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1. Introduction. The application of interior point methods to optimal control
problems has received a good deal of interest in the past years. This parallels the fast
development of numerical methods in large scale optimization where interior point
methods play an important role. In the context of PDE control, their performance
was carefully tested by Bergounioux et al. [4] for discretized versions of elliptic control
problems. Similarly, Grund and Rösch [8] considered different codes of interior point
methods for elliptic control problems with pointwise state-constraints.

Leibfritz and Sachs [9] applied an interior point method for solving the quadratic
subproblems of a discretized version of an SQP method. Trust-region interior point
techniques have been considered by M. Ulbrich, S. Ulbrich, and Heinkenschloss [17]
for the optimal control of semilinear parabolic equations in a function space setting.
Moreover, affine-scaling interior-point methods were presented for semilinear parabolic
boundary control in [16].

In [18, 20] primal-dual interior point methods have been analysed for ODE prob-
lems in an infinite dimensional function space setting, and their computational real-
ization by inexact pathfollowing methods has been suggested. In [19] this method has
been enhanced on the control of elliptic PDE problems with control constraints.

A satisfactory convergence theory, however, had only been obtained for control
constraints, whereas results for state constraints are scarce. The difficulty arises from
the fact that Lagrange multipliers for state constraints are usually only measures,
which hampers theoretical convergence analysis and affects the numerical solution.

Concerning the regularity of Lagrange multipliers, the situation changes for mixed
control-state constraints such as constraints of bottleneck type. Under natural as-
sumptions, their multipliers can be shown to be functions in certain Lp-spaces, we
only mention [14, 5, 3]. In [11], the idea came up to add a tiny fraction of the con-
trol to the state constraint such that a mixed control-state constraint results. The
Lagrange multiplier to this mixed constraint is a bounded and measurable function.
This Lavrentiev regularization for state constraints has been analyzed in the context
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of primal-dual active set methods for elliptic control problems. Some results concern-
ing the convergence of the solutions of the regularized problem to that of the original
state constrained one can be found in [10, 11].

In the current paper, both ideas are combined. After a Lavrentiev type regular-
ization, we are able to prove the convergence of a primal interior point method in
function space. To our best knowledge, this has not jet been done for the control of
PDEs with pointwise state constraints. We should underline that the regularization
approach is crucial for our analysis.

The paper is organized as follows: We analyze the interior point method applied
to the regularized state constrained optimal control problem defined in Section 2.
We show existence and convergence of the central path defined by the interior point
method in Section 3 and Section 4, respectively. In Section 5, we turn to the linear
convergence of an implementable short-step pathfollowing method. The paper is
concluded with a set of numerical examples in Section 6 and some remarks on the
convergence for Lavrentiev parameter tending to zero in Section 7.

We confine ourselfes to a linear elliptic equation with quadratic objective. In this
case, the optimal solution is unique. In case of nonlinar equations, the analysis would
have to deal with local minima, second-order sufficient optimality conditions and, in
many cases, with the known two-norm discrepancy. The analysis is presented for the
case of state-constraints. However, the case of bound constraints on the control is
covered by the theory as well.

2. Problem setting. In this paper, we consider the optimal control problem

min J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) (2.1)

subject to the elliptic boundary value problem

Ay = u in Ω (2.2)

∂ny + αy = 0 on Γ (2.3)

and to the pointwise mixed control-state constraints

y + λu ≥ yc a.e. in Ω. (2.4)

In Section 7, we briefly discuss the pass to the limit λ ↓ 0. In this setting, Ω ⊂ R
N ,

N ∈ {2, 3}, is a bounded domain with C0,1-boundary Γ, yc, yd ∈ L∞(Ω) and α ∈
L∞(Γ) are fixed functions, and ν, λ ∈ R, λ > 0, are given constants. By A we denote
the differential operator

(Ay)(x) = −
N
∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj
y(x)

)

+ c0(x)y(x)

with coefficients aij ∈ C1,1(Ω), c0 ∈ L∞(Ω) satisfying aij(x) = aji(x) and the condi-
tion of uniform ellipticity

N
∑

i,j=1

aij(x)ξiξj ≥ δ|ξ|2 ∀ξ ∈ R
N .

Moreover, we require c0(x) ≥ 0, α(x) ≥ 0 and assume that one of these two functions
is not vanishing identically. Let us introduce the following
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Notations. By ‖ · ‖ := ‖ · ‖L2(Ω) and (·, ·) we denote the natural norm and the
associated inner product of L2(Ω), respectively. We use ‖B‖Lp→Lq to denote the
norm of a linear continuous operator B : Lp(Ω) → Lq(Ω). In the case p = q = 2, this
norm is just denoted by ‖B‖. For ‖ · ‖L∞ we write ‖ · ‖∞. Throughout the paper, c
is a generic constant. Moreover we write Lp for Lp(Ω) to shorten the notation.
If v ∈ L2(Ω) is a given function, then v ≤ 0 means v(x) ≤ 0 for a.a. x ∈ Ω. In (2.3),
∂n denotes the outward co-normal derivative at Γ.

The main scope of our paper is to discuss the convergence of the standard interior
point method for the problem (2.1)–(2.4) in function space. The simplest and well
known idea of introducing this method is the elimination of the mixed control-state
constraint y + λu ≥ yc by a logarithmic barrier function. We substitute (2.1)–(2.4)
by the problem

min Jµ(y, u) :=
1

2
‖y − yd‖2 +

ν

2
‖u‖2 − µ

∫

Ω

ln ((y + λu − yc)(x)) dx (2.5)

subject to u ∈ L2 and

Ay = u in Ω (2.6)

∂ny + αy = 0 on Γ. (2.7)

In our analysis, we shall transform the state-constrained problem (2.1)–(2.4) to
the problem (3.4)–(3.5) with control constraints. We have two reasons for this trans-
formation: The analysis of this transformed problem is simpler than that for (2.1)–
(2.4), since we are able to prove the needed regularity of Lagrange multipliers. More-
over, it is easier to show the existence of the central path for the transformed problem.

