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Abstract. Planar graphs are known to have contact representations of various types. The most
prominent example is Koebe’s ‘kissing coins theorem’. Its rediscovery by Thurston lead to effective
versions of the Riemann Mapping Theorem and motivated Schramm’s Monster Packing Theorem.
Monster Packing implies the existence of contact representations of planar triangulations where
each vertex v is represented by a homothetic copy of some smooth strictly-convex prototype Pv.

With this work we aim at computable approximations of Schramm representations. For fixed K
approximate Pv by an equiangular K-gon Qv with horizontal basis. From Schramm’s work it
follows that the given triangulation also has a contact representation with homothetic copies of
these K-gons. Our approach starts by guessing a K-contact-structure, i.e., the combinatorial
structure of a contact representation. From the combinatorial data, we build a system of linear
equations whose variables correspond to lengths of boundary segments of the K-gons. If the system
has a non-negative solution, this yields the intended contact representation. If the solution of the
system contains negative variables, these can be used as sign-posts indicating how to change the
K-contact-structure for another try.

In the case K = 3 the K-contact-structures are Schnyder woods, and in the case K = 4 they
are transversal structures. As in these cases, for K ≥ 5 the K-contact-structures of a fixed graph
are in bijection to certain integral flows, and can be viewed as elements of a distributive lattice.

The procedure has been implemented, it computes the solution with few iterations. The
experiments involved graphs with up to one hundered vertices.

∗Partially supported by DFG grant FE-340/11-1.



1 Introduction

Representations of graphs by contacts of geometric objects are actively studied in graph theory and
geometry. An early result in this direction is Koebe’s circle packing theorem from 1936, it states
that every planar graph can be represented as the contact system of a set of interiourly disjoint
circles. Koebe arrived at this result in the context of conformal mapping of ‘contact domains’.
Unaware of Koebe’s work Thurston reproved the circle packing theorem and connected it to the
Riemann Mapping Theorem. This line of research resulted in discretizations of conformal mapping
and has strong impact in the area of discrete differential geometry. We refer to [21] and [2] for
further details on those connections.

A very strong generalization of Koebe’s theorem is Schramm’s Convex Packing Theorem (Theo-
rem 2) from 1990 [16]. The theorem states that if each vertex v of a planar triangulation G has
a prescribed convex prototype Pv, then there is a contact representation of G where each vertex
is represented by a (possibly degenerate) homothet of its prototype. When the prototypes have a
smooth boundary there are no degeneracies. With this work we aim at computable approximations
of Schramm representations. The idea is to approximate the prototypes Pv with simpler shapes,
we use equiangular K-gons. Clearly, a sequence of approximating contact representations with
K-gons, one for each positive integer K and each of them confined to the unit square, will contain a
subsequence converging to a representation with the prototypes Pv.

Contact representations of graphs with polygons have also been studied widely. Triangle contact
representations have been investigated by De Fraysseix et al. [6]. They observed that Schnyder woods
can be considered as combinatorial encodings of triangle contact representations of triangulations
and that any Schnyder wood can be used to construct a corresponding triangle contact system.
Gonçalves et al. [12] observed that Schramm’s Convex Packing Theorem can be used to prove the
existence of contact representations with homothetic triangles for all 4-connected triangulations.
A more combinatorial approach to this result which aims at computing the representation as the
solution of a system of linear equations which are based on a Schnyder wood was described by
Felsner [8]. On the basis of this approach Schrezenmaier [19] reproved the existence of homothetic
triangle contact representations.

Representations of graphs with side contacts of rectangles have applications in architecture and
VLSI design. For links into the extensive literature we recommend [4] and [9]. Representations
of graphs using squares or, more precisely, graphs as a tool to model packings of squares already
appear in classical work of Brooks et al. [3] from 1940. Schramm [17] proved that every 5-connected
inner triangulation of a 4-gon admits a square contact representation. Again there is a combinatorial
approach to this result which aims at computing the representation as the solution of a system of
linear equations, see Felsner [9]. In this context transversal structures play the role of Schnyder
woods. As in the case of homothetic triangles this approach is based on an iterative procedure,
however, a proof that the iteration terminates is still missing. On the basis of the approach
Schrezenmaier [18] reproved Schramm’s Squaring Theorem.

Before stating our results we introduce some precise terminology. A K-gon contact system S is a
finite system of convex K-gons in the plane such that the interiors of any two K-gons are disjoint. If
all K-gons of S are equiangular K-gons (i.e., all interior angles are K−2

K π) with a horizontal segment
at the bottom, we call S an equiangular K-gon contact representation. The contact system has an
exceptional touching if there is a point where two corners of K-gons meet. The contact graph G∗(S)
of S is the graph that has a vertex for every K-gon and an edge for every contact of two K-gons
in S. Note that G∗(S) inherits a crossing-free embedding from S. For a given plane graph G and a
K-gon contact system S with G∗(S) = G we say that S is a K-gon contact representation of G.

We will only consider the case that G is an inner triangulation of a K-gon, i.e., the outer face
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Figure 1: An equiangular pentagon contact representation of the graph shown in black where each
inner vertex is represented by a regular pentagon.

Figure 2: Parts of equiangular 6-gon and 7-gon contact representations of the same graph.

of G is a K-gon with vertices a1, . . . , aK in clockwise order, all inner faces are triangles, there are no
loops or multiple edges, and there are no additional edges between the outer vertices. Our interest
lies in regular K-gon contact representations of G with the additional property that a1, . . . , aK
are represented by line segments s1, . . . , sK which together form an equiangular K-gon. The line
segment s1 is always horizontal and at the top, and s1, . . . , sK is the clockwise order of the segments
of the K-gon. Figure 2 shows contact systems of 6-gons and 7-gons respectively.

Let G be an inner triangulation of a K-gon and for each inner vertex v of G let Pv be a
prescribed equiangular K-gon. From Schramm’s Convex Packing Theorem it follows that G has a
representation as contact graph of homothets of the prototypes (see Section 2). The representation
is non-degenerate whenever K ≥ 5 and odd, or K ≥ 8 and even. For K = 3 and K = 6 the graph
needs to be 4-connected to guarantee a non-degenerate representation, this is because the three
K-gons corresponding to a triangle in G can touch in a single point such that there is no space left
for the K-gons of vertices in the interior of this triangle.

We propose a new method for computing equiangular K-gon contact representations. The idea is
to guess the combinatorial structure of the representation of G, i.e., for each edge uv of G guess
whether the contact involves a corner of Pu or a corner of Pv and also guess which corner of the
respective prototype is involved. The guess is encoded in a K-contact-structure. The K-contact-
structure leads to a system of linear equations whose variables correspond to lengths of boundary
segments of the K-gons. The system is non-singular. If it has a non-negative solution, the values
of the variables determine the geometry of a K-gon contact representation. If the solution of the
system contains negative values, then it is possible to locally modify the K-contact-structure in the
local neighborhood of negative variables. The modified K-contact-structure corresponds to a new
system of equations which has a new solution. This yields an iterative procedure which hopefully
stops with a positive solution, i.e., with a K-gon contact representation.
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We cannot prove that the above iterative procedure stops. However the algorithm has been
implemented and was used for extensive experiments. These have always been successful. Similar
algorithms for the computation of contact representations by homothetic triangles or squares have
been described by Felsner [8, 9]. These have also been implemented and successfully tested, c.f.
Rucker [15] and Piccetti [13] respectively. We therefore conjecture that the proposed algorithm for
computing equiangular K-gon contact representations always terminates with a solution.

In Section 3 we introduce K-contact-structures of G, these are certain weighted orientations of a
supergraph of G. In Section 4 we enhance K-contact-structures with a K-coloring of the edges. The
color classes are directed forests, they somehow resemble the trees of a Schnyder wood. In Section 5
we show that there is a distributive lattice on the set of K-contact-structures of a fixed graph G
and describe the combinatorial change in K-contact-structures that form a cover pair. In Section 6
we discuss the system of linear equations and prove that it is non-singular. Section 7 describes the
iteration which is proposed as a heuristic for computing equiangular K-gon contact representations.
In Section 8 we describe the experiments we made to test the heuristic.

In this paper we focus on odd K ≥ 5. The case K = 3 is well-studied and the case K ≥ 6 and
even will be added in a later version of this paper. The case K = 5 was first studied in the bachelor
thesis of Steiner [20] and further elaborated by the present team of authors [11].

