood if:

(1) All edges incident to a1 are red, all edges incident to a2 are green and all edges incident to
a3 are blue.

(2) Every inner vertex v has three outgoing edges colored red, green and blue in clockwise order.
All the incoming edges in an interval between two outgoing edges are colored with the third
color, see Figure 3 (left).

Figure 3: Left: Schnyder’s edge coloring rule.
Right: Triangle contacts induce coloring and orientation of edges.

It was observed by de Fraysseix et al. [2] that a triangle contact representation of a triangulation
where all contacts are pure induces a Schnyder wood. The construction is as indicated in Figure 3
(right): Color the corners of the triangles in the representation red, green, blue. Given an edge
u, v, look at the contact of the corresponding triangles, if a corner of u’s triangle is involved, then
color the edge with the color of that corner and orient it from u to v.
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The construction of a triangle contact representation of a planar graph, in [2], is as follows1:
First augment the planar graph H to a triangulation G such that H is an induced subgraph
of G. Compute a Schnyder wood of G and use this structure to build a pure triangle contact
representation. The consequence is that every Schnyder wood of a triangulation G is induced by
some triangle contact representation of G. This is not true for htc-representations.

The steps in our approach for htc-representations of triangulations are as follows:

• Compute a Schnyder wood S of the input graph G.

• Based on S build a system AS of linear equations.

• Compute a solution xS of AS .

If all entries of xS are non-negative we are done; based on xS we can build a htc-representation of
G that induces S. If there are negative entries in xS we use the sign information to transform S

into another Schnyder wood S′ and iterate. We conjecture that independent of the choice of S

the sequence S → S′ → S′′ → has a finite length, i.e., there is a k such that the solution xS(k) of
the system corresponding to S(k) is non-negative.

There is strong experimental evidence that the conjecture is true. We have an implementation
of the approach and computed thousands of htc-representations for planar graphs with up to
500 vertices. We have also restarted the computation for a fixed graph with alternate Schnyder
woods and compared the result. This suggests that a 4-connected plane triangulation with a
prescribed outer face has a unique htc-representation.

In the next section we give some details on the system AS of linear equations and a sketch of
the theoretical results we have so far.

2 Details for the Construction and Partial Results

Let G be a plane triangulation with n vertices and a Schnyder wood S. The system AS can be
written as AS · x = e1 with a (3n − 8) × (3n − 8) matrix AS and the first standard basis vector
e1. The components of x are indexed by the 2n − 5 bounded faces and the n − 3 inner vertices
of G. The first equation is ∑

f∈F(a1)

xf = 1,

where F(a1) is the set of bounded faces incident to the special vertex a1. Every inner vertex
induces three equations, one for each color. For c ∈ {red, green, blue} let Fc(v) be the set of
bounded faces incident to v in the interval where edges of color c are incoming. The equation
corresponding to (v, c) is

−xv +
∑

f∈Fc(v)

xf = 0.

From Figure 3 it is evident that the faces in Fc(v) are exactly the faces whose triangle has a
side contained in the side of v’s triangle opposite to the corner of color c. Therefore, the sum of
sidelengths of triangles for faces in Fc(v) has to equal the sidelength of v’s triangle. The scheme
is illustrated in Figure 4.

The following result implies that the system AS has a unique solution.

Fact 1 The matrix AS is non-degenerate, i.e., det(AS) 6= 0.

1In [2] they speak about canonical orderings instead of Schnyder woods, but these are equivalent concepts.
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Figure 4: A cutout of a htc-representation and some of the equations it implies. The equations
from top to bottom are (w, red), (v, green), (v, blue) and (v, red).
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(a) Schnyder wood of the icosahedron. The
faces with negative values in the solution vec-
tor x are shaded. The boundary of the shaded
area is a directed cycle.

Figure 5
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(b) Schnyder wood of the icosahedron that re-
sults from reverting the cycle in Figure 5a.
The new solution vector is non-negative.

The idea for the proof is to show that (−1)n−3 det(AS) is the number of perfect matchings of
an auxiliary graph HS . Multiplying the columns of AS corresponding to vertices with −1 yields a
01-matrix ÂS . The graph HS is the bipartite graph with adjacency matrix ÂS , i.e., it has 6n−16
vertices, one for each equation of AS , one for each inner vertex of G and one for each bounded
face of G. The non-vanishing summands

∏
i âi σ(i) in the Leibniz-expansion of det(ÂS) are in

bijection to the perfect matchings Mσ of HS . The contribution of Mσ to det(ÂS) is sign(σ).
Define the sign of a matching Mσ as sign(Mσ) = sign(σ). The crucial observations for the proof
of Fact 1 are:

(1) If M and M ′ are perfect matchings of HS , then sign(M) = sign(M ′).

(2) HS has a perfect matching.

The proof is based on properties of HS : The graph HS is planar and all its bounded faces are of
length 6.

Fact 2 If the unique solution x of AS · x = e1 is non-negative, then there is a htc-representation
where the triangles of inner vertices and bounded faces have sidelengths as given by the vector x.

Fact 3 If the unique solution x of AS · x = e1 has negative entries, then we can decompose the
boundary between negative and non-negative faces into cycles that are directed in the Schnyder
wood.

From the theory of Schnyder woods it is know that the coloring of edges can be recovered if
only the orientation of edges is given and indeed every 3-orientation, i.e., orientation such that
every inner vertex has out-degree 3, corresponds to a Schnyder wood. This implies that a directed
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cycle of a Schnyder wood S can be reverted and appropriate recoloring yields another Schnyder
wood S′.

Therefore, Fact 3 implies that whenever the solution x to the system AS · x = e1 has negative
components, this solution can be used to move to another Schnyder wood S′. Figure 5 shows an
example for Fact 3 and the transition S → S′.

Let S and S′ be Schnyder woods of a triangulation G. In [3] it is shown that S′ can be reached
from S via a series of triangle-flips, i.e., via a series of reversals of directed cycles of length three.
Moreover if γ is a simple directed cycle in a Schnyder wood S, then S′ = flip(S, γ) can be obtained
by flipping the triangles contained in γ.

Therefore it is particularly important to understand the effect of triangle-flips on the solution
vectors.

Fact 4 If Schnyder woods S and S′ are related by a triangular-flip at a face f and x, x′ are the
solutions of the systems AS and AS′, then

sign(xf ) 6= sign(x′
f ).

This suggests that starting with some Schnyder wood S and flipping negative faces may lead
to Schnyder wood without negative faces, i.e., to a non-negative solution, hence, to a htc-
representation. This is what happens in the experiments.

The proof of Fact 4 again uses the correspondence between determinants and matchings that
was exploited for Fact 1. Indeed the solution x of ÂS · x = e1 is explicitely given as the first
column of the inverse of ÂS wherefore the entry for a vertex or face z can be written in terms of
the determinant of a cofactor: det(ÂS) xz = ±det([ÂS ]1,z).
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