3. Existence of the central path. In this section, we establish the existence of
unique minima uµ of (2.4)–(2.7) for all µ > 0. To do this, we show the existence of a
unique solution vµ of the transformed problem (Pµ) below. We refer to the mappings
µ 7→ uµ and µ 7→ vµ as the central path, even though continuity is proved only in
Section 4. First we recall some known facts about the state-equation (2.2)–(2.3).

Theorem 3.1. Under our assumptions, for all u ∈ Lr(Ω) with r > N
2 , equa-

tion (2.2) has a unique solution y ∈ H1(Ω) ∩ C(Ω̄). There is a constant c(Ω, r) such
that

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ c ‖u‖Lr(Ω).

We refer to Casas [6] or Alibert and Raymond [1]. The reader might also consult the
detailed presentation of these results in the monography [15]. The theorem ensures
that, for N ≤ 3, the mapping G : u 7→ y is continuous from L2 to H1(Ω) ∩ C(Ω̄).
In particular, it is continuous in L2. We denote the associated mapping by S = EG,
where E : H1(Ω) → L2 is the embedding operator from H1 ∩C(Ω̄) in L2. Therefore,
we have S : L2 → L2, continuously.

By S, problem (2.1)–(2.4) becomes equivalent to

min
1

2
‖Su− yd‖2 +

ν

2
‖u‖2 (3.1)

subject to

λu + Su − yc ≥ 0 a.e. in Ω. (3.2)
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Remark. S is known to be compact. By λ > 0, −λ is not an eigenvalue of S. In fact,
since λ > 0, we have λu + Su = 0 ⇔ λu + y = 0 ⇔ u = − 1

λy. This means Ay = − 1
λy,

hence Ay + 1
λy = 0 and ∂ny +αy = 0. By coercivity, this equation has only the trivial

solution.

To transform (3.1)–(3.2) into a control-constrained problem, we substitute

v := Su + λu.

By our assumption,

D := (S + λI)−1 (3.3)

exists as a continuous linear operator in L2. After this substitution, (3.1)–(3.2) is
equivalent to

(P) min f(v) :=
1

2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 (3.4)

subject to the constraints on the new control v ∈ L2,

v − yc ≥ 0. (3.5)

This simplification to a control-constrained problem can be made more explicit: By
v = Su + λu = y + λu, we have u = λ−1(v − y). Inserting this in the state equation
and in J , we see that (3.4)–(3.5) is equivalent to the elliptic control problem with
control constraint,

min J̃(y, v) =
1

2
‖y − yd‖2 +

ν

2λ2
‖v − y‖2 (3.6)

subject to

Ay +
1

λ
y =

1

λ
v

∂ny + αy = 0 (3.7)

and v − yc ≥ 0.
For the special choice D = I , our analysis of (3.4)–(3.5) covers problems with

simple bounds on the control v. The interior point method for (3.4)–(3.5) (or (2.1)–
(2.3), respectively) is equivalent to solving

min fµ(v) := f(v) − µ

∫

Ω

ln (v(x) − yc(x)) dx. (3.8)

Obviously, the quadratic functional f is continuously differentiable in L2. Its deriva-
tive is given by

f ′(v) h = (p̃ + νD∗Dv , h)

with adjoint state p̃ = D∗S∗(SDv − yd). Here, S∗, D∗ : L2 → L2 are the Hilbert
space adjoints to S, D, respectively. If vε(x) − yc(x) ≥ ε > 0 holds a.e. on Ω, then
the functional

φ(v) = µ

∫

Ω

ln (v(x) − yc(x)) dx
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is directionally differentiable at vε in any direction h ∈ L∞(Ω), since vε+t h−yc ≥ ε/2
for sufficiently small t. In this case,

φ′(vε)h =

∫

µ

vε(x) − yc
h dx.

Suppose now that (3.8) admits a solution vε = vε(µ) ∈ L2 satisfying vε(x) −
yc(x) ≥ ε > 0. Then we get from the differentiability properties mentioned above

fµ(vε) = f ′(vε) − φ′(vε) = 0, (3.9)

since in this case ṽ + th, h ∈ L∞, has distance ε/2 for all small t. Therefore, it holds

p̃ + νD∗Dvε −
µ

vε − yc
= 0 a.e. in Ω.

Define η ∈ L∞(Ω) by

η(x) :=
µ

vε(x) − yc(x)
. (3.10)

Then we have η ≥ 0, vε − yc ≥ 0 and η(vε − yc) = µ for almost all x ∈ Ω. This
function η will tend to a Lagrange multiplier for (2.1)–(2.4) as µ ↓ 0. However, we
have to show that (3.8) is solvable, i.e. that the central path exists. Notice that, by
u = D v, (3.8) and (2.4)–(2.7) are equivalent.

To verify this existence, we consider for fixed µ > 0, ε > 0 the auxiliary problem

(Pε
µ) min

v(x)−yc(x)≥ε
fµ(v),

where v ∈ L2. We first prove that this problem is solvable. Next we show that the
solution is not active for all sufficiently small ε > 0. In this way, finally a solution
uµ = (λI + S)−1vµ of (2.4)–(2.7) is found.