In the main part we skip most of the proofs and some lemmas. They can be found in the Appendix.
The results of the experiments described in Section 8 can also be found in the Appendix.

2 The existence of equiangular K-gon contact representations

In this section let G be an inner triangulation of a K-gon and let Vinner be the set of inner vertices
of G. Further, for each v ∈ Vinner, let Pv be an equiangular K-gon with a horizontal segment at the
bottom. We call Pv the prototype of v. A (positive) homothetic copy of a prototype Pv is a set in
the plane that can be obtained from Pv by scaling (with a positive factor) and translation. By a
homothetic copy we always mean a positive homothetic copy.

Theorem 1. For odd K ≥ 5 there exists an equiangular K-gon contact representation of G in
which each v ∈ Vinner is represented by a homothetic copy of its prototype Pv.

The proof of this theorem is based on the following general result about contact representations
by Schramm.

Theorem 2 (Convex Packing Theorem [16]). Let H be an inner triangulation of the triangle abc.
Further let C be a simple closed curve in the plane partitioned into three arcs Qa,Qb,Qc, and for
each interior vertex v of H let Qv be a convex set in the plane containing more than one point.
Then there exists a contact representation of a supergraph of H (on the same vertex set, but possibly
with more edges) where each interior vertex v is represented by a single point or a homothetic copy
of its prototype Qv and each outer vertex w by the arc Qw.

Proof of Theorem 1. By adding edges from aK+1
2

to aK−3
2
, aK−5

2
, . . . , a1 and edges from aK+3

2

to aK+7
2
, aK+9

2
, . . . , a1 in this order in the outer face of G, it becomes a triangulation G′ with outer

face a1aK+1
2
aK+3

2
. We define the arcs Qa1 ,QaK+1

2

,QaK+3
2

to be elongations of the edges s1, sK+1
2

and sK+3
2

of an equiangular K-gon A with horizontal segment s1 at the top, such that Qa1 ∪
QaK+1

2

∪QaK+3
2

is a triangle and therefore a simple closed curve. We define the convex sets Qai for

all i ∈ {2, . . . , K−12 , K+5
2 , . . . ,K} to be line segments parallel to the edge si of the pentagon A (see

Fig. 3). Finally, for each interior vertex v of G let Qv := Pv be the given prototype of v.
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Figure 3: Prototypes for the outer vertices of G (for K = 7).

Now we can apply Theorem 2. Therefore there exists a contact representation of a supergraph
of G′ where a1, aK+1

2
, aK+3

2
are represented by Qa1 ,QaK+1

2

,QaK+3
2

and the other vertices v by a

homothetic copy of Qv or a single point.
Next we will prove that in this contact representation of G′ none of the homothetic copies of the

prototypes is degenerate to a single point. So assume there is a degenerate copy in this contact
representation. Let H be a maximal connected component of the subgraph of G′ induced by the
vertices whose K-gons are degenerate to a single point. Since the line segments corresponding to the
three outer vertices are not degenerate, H has to be bounded by a cycle C of vertices whose K-gons
respectively line segments are not degenerate. In the contact representation all vertices of H are
represented by the same point and therefore all K-gons respectively line segments representing the
vertices of C meet in this point. But since the interior angles of equiangular K-gons are too large
for K ≥ 5, at most two of these can meet in a single point. Thus C is a 2-cycle, in contradiction to
our definition of inner triangulations that does not allow multiple edges.

After cutting the segments Qai , the vertices a1, . . . , aK are represented by an equiangular K-gon
with a horizontal segment at the top and we obtain a regular K-gon contact representation of G.

Similar proofs have been given for the case K = 3 in [12] and K = 5 in [20] and [11].

3 The combinatorial structure of equiangular polygon contact
representations

For the entire section let G be an inner triangulation of a K-gon, K ≥ 3 odd. We call an inner face
of G a completely inner face if it is only incident to inner edges. We denote the set of inner edges of
a planar graph H by Einner(H). For the directed graphs used later in this section we denote the
sets of incoming and outgoing edges of a vertex v by Ein(v) and Eout(v).

Definition 1. The stack extension G? of G is the extension of G that contains an extra vertex in
every completely inner face. These new vertices are connected to all three vertices of the respective
face. We call the new vertices stack vertices and the vertices of G normal vertices. Analogously, we
call the new edges stack edges and the edges of G normal edges.

Definition 2. A K-contact-structure on G is an orientation and weighting w : Einner(G
?)→ N of

the inner edges of G? such that

(P1) w(e) = 1 for each normal edge e,

(P2) each stack edge is oriented towards its incident stack vertex,

(P3) the out-flow of each normal vertex u is K, i.e.,
∑

e∈Eout(u)
w(e) = K,

(P4) the in-flow of each stack vertex v is K−3
2 , i.e.,

∑
e∈Ein(v)

w(e) = K−3
2 .
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Figure 4: The graph G?+(A) for the 7-contact-structure A induced by the shown contact representa-
tion.

Definition 3. Let A be a K-contact-structure on G. Then we can associate with A a modified
version of G? where each inner edge e is replaced by w(e) parallel edges and all edges are oriented
as in A. We denote this graph by G?+(A).

The following theorem shows the key correspondence between K-contact-structures and equian-
gular K-gon contact representations.

Theorem 3. Every equiangular K-gon contact representation induces a K-contact-structure on its
contact graph (see Fig. 4 for an illustration).

Proof. Let S be an equiangular K-gon contact representation of G = G∗(S) without exceptional
touchings. Let e be an inner normal edge of G?. Then e corresponds to the contact of a corner of a
K-gon A and a segment of a K-gon B in S. We orient the edge e from the vertex corresponding
to A to the vertex corresponding to B. Now let e = uv be a stack edge with normal vertex u and
stack vertex v. Then u corresponds to a K-gon A of S and v to an area F in S which is enclosed
by A and two more K-gons or outer segments si. Note that F is a pseudotriangle, i.e., a polygon
with exactly three convex corners and arbitrarily many concave corners. We define w(e) to be the
number of concave corners of F which are also corners of A.

Let u be a normal vertex of G? and A the corresponding K-gon in S. Since each corner of A
either corresponds to an outgoing normal edge of u or contributes exactly one amount of weight to
an outgoing stack edge of u, the out-flow of u is exactly K. Thus, property (P3) is fulfilled.

For showing property (P4) consider the following labeling of the segments and corners of the
K-gons of S: The segments of a K-gon get the labels 1, . . . ,K in clockwise order, starting with
label 1 at the horizontal segment at the bottom. Further also the corners get the labels 1, . . . ,K in
clockwise order, starting with label 1 at the corner at the top. Then for geometric reasons each
corner-segment contact of two K-gons involves a corner and a segment with the same labels. Let F
be the pseudotriangle in S corresponding to a stack vertex of G?. Let a be the number of segments
involved in F and let b be the number of corners involved in F . Then a = b since the border of F is
an alternating sequence of segments and corners. Further a+ b = K + 3 since for each label l either
a segment or a corner with label l is involved in F , except for the three convex corners of F where
both, a segment and a corner of the same label, are involved (see Fig.5). Therefore, the number of
concave corners involved in F is b− 3 = K+3

2 − 3 = K−3
2 .

In the case that S has exceptional touchings, each exceptional touching of two K-gon corners
can be interpreted in two ways as a corner-segment contact with infinitesimal distance to the
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Figure 5: A pseudotriangle F in an equiangular K-gon contact representation. In the middle the
edges involved in F have been transferred to a regular K-gon. On the right there is an
abstract representation we will use later.

other corner. We choose one of these interpretations and proceed as before. Hence, the K-contact-
structure induced by an equiangular K-gon contact representation with exceptional touchings is not
unique.

Theorem 4. Let G be an inner triangulation of a K-gon. Then there exists a K-contact-structure
on G.

Theorem 4 immediately follows from Theorem 1 and Theorem 3. Since we aim for a theory
independent from the Monster Packing Theorem by Schramm, we give another elementary proof of
Theorem 4.

For a plane graph H and a subset A of the vertices of H we denote the set of edges of H incident
to a vertex of A by Einc(H,A) and the set of faces of H incident to a vertex of A by Finc(H,A). If
the graph is clear from the context, we also use the shorter notations Einc(A) and Finc(A).

Lemma 1. Let T be a triangulation and let A be a set of k ≥ 1 vertices of T . Then

|Einc(T,A)| ≥ 3k , |Finc(T,A)| ≥ 2k + 1 .

Proof. Let A := V (T ) \ A. Then Einc(A) = E(T ) \ E(T [A]). Since T is a triangulation, we have
|E(T )| = 3|V (T )| − 6. As T [A] is a simple plane graph, we also have |E(T [A])| ≤ 3(|V (T )| − k)− 6.
Putting this together we obtain the inequality |Einc(A)| ≥ 3k.

The faces of T contained in F (T ) \ Finc(A) are also faces of T [A]. But at least one face of T [A] is
not a face of T since it has a vertex of A in its interior. Thus |Finc(A)| ≥ |F (T )| − (|F (T [A])| − 1).
As T is a triangulation, |F (T )| = 2|V (T )| − 4. As T [A] is planar, |F (T [A])| ≤ 2(|V (T )| − k)− 4.
Putting this together we get |Finc(A)| ≥ 2k + 1.

Proof of Theorem 4. Let H be the graph obtained from G? by replacing each stack edge by K−3
2

parallel edges. We will show that there exists an orientation of the inner edges of H such that
each normal vertex has out-degree K and each stack vertex has in-degree K−3

2 . Then we obtain a
K-contact-structure on G by giving each normal edge the orientation from H and by setting the
weight of each stack edge e = uv with normal vertex u and stack vertex v to the number of edges
in H oriented from u to v.

Note that, instead of requiring the in-degree of a stack vertex v to be K−3
2 , we can require its

out-degree to be deg(v)− K−3
2 = K − 3. Orientations with prescribed out-degrees for all vertices

have been studied in [7] under the name of α-orientations. From there we take the following
sufficient condition for the existence of the orientation we seek for: The orientation exists if for
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every subset W of vertices of H, if W consists of k normal inner vertices and l stack vertices,
then |Einc(H,W )| ≥ kK + l(K − 3) with equality if W is the set of all inner vertices of H.

Let W be a set of inner vertices of G? and let X and Y be the sets of normal vertices and
stack vertices from W . We have to show that |Einc(H,W )| ≥ |X|K + |Y |(K − 3). To show the
inequality we count edges incident to W in G?. Let Eold

inc (G?,W ) = Einc(G,X) be the edges of G
which are incident to W . From Lemma 1 we obtain that |Eold

inc (G?,W ) ≥ 3|X|. Let Enew
inc (G?,W ) =

Einc(G
?,W ) \ Eold

inc (G?,W ). Note that |Enew
inc (G?,W )| ≥ 2|W | implies |Einc(H,W )| ≥ |W |(K − 3) +

3|X| = |X|K + |Y |(K − 3).
To estimate |Enew

inc (G?,W )| we look at X and Y independently. First we define G◦ to be G minus
the edges of the outer cycle. Note that all the inner faces of G◦ are completly inner faces of G, i.e.,
in G? all these faces contain stack vertices. Let F be the set of inner faces of G◦. From Lemma 1 it
follows that every subset X ′ of X is incident to at least 2|X ′| faces in F . This is the Hall condition
for the bipartite graph whose vertices are two copies of X on one side and F on the other side,
and edges are given by incidences. A maximal matching M on this graph is an assignment of two
faces to every element of X. This yields 2|X| stack edges incident to vertices of X in G?. Now
consider a vertex y ∈ Y , the face of G containing y has been assigned to at most one vertex from X
through M . Therefore, we can assign the remaining two edges to y. Doing this for all y ∈ Y we
get 2|Y | stack edges incident to vertices of Y which have not been counted for X. This shows
|Enew

inc (G?,W )| ≥ 2|W |.
If G has n vertices, then it has n −K inner vertices and 2n −K − 2 inner faces. Hence, the

number of stack vertices in G? is 2(n −K − 1). It remains to verify that |Einc(H,Vinner(H))| =
(n−K)K + 2(n−K − 1)(K − 3). Each stack vertex is incident to 3 stack edges in G?, this yields
3K−32 2(n−K − 1) edges of H. In addition there are 3n− 2K − 3 edges which are incident to inner
vertices in G. Since 3(K − 3)(n−K − 1) + (3n− 2K − 3) = (n−K)K + 2(n−K − 1)(K − 3), this
completes the proof.

4 Coloring K-contact-structures

In this section let G be an inner triangulation of a K-gon, let A be a K-contact-structure on G and
let G?+ := G?+(A). In the following, the set of colors 1, . . . ,K is to be understood as representatives
modulo K, i.e., colors c and c+ zK are the same for any z ∈ Z.

Definition 4. A proper coloring of G?+ is a coloring of the inner edges of G?+ in the colors 1, . . . ,K
such that

(C1) for i = 1, . . . ,K all edges incident to the outer vertex ai have color i,

(C2) each normal vertex has exactly one outgoing edge in each color and the clockwise order of the
colors is 1, . . . ,K,

(C3) incoming edges of a normal vertex, which are located between the outgoing edges of colors c
and c+ 1, have color c− K−1

2 .

An equiangular K-gon contact representation S induces a K-contact-structure together with a
proper coloring. To see this, recall the construction in the proof of Theorem 3. Each inner edge
of G?+ corresponds to a corner of a K-gon of S. We color the corners of each K-gon of S in the
colors 1, . . . ,K in clockwise order, starting with color 1 at the corner at the top (opposite to the
horizontal segment at the bottom). Then each inner edge of G?+ gets the color of the corner it
corresponds to.
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We want to show that this coloring is a property of the K-contact-structure itself, i.e., each
K-contact-structure has a unique proper coloring. The idea of the construction of the colors will be
as follows: We start with an inner edge e of G?+ and follow a properly defined path that at some
point reaches one of the outer vertices. Then the color of this outer vertex will be the color of e.
This approach is similar to the proof of the bijection of Schnyder Woods and 3-orientations in [5].

Now we will define the paths starting with an inner edge e and ending at an outer vertex that
allow us to define the color of e. In the definition of these paths we aim at continuing with the
outgoing edge on the opposite side of a vertex. This is motivated by the following geometric idea: If
we are already given an equiangular contact representation, such paths keep a constant slope and
therefore run into an outer segment with corresponding slope. If we run into a stack vertex, there
is no unique opposite edge. Therefore, the path of e is not unique, but we can associate a unique
outer vertex with e.

Definition 5. Let e = uv be an outgoing inner edge of G?+ such that u is a normal vertex. We will
recursively define a set P(e) of walks starting with e by distinguishing several cases concerning v.

• If v is an outer vertex, i.e., v = ai for some i, the set P(e) contains only one path, the path
only consisting of the edge e.

• If v is an inner normal vertex, let e′ be the opposite outgoing edge of e at v, i.e., the K+1
2 th

outgoing edge in clockwise or counterclockwise direction, and we define P(e) := {e+ P : P ∈
P(e′)}.

• If v is a stack vertex, let v1 and v2 be the two vertices of G which follow u in the clockwise
traversal of the facial cycle of G corresponding to v. Further let n1 be the number of edges
from u to v to the left of e and n2 be the number of edges from u to v to the right of e. Let e1 be
the (K−12 −n1)th outgoing edge of v1 in counterclockwise order after the edge v1u and let e2 be
the (K−12 −n2)th outgoing edge of v2 in clockwise order after the edge v2u. Note that ei is well
defined if vi is not an outer vertex, and that not both of v1 and v2 can be outer vertices. If both
of e1 and e2 are well defined, we set P(e) := {e+vv1+P : P ∈ P(e1)}∪{e+vv2+P : P ∈ P(e2)}.
If only ei is well defined, we set P(e) := {e+ vvi + P : P ∈ P(ei)}.

It is not clear that these walks are paths. If they do not cycle, they have to end in an outer
vertex. But we have to prove that they indeed do not cycle.

Lemma 2. Let C be a simple cycle of length ` in G?+ and let all edges of C be inner normal edges.
Then there are exactly K−1

2 `−K edges pointing from C into the interior of C.

Proof. First we view C as a cycle in G. Let k be the number of vertices inside C. Since G is a
triangulation, Euler’s formula implies that there are exactly 2k + `− 2 faces and 3k + `− 3 edges
strictly inside C.

Now we view C as a cycle in G?+. Then the number of edges inside C is

K − 3

2
(2k + `− 2) + (3k + `− 3) = K(k − 1) +

K − 1

2
` .