Lemma 3.2. For all µ ≥ 0, it holds that fµ(v) → ∞ if ‖v‖ → ∞ and v(x) ≥
yc(x) + ε.

Proof. Since ‖v‖ = ‖D−1Dv‖ ≤ ‖S + λI‖ ‖Dv‖, we have

fµ(v) =
1

2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 − µ

∫

Ω

ln (v − yc) dx

≥ ν

2
‖Dv‖2 − µ

∫

Ω

(v − yc) dx (3.11)

≥ νδ0

2
‖v‖2 − µ ‖v − yc‖L1 ≥ νδ0

2
‖v‖2 − µ c ‖v − yc‖. (3.12)

In (3.11), we have used ln (x) < x for all x > 0. With δ0 = ‖S+λI‖−2 > 0 we observe
that ‖v‖ → ∞ implies fµ(v) → ∞.

Theorem 3.3. For all µ ≥ 0 and 0 < ε ≤ 1, problem (Pε
µ) has a unique solution

vε(µ). There is a constant cv < ∞ independent of µ and ε such that ‖vε(µ)‖ ≤ cv.
Proof. Obviously, fµ is convex and continuous on the convex and closed subset

Cε ⊂ L2 defined by

Cε =
{

v ∈ L2(Ω) | v(x) − yc(x) ≥ ε > 0 for a.a. x ∈ Ω
}

.
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Therefore, fµ is lower semicontinuous on Cε. Take ṽ := yc + 1, then the logarithmic
term vanishes and by Lemma 3.2, it holds

fµ(v) ≥ fµ(yc + 1) =
1

2
‖SDṽ − yd‖2 +

ν

2
‖Dṽ‖2

for all sufficiently large v, say ‖v‖ ≥ cv with certain cv > 0.
All v ∈ Cε with ‖v‖ > cv can be neglected for the search of the infinimum of fµ.

On Cε ∩
{

v ∈ L2 | ‖v‖ ≤ cv

}

, the functional fµ is bounded, hence

j(ε) := inf
v∈Cε

fµ(v)

is finite. Here and in what follows, we suppress for a while the dependence of the
problem and its solutions on µ.

Let vn ∈ Cε, ‖vn‖ ≤ cv, be an infimal sequence, i.e. fµ(vn) → j(ε) for n → ∞. We
can assume w.l.o.g. weak convergence in L2, vn ⇀ vε ∈ Cε. By lower semicontinuity,
a standard argument yields

fµ(vε) = j(ε),

hence vε is the solution vε(µ) of (Pε
µ). Uniqueness follows from the strict convexity

of fµ.
We recall problem (Pε

µ),

min fµ(v) :=
1

2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 − µ

∫

Ω

ln (v − yc) dx

v(x) − yc(x) ≥ ε a.e. in Ω.

To shorten the notation, we continue to denote the optimal solution vε(µ) of (Pε
µ)

by vε. Take any other v ∈ Cε and t ∈ [0, 1]. Then vε + t(v − vε) ∈ Cε, hence
fµ(vε + t(v − vε)) is defined. Note that fµ is not Gâteaux-differentiable in L2, since
fµ(vε + ht) may be undefined for h ∈ L2. However, it is directionally differentiable in
the direction v − vε. From

0 ≤ fµ(vε + t(v − vε)) − fµ(vε)

t

we find by t ↓ 0 for the directional derivative

f ′
µ(vε)(v − vε) ≥ 0 ∀v ∈ Cε.

In terms of our transformation, this can be written as

(

D∗S∗(SDvε − yd) + νD∗Dvε −
µ

vε − yc
, v − vε

)

≥ 0 ∀v ∈ Cε. (3.13)

Define pε := D∗S∗(SDvε − yd). Then we can re-write (3.13) as

(

pε + νD∗Dvε −
µ

vε − yc
, v − vε

)

≥ 0 ∀v ∈ Cε. (3.14)

We shall show that ‖pε‖∞ is bounded, independently of ε:
The operator S is self-adjoint, S = S∗. Moreover, as S = EG, S is even linear and
continuous from L2 to L∞. The same holds for S∗.
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Let us discuss the form and the regularity properties of the operator D. We have
D = (S+λI)−1. Put w = Dz. Then z = Sw+λIw. It follows λw = z−Sw = z−SDz
and w = λ−1z − λ−1SDz. Therefore D admits the form

D = λ−1(I − SD). (3.15)

From this representation we easily get the additional regularity property D : L∞ →
L∞, continuously.

This is also visible from (3.6)–(3.7), since v 7→ y is continuous from L∞ to L∞

and therefore also v 7→ u = λ−1(v − y(v)) : L∞ → L∞.

We know from Lemma 3.2 that ‖vε‖ is bounded by a constant cv that does not
depend on ε. Now we estimate ‖pε‖∞ by

‖pε‖∞ = ‖D∗S∗(SDvε − yd)‖∞
≤ ‖D∗‖L∞ ‖S∗‖L2→L∞ ‖SDvε − yd‖ ≤ cp, (3.16)

where cp does not depend on ε, since ‖SDvε − yd‖ ≤ ‖S‖L2‖D‖L2‖cv‖ + ‖yd‖. Next
we evaluate (3.13). Let us define the sets

M+(ε) :=
{

x ∈ Ω
∣

∣

∣ pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
> 0
}

M0(ε) :=
{

x ∈ Ω
∣

∣

∣ pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
= 0
}

.