The number of edges starting at a vertex inside C is kK. Therefore the number of edges pointing
from a vertex of C into the interior is

K(k − 1) +
K − 1

2
`− kK =

K − 1

2
`−K .
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To be able to apply Lemma 2 to the walks defined in Definition 5, we introduce the shortcut of
such a walk that avoids the stack vertices.

Definition 6. Let P be a subwalk of a walk in P(e) for some edge e that starts and ends with
a normal vertex. Then the shortcut P ′ of P is obtained from P by replacing every consecutive
pair uv, vw of edges, where v is a stack vertex, by the edge uw. We call uw a shortcut edge.

Lemma 3. Let P ′ be a shortcut walk of length ` that does not start and does not end with a shortcut
edge. Then the number of edges pointing from the interior vertices of P ′ to the right (left) of P ′

is K−1
2 (`− 1).

Proof. We prove this by induction on the length ` of the walk. Let P ′ = v0, e1, v1, . . . , e`, v`. If e`−1
is not a shortcut edge, the statement immediately follows by induction. So assume that e`−1 is a
shortcut edge and let e′ = v`−2w, e

′′ = wv`−1 be the corresponding edges of the original path P .
Let Q′ be the subwalk of P ′ starting at v0 and ending at w. Note that we can apply the induction
hypothesis to Q′ by assuming that w is a normal vertex. We distinguish three cases.

Case 1: In G the edge v`−2v`−1 (in this orientation) has the face corresponding to w to its
left and in G?+ it is oriented from v`−2 to v`−1. Then let n2 be the number of parallel edges
of e′ = v`−2w (in this orientation) to its right in G?+. Then at v`−2 the path P ′ has exactly n2 + 1
less edges pointing to its right than Q′. The number of edges pointing from P ′ to its right at v`−1
is K − (K−12 − n2) = K−1

2 + n2 + 1. Therefore the total number of edges pointing from P ′ to its
right is by induction K−1

2 (`− 1).
Case 2: In G the edge v`−2v`−1 (in this orientation) has the face corresponding to w to its left

and in G?+ it is oriented from v`−1 to v`−2. Then let n2 be defined as in Case 1. Then at v`−2
the path P ′ has exactly n2 less edges pointing to its right than Q′. The number of edges pointing
from P ′ to its right at v`−1 is K−1

2 + n2. Therefore the total number of edges pointing from P ′ to
its right is by induction K−1

2 (`− 1).
Case 3: In G the edge v`−2v`−1 (in this orientation) has the face corresponding to w to its right.

Then let n1 be the number of parallel edges of e′ = v`−2w (in this orientation) to its left in G?+.
Then P ′ has at v`−2 exactly n1 + 1 more edges pointing to its right than Q′. The number of edges
pointing from P ′ to its right at v`−1 is K−3

2 − n1 = K−1
2 − n1 − 1. Therefore the total number of

edges pointing from P ′ to its right is by induction K−1
2 (`− 1).

Lemma 4. (i) The walks P ∈ P(e) are paths, i.e., there are no vertex repetitions in P .

(ii) Let P1, P2 ∈ P(e) be two paths starting with the same edge e. Then P1 and P2 end in the same
outer vertex.

(iii) Let v be a normal vertex and let e1 = vv1, e2 = vv2 be two different outgoing edges. Further
let P1 ∈ P(e1) and P2 ∈ P(e2) be two paths. Then P1 and P2 do not cross and they end in
different outer vertices.

Proof. For (i) assume that P cycles. Let C be a subcycle of the shortcut of P and let ` be the
length of C. Then, according to Lemma 3, there are at least K−1

2 (`− 1) edges pointing into the
interior of C, in contradiction to Lemma 2 which states that there are only K−1

2 `−K edges pointing
into the interior of C.

For (ii) assume that P1 and P2 coincide up to a vertex v, then P1 goes to the left and P2 to
the right, and at a normal vertex w they meet again (they might already meet at a stack vertex
immediately before w). Note that v has to be a stack vertex and let v′ be its predecessor in P1

and P2. Let Q1 and Q2 be the subpaths of P1 and P2 starting at v′ and ending at w, extended

9



v′′

v′

v

w
w2 w1

Q′1 Q′2

v

w

w1 w2

Q′1 Q′2

s

s

Figure 6: Illustration of the proof of Lemma 4. The edges counted by Q′1 (Q′2) are indicated by
green (red) angles.

by a common artificial normal edge v′′v′ and individual artificial normal edges ww1 and ww2 (see
Fig. 6 (left) for an illustration). For i = 1, 2 let Q′i be the shortcut of Qi and let `i be the
length of Q′i. Due to Lemma 3 there are exactly K−1

2 (`1 − 1) edges pointing from Q′1 to the right
and exactly K−1

2 (`2 − 1) edges pointing from Q′2 to the left. Let C be the cycle formed by the
shortcuts Q′1 and Q′2 without their artificial edges. Then the length of C is `1 + `2− 4 and therefore,
due to Lemma 2, there are exactly K−1

2 (`1 + `2 − 4)−K edges pointing into the interior of C. If we
add the number of edges pointing from Q′1 to the right and the number of edges pointing from Q′2
to the left, we count exactly K too many edges at v′. Hence, the number of edges we count too
many at w is(

K − 1

2
(`1 − 1) +

K − 1

2
(`2 − 1)

)
−
(
K − 1

2
(`1 + `2 − 4)−K

)
−K = K − 1 .

This means that the artificial edges ww1 and ww2 have to be identical and that this artificial edge
is the the only outgoing edge of w we do not count too often. Therefore P1 and P2 continue with
the same edge at w.

Now assume that P1 and P2 end at different outer vertices ai and aj . Let v be the last common
vertex of P1 and P2. Because of the above observation v has to be a stack vertex. Assume that P1

goes to the left at v and P2 goes to the right. Let v′ be the predecessor of v in P1 and P2. Further
let Q1 and Q2 be the subpaths of P1 and P2 starting at v′ and ending at ai and aj , extended by a
common artificial normal edge v′′v′. For i = 1, 2 let Q′i be the shortcut of Qi and let `i be the length
of Q′i. Let `3 ≥ 2 be the length of the path P3 between ai and aj that alternates between outer
and inner normal vertices. Let C be the cycle formed by Q′1, Q

′
2 and P3, and let ` be the length

of C. Then, due to Lemma 2, exactly K−1
2 `−K edges are pointing into the interior of C. Now we

distinguish three cases concerning the intersection of P3 and the two paths Q′1 and Q′2. If P3 has no
edge in common with Q′1 and Q′2, the length of C is ` = (`1 − 1) + (`2 − 1) + `3 = `1 + `2 + `3 − 2.
But the number of edges pointing into the interior of C is at most

K − 1

2
(`1 − 1) +

K − 1

2
(`2 − 1)−K +

`3
2

(K − 2)

=
K − 1

2
(`1 + `2 + `3 − 2)−K − `3

2
<
K − 1

2
`−K .

If P3 shares an edge with Q′1, but not with Q′2, the length of C is ` = (`1− 2) + (`2− 1) + (`3− 1) =
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`1 + `2 + `3 − 4. But the number of edges pointing into the interior of C is at most

K − 1

2
(`1 − 1) +

K − 1

2
(`2 − 1)−K − 1 +

`3 − 2

2
(K − 2)

=
K − 1

2
(`1 + `2 + `3 − 4)−K − 1− `3 − 2

2
<
K − 1

2
`−K .

If P3 shares an edge with Q′1 and with Q′2, the length of C is ` = (`1 − 2) + (`2 − 2) + (`3 − 2) =
`1 + `2 + `3 − 6. But the number of edges pointing into the interior of C is at most

K − 1

2
(`1 − 1) +

K − 1

2
(`2 − 1)−K − 2 +

`3 − 4

2
(K − 2)

=
K − 1

2
(`1 + `2 + `3 − 6)−K − 2− `3 − 4

2
<
K − 1

2
`−K .

In all three cases we have a contradiction and therefore the assumption, that P1 and P2 end in
different outer vertices, was wrong.