Due to (3.13), M+(ε) ∪ M0(ε) covers Ω up to a set of measure zero. The variational
inequality (3.13) implies vε(x) − yc = ε for almost all x ∈ M+(ε).

Theorem 3.4. There exist constants a, b > 0, εM such that the set M+(ε) has
measure zero for all 0 < ε < εM .

Proof. For almost all x ∈ M+(ε), the constraint is active, i.e. vε(x) − yc(x) = ε.
Thus, by (3.16), we have for almost all x ∈ M+(ε)

cp + ν (D∗Dvε)(x) − µ

ε
≥ pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
> 0. (3.17)

By (3.15),

D∗D = λ−2(I − S∗D∗)(I − SD) = λ−2I + K

with bounded K : L2 → L∞,

K = λ−2 {S∗D∗DS − (S∗D∗ + SD)} .

Almost everywhere on M+(ε) it holds vε(x) = yc(x) + ε, hence

cp + ν (D∗Dvε)(x) = cp + ν (λ−2(yc(x) + ε) + (K vε)(x)).

With the left-hand side of (3.17), Theorem 3.3 yields

cp + ν(λ−2(‖yc‖∞ + ε) + cv ‖K‖L2→L∞) >
µ

ε
. (3.18)

Clearly, the right hand side tends to infinity as ε ↓ 0 while the left hand side
remains bounded. Therefore, the inequality cannot be satisfied for small ε.
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To quantify a and b, we set

ã =

(

cp
λ2

ν
+ ‖yc‖∞ + ‖K‖L2→L∞cvλ2

)

, (3.19)

and from (3.18) we get

ε2 + ãε − λ2

ν
µ > 0 .

Solving this quadratic inequality, we have

ε > −1

2
ã +

√

1

4
ã +

λ2

ν
µ > 0.

With a = 1
2 ã and b = λ2

ν a−2, we can write this as ε > a(
√

1 + bµ − 1), where
a, b > 0. For smaller ε, M+(ε) must have measure zero.

Corollary 3.5. For all 0 < ε < εM , the solution vε(µ) of (Pε
µ) is the unique

solution to (Pµ).
Proof. For these ε, the set M+(ε) has measure zero. Therefore, it holds

pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
= 0

almost everywhere on Ω, hence vε(µ) satisfies the first-order necessary optimality
conditions for the optimization problem (Pµ). This is a problem with convex objective
functional; the necessary conditions are sufficient for optimality. Strong convexity
yields uniqueness (notice that ν > 0). Therefore, vε(µ) is the unique solution v(µ) of
(Pµ).

Corollary 3.6. There exists a constant cµ > 0 such that for µ ≤ 1 the unique
solution vµ of (3.8) satisfies vµ ≥ yc + cµµ a.e. on Ω.

Proof. Let vµ be the solution of (Pµ). Then an ε > 0 exists such that vµ is
a solution of (Pε

µ) too. For that ε it holds vµ ≥ yc + ε. Choosing cµ = ε
µ yields

vµ ≥ yc + cµµ.

4. Convergence of the central path. Having established the existence of the
central path µ 7→ vµ for all µ > 0, we can proceed with proving continuity of the path
and convergence towards a solution of (P).

The unique minimizer of (3.8) can be characterized by (3.9) as

F (vµ; µ) = (D∗S∗SD + νD∗D)vµ − D∗S∗yd −
µ

vµ − yc
= 0 a.e. on Ω (4.1)

Since vµ − yc ≥ cµµ holds for µ ≤ 1 by Corollary 3.6, F is Fréchet differentiable in all
directions v ∈ L∞. We denote the partial derivatives w.r.t. v and µ by ∂vF and ∂µF ,
respectively. The derivative ∂vF is

∂vF (v; µ) = (D∗S∗SD + νD∗D) +
µ

(v − yc)2
(4.2)

= (D∗S∗SD + νK) +

(

ν

λ2
+

µ

(v − yc)2

)

= K̄ +

(

ν

λ2
+

µ

(v − yc)2

)

, (4.3)
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where

K̄ = D∗S∗SD + νK

is a bounded operator from L2 to L∞. From (4.2) and (3.3) we see immediately that,
for all v ≥ yc +ε, ∂vF (v; µ) ∈ L(L2, L2) is a symmetric positive definite operator with

〈ξ, ∂vF (v; µ)ξ〉 ≥ ν〈Dξ, Dξ〉 ≥ ν‖S + λI‖−2‖ξ‖2.

The Lax-Milgram theorem guarantees the existence of a bounded inverse ∂vF (v; µ)−1 :
L2 → L2 with

‖∂vF (v; µ)−1‖ ≤ 1

ν
(‖S‖+ |λ|)2. (4.4)

In the next lemma we prove a further regularity property of ∂vF . In all what follows,
we write for short v > yc to express the existence of ε ≥ 0 such that v(x) > yc(x) + ε
for a.a. x ∈ Ω.

Lemma 4.1. Assume that v > yc. Then the derivative ∂vF (v; µ) : L∞ →
L∞ is a bijective operator with bounded inverse ∂vF (v; µ)−1 : L∞ → L∞, where
‖∂vF (v; µ)−1‖L∞→L∞ ≤ ci is bounded independently of µ.

Proof. Due to (4.4), for each z ∈ L∞ ⊂ L2 there is a solution ξ ∈ L2 to
∂vF (v; µ)ξ = z with

‖ξ‖ ≤ 1

ν
(‖S‖+ |λ|)2‖z‖ ≤

√

|Ω|
ν

(‖S‖+ |λ|)2‖z‖∞. (4.5)

Now we have by (4.3)

(

ν

λ2
+

µ

(v − yc)2

)

ξ = z − K̄ξ

and hence by (4.5)

‖ξ‖∞ ≤ λ2

ν

(

‖z‖∞ + ‖K̄‖L2→L∞‖ξ‖
)

≤ λ2

ν

(

1 + ‖K̄‖L2→L∞

√

|Ω|
ν

(‖S‖ + |λ|)2
)

‖z‖∞

=: ci‖z‖∞.

Thus, ξ ∈ L∞ holds, such that ∂vF (v; µ) : L∞ → L∞ is bijective and has a bounded
inverse ‖∂vF (v; µ)−1‖L∞→L∞ ≤ ci.

With the invertibility of ∂vF at hand we make use of the implicit function theorem
in order to justify the notion of a central path. We obtain the

Corollary 4.2. The mapping µ 7→ vµ is continuously differentiable from R+ to
L∞.

Now we turn to convergence of the central path towards a solution of (3.1).
Theorem 4.3. For µ → 0, the central path converges towards a KKT point v0

of (3.1). There exists a constant c0 < ∞ such that the following error estimate holds
for all µ ≤ 1:

‖v0 − vµ‖∞ ≤ c0
√

µ. (4.6)
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Proof. First we will establish an L2-bound on

v′µ = −∂vF (vµ; µ)−1∂µF (vµ; µ) =

(

K̄ +

(

ν

λ2
+

µ

(vµ − yc)2

))−1
1

vµ − yc
(4.7)

and infer an L∞-bound from that. From this we will determine the existence of and
distance to the limit point v0, and finally check the first order necessary conditions
for v0.
(i) L2-estimate. We introduce the diagonal preconditioner

zµ =

√

ν

λ2
+

µ

(vµ − yc)2
(4.8)

and write (4.8) as

zµv′µ =

(

z−1
µ

(

K̄ +
ν

λ2
+

µ

(vµ − yc)2

)

z−1
µ

)−1

z−1
µ

1

vµ − yc

=
(

z−1
µ K̄z−1

µ + I
)−1

(

ν(vµ − yc)
2

λ2
+ µ

)−1/2

.

Since z−1
µ K̄z−1

µ is positive semidefinite, we may conclude that ‖zµv′µ‖ ≤
√

|Ω|/µ.
From zµ ≥ √

ν/λ a.e. we finally obtain

‖v′µ‖ ≤
√

ν|Ω|
µλ

. (4.9)

(ii) L∞-estimates. Using the splitting (4.3) to move the coupling term K̄v′µ in
∂vF (vµ; µ)v′µ = −∂µF (vµ; µ) to the right hand side, and the fact that

ax +
b

x
≥ 2

√
ab

holds for arbitrary a, b, x > 0, we obtain

‖v′µ‖∞ ≤
∥

∥

∥

∥

∥

(

ν

λ2
+

µ

(vµ − yc)2

)−1
1

vµ − yc

∥

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

∥

(

ν

λ2
+

µ

(vµ − yc)2

)−1

K̄v′µ

∥

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

∥

(

2

√

νµ

λ2

)−1
∥

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

∥

(

ν

λ2
+

µ

(vµ − yc)2

)−1
∥

∥

∥

∥

∥

∞

‖K̄‖L2→L∞‖v′µ‖

and infer from (4.9)

‖v′µ‖∞ ≤
∥

∥

∥

∥

λ

2
√

νµ

∥

∥

∥

∥

∞

+
λ2

ν
‖K̄‖L2→L∞

√

ν|Ω|
µλ

≤ c0√
µ

for some c0 < ∞.
(iii) Distance to the limit point. The distance between two points on the central path
is therefore bounded by

‖vµ1
− vµ2

‖∞ ≤
∫ µ2

µ1

‖v′µ‖∞ dµ ≤ c0

2
(
√

µ2 −
√

µ1). (4.10)
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Since for any sequence (µk) with µk → 0 the corresponding sequence (vµk
) of central

path points forms a Cauchy sequence, the path converges towards some limit point
v0. Passing to the limit µ1 → 0 verifies the error bound (4.6).
(iv) First order necessary conditions. Recalling the Lagrange multiplier approxima-
tions ηµ from (3.10) we write (3.9) as f ′(vµ) = ηµ. Due to the continuity of f ′ and
the convergence of vµ → v0 in L2, the multiplier approximations converge towards
η0 = f ′(v0) in L2. Since ηµ ≥ 0 and ηµ(vµ − yc) = µ for almost all x ∈ Ω and
therefore (ηµ, vµ − yc) = µ|Ω|, the same holds by continuity for η0, i.e. η0 ≥ 0 and
(η0, v0 − yc) = 0. Since the first order necessary conditions are satisfied, v0 is a KKT
point for (3.4).

5. Convergence of a short step pathfollowing method. For the analysis
of interior point methods, local norms are an invaluable tool. Here we use the scaled
norm

‖v‖µ = ‖zµv‖∞
with the scaling zµ defined in (4.8), which is closely connected to the energy norms
used in the theory of self-concordant barrier functionals [12, 13].

We consider a short-step pathfollowing method with classical predictor. Since
we are interested in actually implementable algorithms, we have to use an inexact
Newton corrector that accounts for the error due to discretisation. We consider this
error by an inner residual rk and an inexact Newton correction ∆vk

h and replace the
infinite dimensional Newton equation

∂vF (vk ; µk+1)∆vk = −F (vk; µk+1)

for the exact correction ∆vk by

∂vF (vk; µk+1)∆vk
h = −F (vk; µk+1) + rk.