For (iii) assume that P1 and P2 have a common vertex different than v and let w be the first
normal vertex of this kind (note that P1 and P2 might already meet at a stack vertex immediately
before w). Let Q1 and Q2 be the subpaths of P1 and P2 that end at w and that are extended by
artificial normal edges at v and at w. We denote the artificial edges at w by ww1 and ww2. Further
let Q′1 and Q′2 be the corresponding shortcuts, and let `1 and `2 be its lengths. Let s be the number
of outgoing edges of v between Q′1 and Q′2 (see Fig. 6 (right) for an illustration). Then because of
the construction of the artificial edges there are exactly s+ 1 outgoing edges of v between the two
artificial edges. Let C be the cycle we get by gluing Q′1 and Q′2 without the artificial edges together.
Then the length of C is `1 + `2 − 4 and therefore, due to Lemma 2, exactly K−1

2 (`1 + `2 − 4)−K
edges are pointing into the interior of C. If we add the number of edges pointing from Q′1 to the
right and the number of edges pointing from Q′2 to the left, we count exactly K − (s+ 1) too many
edges at v. Hence, the number of edges we count too many at w is(

K − 1

2
(`1 − 1) +

K − 1

2
(`2 − 1)

)
−
(
K − 1

2
(`1 + `2 − 4)−K

)
− (K − s− 1) = K + s .

Thus, ww1 is to the left of ww2 and therefore the edges of Q′1 and Q′2 ending in w cannot be both
normal edges. It follows that w is not an outer vertex. Further there are exactly s outgoing edges
of w between ww1 and ww2. Therefore we can inductively repeat the argument for the subpaths
of P1 and P2 starting at w.

Theorem 5. The graph G?+ has a unique proper coloring.

Proof. We begin with the proof of the existence of a proper coloring. We claim that coloring each
inner edge e in color i if the paths in P(e) end in the outer vertex ai yields a proper coloring. Due
to Lemma 4 (i) and (ii) this coloring is well defined. It immediately follows from the definition
of the paths that properties (C1) and (C3) are fulfilled. Let v be an inner normal vertex. Then,
due to Lemma 4 (iii), the outgoing edges of v have pairwise different colors. Since the paths of
two different outgoing edges of v do not cross, the order of the colors of the outgoing edges of v
coincides with the order of the colors of the outer vertices. Therefore, also property (C2) is fulfilled.

Now we show the uniqueness of the proper coloring. Because of properties (C2) and (C3) the
knowledge of the color of an edge incident to an inner normal vertex v implies the knowledge of the
colors of all edges incident to v. Since, due to property (C1), the colors of the edges incident to the
outer vertices are fixed and G is connected, this implies the uniqueness of the colors of all edges.
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5 The distributive lattice of K-contact-structures

Let G be an inner triangulation of a K-gon. The following definitions give us a formalism how to
change a K-contact-structure of G to obtain a new one.

Definition 7. Let A be a K-contact-structure of G. We call a multiset E of oriented edges of G?

flippable in A if

• E is Eulerian,

• each normal edge is contained at most once in E and only in the orientation of A,

• each stack edge e = uv with stack vertex v is contained at most wA(e) times in E in the
orientation from u to v, there is no restriction for the opposite orientation.

Definition 8. Let A be a K-contact-structure of G and let E be a flippable set of edges in A. Then
we can perform a flip on A and obtain a new K-contact-structure A′ by changing the orientation
of all normal edges in E, and by setting wA′(e) := wA(e)− a+ b for each stack edge e = uv with
normal vertex u and stack vertex v if e is contained a times in E oriented from u to v and b times
oriented from v to u.

It can easily be seen that a flip indeed yields a new K-contact-structure. We can even reach every
K-contact-structure A′ from A by flipping a suitable flippable set of edges.

These flipping operations already show the close relation between K-contact-structures and integral
flows on G?. We now want to formalize this relation and thereby obtain the structure of a distributive
lattice on the set ofK-contact-structures ofG. In particular, K-contact-structures can be equivalently

modeled as flows f : Einner(
−→
G?)→ Z on a fixed orientation

−→
G? of G? where each stack edge is oriented

towards the incident stack vertex and each normal edge obtains an arbitrary fixed orientation. In
such a flow the excess of a vertex v is defined as ω(v) :=

∑
e∈Ein(v)

f(e)−
∑

e∈Eout(v)
f(e).

Definition 9. A flow f : Einner(
−→
G?)→ Z is called a K-contact-flow if

• f(e) ∈ {0, 1} for each normal edge e,

• f(e′) ∈ {0, . . . , K−32 } for each stack edge e′,

• ω(u) = indeg(u)−K for each normal vertex u,

• ω(v) = K−3
2 for each stack vertex v.

For each normal edge e we set cl(e) := 0 and cu(e) := 1. For each stack edge e′ we set cl(e
′) := 0

and cu(e′) := K−3
2 . Then the first two conditions can also be formulated as cl(e

′′) ≤ f(e′′) ≤ cu(e′′)
for each edge e′′. The set of integral flows F(H,ω, cl, cu) of a directed planar graph H fulfilling such
constraints (bounds cl, cu on the flow values and prescribed excesses ω) has been studied in [10].

The following describes a bijection between the set of K-contact-structures and the set of
K-contact-flows of G. Let A be a K-contact-structure on G. If a normal edge e has the same

orientation in
−→
G? and in A, we set f(e) = 1, otherwise f(e) = 0. For a stack edge e′ we set f(e′) =

wA(e′).
It has been shown in [10] that the set F(H,ω, cl, cu) carries the structure of a distributive

lattice. We need some definitions to be able to describe the cover relation of this lattice. For a
flow f ∈ F(H,ω, cl, cu) let Hf be the following reorientation of H: An edge vw of H is oriented
from v to w in Hf if f(vw) > cl(vw) and it is oriented from w to v in Hf if f(vw) < cu(vw). Note
that in Hf an edge can have no orientation, one orientation, or two orientations. If we decrease
the flow f by one on an Eulerian subgraph of Hf , we obtain a new flow f ′ ∈ F(H,ω, cl, cu). This
operation corresponds to a flip in the K-contact-structure.
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Definition 10. A chordal path of a simple cycle C is a directed path consisting of edges interior
to C whose first and last vertex are vertices of C. These two vertices are allowed to coincide.

Definition 11. A simple cycle C is an essential cycle if there is a flow f such that C is a directed
cycle in Hf and has no chordal path in Hf .

Theorem 6 ([10]). The following relation on the set F(H,ω, cl, cu) of flows of a planar graph H is
the cover relation of a distributive lattice: A flow f ′ covers a flow f if and only if f ′ can be obtained
from f by subtracting one unit of flow on a counterclockwise oriented essential cycle in Hf .

Now we can apply this to the set of K-contact-flows of G.

Theorem 7. The set of all K-contact-structures of G carries the structure of a distributive lattice.
In this lattice a K-contact-structure A′ covers a K-contact-structure A if there is a flippable
counterclockwise oriented facial cycle in G? such that A′ can be obtained from A by flipping this
cycle.

Proof. We need to show that for a flow f ∈ F(
−→
G?, ω, cl, cu) the essential cycles in

−→
G?f are exactly

the directed facial cycles in
−→
G?f . Let C be such an essential cycle.

Claim 1. There is no edge pointing into the interior of C.

Proof. Assume there is an edge e = vw pointing into the interior of C. If v is a normal vertex,
let P ∈ P(e) be a directed path starting with the edge e and ending in an outer vertex of G?.
Then P has to cross C at some point and the subpath of P that ends at the first crossing vertex
with C is a chordal path of C, contradicting that C is essential. Notice that we used the fact that

all edges of P also appear as edges in
−→
G? with the same orientation which follows from P ∈ P(e)

and the bijection between K-contact-structures and flows f ∈ F(
−→
G?, ω, cl, cu). If v is a stack vertex,

the vertex w is a normal vertex in the interior of C. Otherwise, e itself would be a chord of C.
Let e′ 6= e be an outgoing edge of w and let P ′ ∈ P(e′) be a directed path starting with the edge e′

and ending in an outer vertex of G?. Then P ′ has to cross C at some point and again we have a
chordal path of C. 4

Claim 2. The cycle C contains at least one stack vertex.

Proof. Assume that C contains only normal vertices. Then according to Lemma 2 there are exactly
K−1
2 `(C)−K 6= 0 edges pointing into the interior of C, in contradiction to Claim 1. 4

Now let v be a stack vertex of C. Let w1v and vw2 be the two incident edges on C. Since w1v is

an incoming edge of v in
−→
G?f , we have f(w1v) > 0 and therefore for each neighbor w′ 6= w1 of v

we have f(w′v) < K−3
2 . Thus these edges are oriented from v to w′ in

−→
G?f . Since there is no edge

pointing from v into the interior of C, the vertices w1 and w2 have to be consecutive neighbors
of v in the cyclic order of the neighbors of v. Then G? contains the edge w1w2 which has (as every

normal edge) exactly one orientation in
−→
G?f . If w1w2 does not belong to C, it is a chord of C.

Hence, it has to belong to C and C is a facial cycle.
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6 System of linear equations

In this section let G be an inner triangulation of a K-gon and let A be a K-contact-structure
of G. Let G?+ := G?+(A). We will propose a system of linear equations that allows us to compute
an equiangular K-gon contact representation of G with induced K-contact-structure A if such a
representation exists. If such a representation does not exist, the solution of the system will have
negative variables.

Every inner vertex v gets a variable xv representing the scaling factor of the prototype Pv of v.
Further every segment e in the skeleton of the contact representation, we want to compute, (they
are in bijection to the angles of the normal vertices in G?+) gets a variable xe representing its length.

We introduce equations which ensure that the scaling factor xv of each normal vertex fits together
with the edge lengths xe of the K-gon corresponding to v. For i = 1, . . . ,K let `i(Pv) be the length
of the ith segment of Pv, starting with the horizontal segment and then proceeding in clockwise
direction. Further let Ei(v) be the edges of the skeleton corresponding to the angles of v between
the outgoing edges of colors i+ K−1

2 and i+ K+1
2 . Then the sum of the lengths of the edges in Ei(v)

has to be equal to xv`i(Pv), the scaled segment length of the prototype:∑
e∈Ei(v)

xe − `i(Pv)xv = 0 .

We still need to ensure that the faces of G are represented by pseudotriangles, in particular that
the edge lengths xe of such an pseudotriangle make it a closed curve. For that we do the following
construction: Let Bf be the pseudotriangle corresponding to the face f of G. Then we add the
angle bisectors of all three convex corners of Bf and cut Bf into three pseudotriangles and a small
triangle in the center like in Fig. 7 (left). Afterwards each of the three pseudotriangles is cut into
triangles by elongating the edges at the concave corners (see Fig. 7 (right)). Note that we know the
slopes of all edges of the cut pseudotriangle. Therefore, for each triangle t in this cut pseudotriangle,
we know a prototype Pt such that t is a homothetic copy of Pt. We introduce a variable for each
edge of t representing its length and a variable representing the scaling factor of the prototype.
Further we introduce a variable for each of the three angle bisectors representing its length. Then we
can introduce three equations for each triangle and two equations for each angle bisector ensuring
that the scaling factors and edge lengths fit together.

Additionally, each inner face f of G incident to one or two outer vertices corresponds to a
pseudotriangle with one straight line segment or a corner-triangle respectively. For the first case,
variables are defined just as in the setting of an inner pseudotriangle whereas the segment belonging
to the outer polygon is treated as if arising from a K-gon. In the second case,we again have a
triangle with known slopes and therefore we describe it by a variable xf representing the scaling
factor of a corresponding prototype and three variables for the side lengths which are linearly related
to xf .

Finally, we add one more equation to our system stating that the sum of the lengths of the edges
building the line segment corresponding to the outer vertex a1 of G is exactly 1. This equation is
the only inhomogeneous equation and will ensure that the solution of the system is unique.

We denote the entire system of linear equations by AAx = e1 where AA is a matrix depending on
the K-contact-structure A and where e1 = (1, 0, 0, . . . , 0).

We will show that the system of linear equations AAx = e1 is uniquely solvable. For this purpose
we need a technical lemma about perfect matchings in plane bipartite graphs. So let H be a
bipartite graph with vertex classes {v1, . . . , vk} and {w1, . . . , wk}. Then a perfect matching of H
induces a permutation σ ∈ Sk by σ(i) = j :⇔ {vi, wj} ∈M . We define the sign sgn(M) of a perfect
matching M as the sign of the corresponding permutation.
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Figure 7: Cutting a pseudotriangle into three pseudotriangles and a small triangle in the center,
and cutting the smaller pseudotriangles into triangles.

Lemma 5. Let H be a bipartite graph and let M,M ′ be two perfect matchings of H. If the symmetric
difference of M and M ′ is the disjoint union of simple cycles C1, . . . , Cm such that, for i = 1, . . . ,m,
the length `i of Ci fulfills `i ≡ 2 mod 4, then sgn(M) = sgn(M ′).

If H is a plane graph such that every inner face f of H is bounded by a simple cycle of
length `f ≡ 2 mod 4, this property is fulfilled for any two perfect matchings of H.

Proof. For i = 1, . . . ,m, there is an ni ∈ N with `i = 4ni + 2. Then on the vertices of Ci the
permutation σ corresponding to M and the permutation σ′ corresponding to M ′ differ in a cyclic
permutation τi of length 2ni + 1. Hence we have σ′ = σ ◦ τ1 ◦ · · · ◦ τm and therefore

sgn(σ′) = sgn(σ) · sgn(τ1) · · · sgn(τm)

= sgn(σ) · (−1)2n1 · · · (−1)2nm = sgn(σ) .

In the case that H is a plane graph such that each inner face f of H is bounded by a simple
cycle of length `f ≡ 2 mod 4, for each cycle of length ` with k′ vertices in its interior the for-
mula `+ 2k′ ≡ 2 mod 4 is valid. This can be shown by induction on the number of faces enclosed
by the cycle. Since each of the cycles C1, . . . , Cm contains an even number of vertices in its interior,
this implies `i ≡ 2 mod 4 for i = 1, . . . ,m.

Theorem 8. The system AAx = e1 has a unique solvution.

Proof. We show that det(AA) 6= 0. The matrix is a square matrix, as is implicitly shown later
in Claim 1. Let ÂA be the matrix obtained from AA by multiplying all columns corresponding
to variables which represent scaling factors (of K-gons, triangles, or angle bisectors) with −1.
Since in AA all entries in these columns are nonpositive and the entries in all other columns are
nonnegative, all entries of ÂA are nonnegative. Further we have det(AF ) = (−1)N det(ÂA) where N
is the number of columns we multiplied with −1.

We want to interpret the Leibniz formula of det(ÂA) as the sum over the perfect matchings of a
plane auxiliary graph HA. Let HA be the bipartite graph whose first vertex class v1, . . . , vk consists
of the variables of the equation system and whose second vertex class w1, . . . , wk consists of the
equations of the equation system. There is an edge viwj in HA if and only if (ÂA)ij > 0. Then we
have

det(ÂA) =
∑
σ

sgn(σ)
∏
i

(ÂA)iσ(i) =
∑
M

sgn(M)PM ,

where the second sum goes over all perfect matchings M of HA and where PM > 0 for all perfect
matchings M .

Next we will define a crossing-free embedding of HA into the plane. We start with a crossing-free
drawing of G?+ in which single edges are straight lines and multiple edges are allowed to have one
bend. Then we put pairwise disjoint disks around all normal vertices. We put a second, smaller
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Figure 8: Gadget for embedding HA into the plane. In the center there is a normal vertex, the
incident edges of G?+ are drawn in black, the incident equations in yellow, and the incident
edge-variables in blue. Red (green) edges are edges of HA corresponding to a negative
(positive) coefficient in the equation.

circle around the normal inner vertices. The smaller circle around a normal vertex u is cut at
the outgoing edges of u into K arcs. These K arcs are the drawings of the K equation-vertices
incident to u. The larger circle around u is cut into arcs at all incident edges of u. These arcs are
the drawings of edge-variables. Then we add edges between u and all arcs on the smaller circle
around u, and we add edges between an arc on the smaller and an arc on the larger circle around u
if there is a straight line crossing u and both arcs (see Fig. 8 for an illustration). In each inner
face f of the induced drawing of G there are contained the drawings of exactly those edge-variables
that are part of the boundary of the corresponding pseudotriangle Bf . Figure 9 shows a gadget that
allows us to embed the remaining variables and equations corresponding to Bf inside this face.

Claim 1. There exists a perfect matching of HA.