The iteration index is denoted by a superscript. Another source of inexactness is e.g.
the iterative solution of the state equation. The algorithm reads as follows.

Algorithm 5.1.

Choose 0 < σ < 1, δ > 0, µ0 > 0, and v0 > yc.
For k = 0, 1, . . .

µk+1 = σµk ,
solve ∂vF (vk ; µk+1)∆vk

h = −F (vk; µk+1)
up to a relative accuracy of ‖∆vk

h − ∆vk‖µk+1 ≤ δ‖∆vk‖µk+1 ,
vk+1 = vk + ∆vk

h.
Note that the accuracy matching in Algorithm 5.1 will require mesh refinement

as µ → 0. Alternatively, on a fixed discretization the algorithm can be performed
only up to some µmin > 0 while still meeting the accuracy requirement.

The remainder of the section is devoted to proving that for suitable choices of σ,
δ, µ0, and v0, all iterates of this algorithm are well defined and converge towards the
solution point v0. First we formulate the main result, the proof of which is postponed
to the end of this section.

Theorem 5.2. Let a tolerance ϑ < 1/(18cz), µ0 > 0, and an initial iterate

v0 with ‖v0 − vµ0‖µ0 ≤ 2ϑ
√

µ0 be given. Choose δ ≤ 1/4 and a reduction factor σ
satisfying

1 − σ ≤ ϑ

3ϑ(cz + 1/2) + cz
.

11



Then the iterates vk defined by Algorithm 5.1 are all well defined and converge linearly
towards the limit point v0. More precisely,

∥

∥vk − vµk

∥

∥

µk ≤ 2ϑ
√

µk and
∥

∥vk − v0

∥

∥

µk ≤ (c0 + 2ϑ)σk/2
√

µ0.

We stress that this conceptual algorithm is deliberately designed to be simplistic in
order to facilitate convergence analysis. We do not recommend to use it for actual
computation. First, the admissible choice of parameters σ and v0 depends on the
problem specific constant cz, which will usually be unavailable in actual computation.
Second, the bounds given for ϑ and σ are global worst-case bounds that will be
unnecessarily restrictive locally. Adaptive stepsize and accuracy selection will result
in a far more efficient algorithm.

The proof of Theorem 5.2 will require the usual ingredients for Newton conver-
gence theorems which we will provide now: boundedness of ∂vF

−1, Lipschitz conti-
nuity of the local norms, and Lipschitz continuity of ∂vF . First we turn to ∂vF−1

and derive the analogue of Lemma 4.1 for the scaled norm.
Lemma 5.3. There is some constant 1 ≤ cz < ∞ independent of µ, such that

‖∂vF (v; µ)−1ζ‖µ ≤ cz‖z−1
µ ζ‖∞ (5.1)

for all v ∈ Bµ(vµ; ϑ
√

µ) = {v ∈ L∞ : ‖v − vµ‖µ ≤ ϑ
√

µ} with ϑ < 1.
Proof. From zµ ≥ √

µ/(vµ − yc) we see that

∥

∥

∥

∥

v − vµ

vµ − yc

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

v − vµ√
µ

√

µ

(vµ − yc)2

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

zµ
v − vµ√

µ

∥

∥

∥

∥

∞

=
‖v − vµ‖µ√

µ
≤ ϑ

for v ∈ Bµ(vµ; ϑ
√

µ). For almost all x ∈ Ω, we therefore have −(v− vµ) ≤ ϑ(vµ − yc),
which implies

v ≥ (1 − ϑ)vµ + ϑyc = (1 − ϑ)(vµ − yc) + yc ≥ (1 − ϑ)cµµ + yc > yc (5.2)

due to Corollary 3.6. Lemma 4.1 now provides the invertibility of ∂vF (v; µ). As in
the proof of Theorem 4.3, we have zµ∂vF (v; µ)−1zµ = (z−1

µ K̄z−1
µ + I)−1 and hence

the L2-estimate

‖zµ∂vF (v; µ)−1ζ‖ = ‖(z−1
µ K̄z−1

µ + I)−1z−1
µ ζ‖ ≤ ‖z−1

µ ζ‖. (5.3)

Defining φ = ∂vF (v; µ)−1ζ we have (K̄ + z2
µ)φ = ζ and

‖zµ∂vF (v; µ)−1ζ‖∞ = ‖zµφ‖∞ = ‖z−1
µ (ζ − K̄φ)‖∞

≤ ‖z−1
µ ζ‖∞ +

λ√
ν
‖K̄‖L2→L∞‖φ‖ ≤ ‖z−1

µ ζ‖∞ +
λ2

ν
‖K̄‖L2→L∞‖zµφ‖.

Using (5.3) yields

‖zµ∂vF (v; µ)−1ζ‖∞ ≤
(

1 +
λ2‖K̄‖L2→L∞

ν
√

|Ω|

)

‖z−1
µ ζ‖∞

and establishes the constant cz.
Next we prove Lipschitz continuity of the scaled norms.
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Lemma 5.4. For all v ∈ L∞ and 0 < σ ≤ 1,

‖v‖σµ ≤ σ−cz‖v‖µ (5.4)

holds. Moreover, the derivative of the central path is bounded by ‖v ′
µ‖µ ≤ cz/

√
µ.

Proof. We begin with estimating the derivative of the central path in the scaled
norm. Lemma 5.3 applied to v′

µ = −∂vF (vµ; µ)−1∂µF (vµ; µ) results in

‖v′µ‖µ ≤ cz‖z−1
µ ∂µF (vµ; µ)‖∞ = cz‖z−1

µ (vµ − yc)
−1‖∞ ≤ cz√

µ
. (5.5)

Notice that vσµ − yc > 0. We proceed with bounding the expression

φ(σ) =
vµ − yc

vσµ − yc
.