Proof. We describe an explicit construction of a perfect matching of HA. We look at the unique
proper coloring of G?+. The K equation-vertices adjacent to a normal vertex u of G?+ are corre-
sponding to the K colors: An equation-vertex has color c if it is opposite to the outgoing edge
of color c. We always match the vertex u with the equation-vertex of color K−1

2 . The equation-
vertices of colors 2, . . . , K−32 are matched with the last incident edge-vertex in clockwise order,
and the equation-vertices of colors K+1

2 , . . . ,K, 1 are matched with the last incident edge-vertex in
counterclockwise order.

Now we want to show that exactly two edge-vertices of every stack vertex remain unmatched, and
that these two edge-vertices belong to different concave parts of the corresponding pseudotriangle.
Figure 10 verifies this for the two possible cases. All other cases are symmetric. In the first case
the pseudotriangle contains an edge of color K−1

2 , in the second case it does not. In both cases the
drawn pairs of opposite segments and vertices can be exchanged. Since in each case the segment of
such a pair contributes an unmatched edge-variable, the statement remains true in all these cases.

Figure 11 shows a way to match the variables and equations inside a pseudotriangle such that
only all edge-variables on the boundary of the pseudotriangle, the central triangle-variable and its
three adjacent equations remain unmatched. Figure 11 also shows augmenting paths connecting
an edge-variable on the boundary with one of the equations of the central triangle. We increase our
matching by using these augmenting paths for the two unmatched edge-variables on the boundary.
Then we match the central triangle-variable with the last unmatched equation.
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Figure 9: Face-gadget for embedding HA into the plane. The dark blue vertices are the edge-variables
coming from the gadgets of Fig. 8. All other vertices can be placed freely. Variables are
drawn in cyan and equations in yellow. Red (green) edges are edges of HA corresponding
to a negative (positive) coefficient in the equation.

Figure 10: Case distinction for showing that exactly two edge-variables of each pseudotriangle are
not matched (compare Fig. 5). The edges of color K−1

2 are drawn in blue. The unmatched
edges are highlighted in red.
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Figure 11: A matching (red) which lets only the outer edge-variables, the central variable and its
incident equations unmatched. In green there are two examples of augmenting paths
connecting an outer edge-variable and a central equation.
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All the variables corresponding to partial segments of the bounding K-gon are matched properly
by this procedure, except for the rightmost variable of the upper horizontal segment. Finally, this
variable can be matched to the inhomogeneous equation, and we obtain a perfect matching. 4

Claim 2. Let M1,M2 be perfect matchings. Then sgn(M1) = sgn(M2).

Proof. Due to Lemma 5 it suffices to show that each inner face f of HA is bounded by a simple
cycle of length `f ≡ 2 mod 4. This can be verified by distinguishing all different types of faces
of HA. 4

From Claims 1 and 2 we immediately get

det(ÂA) =
∑
M

sgn(M)PM 6= 0 .

Therefore, we also have det(AF ) = (−1)N det(ÂA) 6= 0.

Definition 12. The solution x of AAx = e1 is nearly nonnegative if all negative variables of x are
scaling factors of the central triangle in the triangle decomposition of a pseudotriangle.

The following lemma helps us to prove that a nearly nonnegative solution of the system AAx = e1
leads to an equiangular K-gon contact representation of G.

Lemma 6. Let H be an inner triangulation of a polygon. For every inner face f of H with vertices
v1, v2, v3 in clockwise order let Tf be a triangle in the plane with vertices p(f, v1), p(f, v2), p(f, v3)
in clockwise order such that the following conditions are satisfied:

(i) Let v be an inner vertex of H and let f1, . . . , fk be its incident faces. Then

k∑
i=1

β(fi, v) = 2π

where β(f, v) denotes the interior angle of Tf at p(f, v).

(ii) Let v be an outer vertex of H and let f1, . . . , fk be its incident inner faces. Then

k∑
i=1

β(fi, v) ≤ π .

(iii) Let vw be an inner edge of H and let f1, f2 be its incident faces. Then

p(f1, v)− p(f1, w) = p(f2, v)− p(f2, w) ,

i.e., the vector between v and w is the same in Tf1 and Tf2.

Then there exists a crossing-free straight line drawing of H in which the drawing of every inner
face f can be obtained from Tf by translation.

Proof. Let H∗ be the dual graph of H without the vertex corresponding to the outer face of H.
Further let S be a spanning tree of H∗. Then we can glue the triangles Tf of all inner faces f of H
together along the edges of S. We need to show that the resulting shape has no holes or overlappings.
For the edges of S we already know that the triangles of the two incident faces are touching in the
right way. For the edges of the complement S of S we still need to show this. We consider S as a
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Figure 12: Flipping negative triangles in the center of a pseudotriangle.

subset of the edges of H. Note that S is a forest in H. Let e be an edge of S incident to a leaf v of
this forest that is an inner vertex of H. Then for all incident edges e′ 6= e of v we already know that
the triangles of the two incident faces of e are touching in the right way. But then also the two
triangles of the two incident faces of e are touching in the right way because v fulfills property (i).
Since the set of edges we still need to check is still a forest, we can iterate this process until all inner
edges of H are checked.

We have to exclude that the resulting polygon has overlappings. The existence of such overlappings
would imply that the drawings of two non-neighboring edges of the outer face of H intersect. But
because of property (ii) the drawings of the edges of the outer face of H form the boundary of a
convex polygon, and therefore such an intersection cannot exist.

Theorem 9. The unique solution of the system AAx = e1 is nearly nonnegative if and only if the
K-contact-structure A is induced by an equiangular K-gon contact representation of G with the
given prototypes.

Proof. Assume there is an equiangular K-gon contact representation S of G with the given prototypes
that induces theK-contact-structureA. Then the edge lengths given by S define a nearly nonnegative
solution of AAx = e1.

For the opposite direction, assume the solution of AAx = e1 is nearly nonnegative. To be able to
apply Lemma 6 we first construct an internally triangulated extension of the skeleton graph of a
hypothetical equiangular K-gon contact representation with induced K-contact-structure A. This
triangulation should extend the cutting of the skeleton we produced to define the equation system.
For example, the K-gons are split into K triangles.

In the case that a variable corresponding to a small triangle in the middle of a pseudotriangle is
negative, we have to flip the order of intersection of the three angle bisectors defining the triangle
in the abstract layout we used to define the equation system, see Fig. 12. The variable of the
small triangle thereby changes the sign in the equation corresponding to each of the three bisector
segments. This means, that using the original layout with this eventual local modifications yields an
(abstract) dissection into triangles, now each variable being nonnegative, since the negative small
triangles changed their sign. We can now use this triangulated dissection together with Lemma 6
and obtain an equiangular contact representation of G.

7 A heuristic

In this section we propose a heuristic to compute an equiangular K-gon contact representation of
a given triangulation G of a K-gon. The basic idea of our heuristic is to start with an arbitrary
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Figure 13: Illustration of the proof that a pseudotriangle cannot have two convex and no concave
sign-change (first row), or three convex and one concave sign-change (second row).

K-contact-structure A of G and to solve the system AAx = e1. If the solution is nearly nonnegative,
we can construct the contact representation from the edge lengths given by the solution and are
done. Otherwise, we can use the negative variables of the solution as sign-posts indicating how to
change the K-contact-structure for another try.

We begin with studying the structure of solutions of AAx = e1 which are not nearly nonnegative.
Consider a pseudotriangle and the signs of the surrounding edge-variables. In the cyclic traversal
of these edge-variables the sign can change at the three convex corners (we call these convex
sign-changes) and at the last concave corner before a convex corner and at the first concave corner
after a convex corner (we call these concave sign-changes). At the intermediate concave corners the
sign cannot change because the involved edge-variables correspond to entire segments of the same
K-gon and therefore have the same sign.

Lemma 7. A pseudotriangle cannot have exactly two convex sign-changes and no concave sign-
change, or exactly three convex sign-changes and exactly one concave sign-change.

Proof. The proof is illustrated by Fig. 13. The first figure in the first row shows the situation that
there are exactly two convex sign-changes and no concave sign-change (all other cases are symmetric).
Then the signs of all variables of the pseudotriangle, except the variable xv corresponding to the
central triangle of the triangle decomposition of the pseudotriangle, are determined by the equations
of the system (see the second). Then the equation e1 implies xv > 0, in contradiction to equation e2.

The first figure in the second row shows the situation that there are exactly three convex sign-
changes and exactly one concave sign-change (all other cases are symmetric). Then the signs of
most of the variables are determined by the equations of the system (see second figure). In this
situation equation e1 implies xv > 0 (see third figure). Then the signs of the remaining variables
are determined by the equations and lead to a contradiction in equation e2 (see fourth figure).

The fact, that the total number of sign-changes is even, leads to the following corollary.

Corollary 1. In each pseudotriangle there are at least as many concave sign-changes as convex
sign-changes.

Definition 13. We call the following three types of oriented edges e = (v, w) in G? sign-separating
edges:
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Figure 14: Construction of the predecessor p(e) of a sign-separating edge e of type (A) or (B).

(A) v, w are normal vertices, the abstract K-gons of both vertices have a sign-change at the contact,
and the two involved abstract pseudotriangles do not have a sign-change at the contact,

(B) v is a normal vertex, w is a stack vertex, and there is a sign-change at the corner corresponding
to e,

(C) v is a stack vertex, w is a normal vertex, the abstract pseudotriangle corresponding to v has a
sign-change in a convex corner, the abstract K-gon corresponding to w has a sign-change at
the same point, but not a corner.

Notice that since sign-seperating edges are defined using an abstract notion of a K-gon contact
structure or the equation system respectively, we might have different parallel edges connecting the
same vertices.

Lemma 8. If the solution of AAx = e1 is not nearly nonnegative, there exists a sign-separating
edge.

Proof. If there is a sign-change at a pseudotriangle, we know from Corollary 1 that there is a concave
sign-change at this pseudotriangle. There is a sign-separating edge of type (B) at every concave
sign-change. Therefore the statement is true in this case.

Assume there are no sign-changes at pseudotriangles. Then two pseudotriangles with different
signs have to meet at some point. There is always a sign-separating edge of type (A) at such a
point. Therefore the statement is true also in this case.

Lemma 9. The multiset of sign-separating edges forms an Eulerian orientation.

Proof. The strategy for the proof is the following: We assign to each sign-separating edge e a
predecessor p(e). The predecessor is a sign-separating edge whose endpoint is the starting point
of e. Then we show that this assignment is injective. Since this a assignment is a function from the
finite set of sign-separating edges to the same set, it has to be bijective. Finally, this implies the
statement of the lemma.

Let e = vw be a sign-separating edge of type (A) or of type (B). Then e corresponds to a
corner of the K-gon corresponding to v with a sign-change. Assume the variable xv of the K-gon is
nonnegative. Then the segment starting at this corner with a negative edge has to have a sign-change
at some point. Otherwise the sum of the edge-variables of this segment would be negative, in
contradiction to xv ≥ 0. Let us look at the first sign-change of this segment and distinguish three
cases according to the signs of the other two edges ending at this point. Figure 14 shows how to
choose the predecessor of e in each of these cases.

Now let e = (v, w) be a sign-separating edge of type (C). Since the pseudotriangle corresponding
to v has at least as many concave sign-changes as convex sign-changes, and each concave sign-change
corresponds to a sign-separating edge of type (B), we can find an injective assignment from the
sign-separating edges of type (C) starting at v to the sign-separating edges of type (B) ending at v.

It remains to show that for sign-separating edges e = (v, w) of types (A) and (C) there cannot
be distinct sign-separating edges e1, e2 with p(e1) = p(e2) = e. In both cases e corresponds to
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a sign-change on a segment of the K-gon A corresponding to w. If xw ≥ 0, the sign-separating
edges e1 and e2 have to correspond to the first corner of A we reach when going in the direction of
the negative edge. Analogously, if xw < 0, the sign-separating edges e1 and e2 have to correspond
to the first corner of A we reach when going in the direction of the nonnegative edge. Thus in both
cases e1 = e2.

Let E+− be the set of sign-separating edges. For a normal vertex u and a stack vertex v it can
happen that both of the edges (u, v) and (v, u) are sign-separating edges. Let w be the normal
vertex corresponding to the (abstract) K-gon touching the (abstract) K-gon of v in the contact
point where (u, v) and (v, u) have their assigned sign-changes. Then we change E+− in the following
way: We set E+− ← E+− \ {(v, u)} ∪ {(v, w), (w, u)}. We call this a repairing step.

Lemma 10. The edge (w, u) added to E+− in a repairing step is no sign-separating edge and has
not been added to E+− in an earlier repairing step.

Proof. The edge (w, u) is not a sign-separating edge of type (A) since the pseudotriangle corre-
sponding to v has a sign-change at the contact point of the K-gons corresponding to w and u.

Assume xu ≥ 0 (the other case is symmetric). Then each sign-separating edge (v′, u) of type (C)
corresponds to a common negative edge of the K-gon of u and the pseudotriangle of v′. But the
pseudotriangle touching the common point of the K-gons of u and w, which corresponds to v′′ 6= v,
has a nonnegative edge in common with the K-gon of u. Therefore, (v′′, u) is no sign-separating
edge and wu cannot have been added to E+− in an earlier repairing step.

Note that the edge (w, u) was not in the original set E+− since the pseudotriangle corresponding
to v has a sign-change at the contact point of the K-gons corresponding to w and u and therefore
the edge (w, u) is not sign-separating edge of type (A). Further the edge (w, u) cannot be added
twice to E+− by these operations.

Due to Lemma 10 the edges in E+− form an Eulerian orientation after applying all possible
repairing steps. Additionally, since every normal edge in E+− is oriented the same way as in A and
edges in E+− oriented towards a stack vertex correspond to (abstract) concave corners in the linear
equation system, the number of parallel such edges at e ∈ E(G?) is bounded by w(e). Hence, E+−
is flippable and changing it’s edges in the K-contact-structure as described in Section 5 leads to a
new K-contact-structure.

We cannot prove that iterating these modifications can guarantee any kind of progress. Therefore
a proof is still missing that this heuristic always terminates with a solution. However, the heuristic
has been subject to extensive experiments and these have always been successful (see Section 8).

8 Experiments

The heuristic introduced in Section 7 has been implemented in SageMath [1]. We ran a set of
experiments in the following way: For each n ∈ {10, 20, . . . , 100} we generated ten triangulations
(inner triangulations of a triangle) uniformly at random using the algorithm described in [14]. Then,
for each K ∈ {5, 7, . . . , 23}, we surrounded each triangulation T with a K-gon a1, . . . , aK and
extended this graph to an inner triangulation of the K-gon a1, . . . , aK by connecting each of the
outer vertices of T (nearly) to the same number of vertices ai. This way we ended up with a total
of 1000 graphs which we used as input for the heuristic. On a standard personal computer (AMD
FX-6300 Six-Core Processor, 3.5 GHz, 8 GB RAM) the heuristic terminated for each graph after
few seconds. Therefore we have the following conjecture.
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Conjecture 1. The heuristic described above terminates with a solution for all K, for every graph
G which is an inner triangulation of a K-gon, and for every K-contact-structure of G to start the
heuristic.

Figures 15 and 16 show the numbers of iterations the heuristic needed to find a K-contact-structure
for the graphs such that the solution of equation system is nonnegative. These experiments suggest
that the number of iteration of the heuristic is O(K) for constant n and o(n) for constant K. Since
the size of the equation system is O(nK) and systems of linear equations can be solved exactly in
polynomial time, this would imply that the heuristic has polynomial running time.

Figure 17 shows two examples of regular K-gon contact representations calculated with the
heuristic. In Fig. 18 we can see a sequence of regular K-gon contact representations which has been
constructed as in the experiments described above. It can be seen that the sequence converges to a
circle contact representation.

• We believe that a proof of the conjecture will foster new interactions between discrete
mathematics and geometry. In particular it may ultimately lead to a discrete proof of
Schramm’s Convex Packing Theorem.

• Even without proving the conjecture it may be possible to give a proof for the existence of
equiangular K-gon contact representations which is based on the theory developed in this
paper and the method from [18].

Acknowledgements. We want to thank Manfred Scheucher for supporting us with the imple-
mentation of the heuristic.
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Figure 15: Plot of the average (green) and maximal (blue) number of iterations in dependence of K
for fixed n.
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Figure 16: Plot of the average (green) and maximal (blue) number of iterations in dependence of n
for fixed K.
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Figure 17: Two examples of regular K-gon contact representations computed with the heuristic,
one example for K = 5 and one example for K = 25.
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Figure 18: The regular K-gon contact representations of a triangulation embedded in surrounding
K-gons for K = 5, 7, . . . , 27. The K-gons corresponding to the three outer vertices of
the triangulation are not drawn completely.
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