Note that since µ 7→ vµ is a differentiable mapping from R+ to L∞, φ maps ]0, 1]
differentiably into L∞. Using zτµ ≥ √

τµ/(vτµ − yc) and (5.5), we start with

‖φ′(τ)‖L∞
=

∥

∥

∥

∥

vµ − yc

(vτµ − yc)2
v′τµµ

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

vµ − yc

vτµ − yc

∥

∥

∥

∥

∞

∥

∥

∥

∥

√
τµ

vτµ − yc
v′τµ

∥

∥

∥

∥

∞

µ√
τµ

≤ ‖φ(τ)‖L∞
‖v′τµ‖τµ

µ√
τµ

≤ ‖φ(τ)‖L∞

cz√
τµ

µ√
τµ

≤ ‖φ(τ)‖L∞

cz

τ

for σ ≤ τ ≤ 1. From this we infer

‖φ(σ)‖L∞
=

∥

∥

∥

∥

φ(1) +

∫ 1

σ

φ′(τ) dτ

∥

∥

∥

∥

∞

≤ ‖φ(1)‖L∞
+

∫ 1

σ

‖φ′(τ)‖L∞
dτ ≤ 1 +

∫ 1

σ

‖φ(τ)‖L∞

cz

τ
dτ.

The Bellmann-Gronwall lemma now yields ‖φ(σ)‖L∞
≤ σ−cz for 0 < σ ≤ 1, hence

∥

∥

∥

∥

vµ − yc

vσµ − yc

∥

∥

∥

∥

∞

≤ σ−cz . (5.6)

Next we estimate

∥

∥

∥

∥

zσµ

zµ

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

ν
λ2 + σµ

(vσµ−yc)2

ν
λ2 + µ

(vµ−yc)2

∥

∥

∥

∥

∥

1/2

∞

≤ max

(

1,
√

σ

∥

∥

∥

∥

vµ − yc

vσµ − yc

∥

∥

∥

∥

∞

)

, (5.7)

the case depending on whether

σµ

(vσµ − yc)2
≤ µ

(vµ − yc)2

holds. Dropping the factor
√

σ ≤ 1 for simplicity, we obtain from (5.7) and (5.6)

‖v‖σµ =

∥

∥

∥

∥

zµ
zσµ

zµ
v

∥

∥

∥

∥

∞

≤ max
(

1, σ−cz
)

‖v‖µ

that proves the claim.
Finally, we prove Lipschitz continuity of ∂vF , weighted with ∂vF

−1.
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3ϑ

2ϑ

ϑ

0

vk, µk+1

vk, µk

vk + ∆vk, µk+1

vk+1, µk+1

Fig. 5.1. Errors of the iterates during the proof of Theorem 5.2.

Lemma 5.5. For all 0 < ϑ < 1, and all v, v̂ ∈ Bµ(vµ, ϑ
√

µ), the following
Lipschitz condition holds:

∥

∥∂vF (v; µ)−1(∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)
∥

∥

µ
≤ 2cz

(1 − ϑ)3
√

µ
‖v − v̂‖2

µ . (5.8)

Proof. Using Lemma 5.3 and in view of the representation (4.2) of ∂vF , we have

∥

∥∂vF (v; µ)−1(∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)
∥

∥

µ

≤ cz

∥

∥z−1
µ (∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)

∥

∥

∞

= cz

∥

∥

∥

∥

z−1
µ

(

µ

(v − yc)2
− µ

(v̂ − yc)2

)

(v − v̂)

∥

∥

∥

∥

∞

.

Using the fact that the Lipschitz constant of x−2 for x ≥ a > 0 is given by 2a−3, and
that v − yc ≥ (1− ϑ)(vµ − yc) for v ∈ Bµ(vµ, ϑ

√
µ) due to (5.2), we can proceed with

∥

∥∂vF (v; µ)−1(∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)
∥

∥

µ

≤ cz

∥

∥

∥

∥

z−1
µ µ

2(v − v̂)

((1 − ϑ)(vµ − yc))3
(v − v̂)

∥

∥

∥

∥

∞

=
2cz

(1 − ϑ)3

∥

∥

∥

∥

µ

z3
µ(vµ − yc)3

z2
µ(v − v̂)2

∥

∥

∥

∥

∞

≤ 2cz

(1 − ϑ)3

∥

∥

∥

∥

µ

z3
µ(vµ − yc)3

∥

∥

∥

∥

∞

‖v − v̂‖2
µ

≤ 2cz√
µ(1 − ϑ)3

‖v − v̂‖2
µ,

where the last inequality is a direct consequence of (4.8).
Now we are prepared to prove Theorem 5.2.
Proof. First we give an outline of the proof (see Fig. 5.1). We use induction and

assume that ‖vk − vµk‖µk ≤ 2ϑ
√

µk. Decreasing the homotopy parameter µk by a

factor of σ will lead to an error bound ‖vk−vµk+1‖µk+1 ≤ 3ϑ
√

µk+1. Then the inexact

Newton corrector reduces the error again to ‖vk − vµk+1‖µk+1 ≤ 2ϑ
√

µk+1. We show

this by deriving an error bound ‖vk − vµk+1‖µk+1 ≤ ϑ
√

µk+1 for the exact Newton

corrector and adding a residual bounded by ϑ
√

µk+1.
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(i) To begin with, we split the error as follows:

‖vk − vµk+1‖µk+1 ≤ ‖vk − vµk‖µk+1 + ‖vµk − vµk+1‖µk+1

≤ ‖vk − vµk‖µk+1 +

∫ µk

µk+1

‖v′τ‖µk+1 dτ.

In view of µk+1 = σµk , application of Lemma 5.4 and the induction assumption, and
setting µk+1 = σ̃τ with σ̃ = µk+1/τ leads this to

‖vk − vµk+1‖µk+1 ≤ σ−cz‖vk − vµk‖µk +

∫ µk

µk+1

(µk+1/τ)−cz‖v′τ‖τ dτ

≤ σ−cz2ϑ
√

µk +

∫ µk

µk+1

(µk+1/τ)−cz
cz√
τ

dτ. (5.9)

The integral evaluates to

cz

(µk+1)cz

∫ µk

σµk

τ cz−1/2 dτ =
cz

(σµk)cz

(µk)cz+1/2 − (σµk)cz+1/2

cz + 1/2

=
cz

cz + 1/2
σ−cz(1 − σcz+1/2)

√

µk

≤ czσ
−cz(1 − σ)

√

µk. (5.10)

For the last estimate, we applied the first-order Taylor expansion of σcz+1/2 at σ = 1.
Inserting (5.10) into (5.9) leads to the estimate

‖vk − vµk+1‖µk+1 ≤ σ−cz (2ϑ + cz(1 − σ))
√

µk

= σ−(cz+1/2)(2ϑ + cz(1 − σ))
√

µk+1. (5.11)

Next we rewrite the assumption on σ:

1 − σ ≤ ϑ

3ϑ(cz + 1/2) + cz
⇔ (3ϑ(cz + 1/2) + cz)(1 − σ) ≤ ϑ

⇔ cz(1 − σ) ≤ ϑ − 3ϑ(c + 1/2)(1− σ).

Adding 2ϑ on both sides leads to

2ϑ + cz(1 − σ) ≤ 3ϑ
(

1 + (cz + 1/2)(σ − 1)
)

≤ 3ϑσcz+1/2. (5.12)

Combining (5.11) and (5.12) yields

‖vk − vµk+1‖µk+1 ≤ 3ϑ
√

µk+1. (5.13)

(ii) Since cz ≥ 1, the assumption ϑ ≤ 1/(18cz) implies

3ϑ

(1 − 3ϑ)3
≤ 6ϑ ≤ 1

3cz

and thus

‖vk − vµk+1‖µk+1 ≤ 2

3

(1 − 3ϑ)3

2cz

√

µk+1.
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This is two third of the Lipschitz constant provided by Lemma 5.5 for the ball
Bµk+1(vµk+1 , 3ϑ

√

µk+1). Thus, the conditions for local convergence of the exact New-
ton corrector as considered in the refined Newton-Mysovskii theorem [7] are satisfied.
For an iteration sequence xk that was started close enough to the solution x∗, it states

‖xk+1 − xk‖ ≤ ω

2
‖xk − x∗‖2.

In our case, the Lipschitz constant ω is given by Lemma 5.5 as

ω =
2cz

(1 − 3ϑ)3
√

µk+1
.

Since ‖vk − vµk+1‖µk+1 is sufficiently small as verified above. Therefore, the error of
the next iterate vk + ∆vk is bounded by

‖vk + ∆vk − vµk+1‖µk+1 ≤ 1

2

2cz

(1 − 3ϑ)3
√

µk+1
‖vk − vµk+1‖2

µk+1

≤ 1

3
‖vk − vµk+1‖µk+1 ≤ ϑ

√

µk+1

in view of (5.13).
(iii) The length of the Newton step ∆vk can be estimated by

‖∆vk‖µk+1 ≤ ‖vk + ∆vk − vµk+1‖µk+1 + ‖vk − vµk+1‖µk+1 ≤ 4ϑ
√

µk+1,

and the error of the inexact iterate vk+1 is bounded by

‖vk+1 − vµk+1‖µk+1 ≤ ‖vk + ∆vk − vµk+1‖µk+1 + δ‖∆vk‖µk+1

≤ (1 + 4δ)ϑ
√

µk+1.

With the accuracy matching δ ≤ 1/4 we obtain ‖vk+1 − vµk+1‖µk+1 ≤ 2ϑ
√

µk+1,
which completes the induction step.
(iv) Moreover, together with Theorem 4.3, we obtain

‖v0 − vk‖∞ ≤ ‖v0 − vµk‖∞ +
λ√
ν
‖vµk − vk‖µk

≤ c0

√

µk + 2ϑ
√

µk ≤ (c0 + 2ϑ)σk/2
√

µ0,

which proves r-linear convergence of vk to the KKT point v0.

6. Numerical tests. In Section 5, we have formulated our algorithm in a fairly
abstract way. Now we reformulate it in terms of PDEs. To implement the method,
we have to solve a discretized version of equation (4.1), i.e. of

F (vµ; µ) = (D∗S∗SD + νD∗D)vµ − D∗S∗yd − µ

vµ − yc
= 0 a.e. on Ω . (6.1)

Let us transform this equation to a standard optimality sytem in terms of PDEs:
First, we mention that v = λu + y, u = Dv, and y = SDv holds. Therefore, the

equation above is equivalent to

D∗(S∗(y − yd) + νu) − µ

y + λu − yc
= 0 . (6.2)
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Next, we define p1 := S∗(y − yd) = S(y − yd). By definition of S, p1 solves the PDE
Ap1 = y − yd subject to homogeneous boundary conditions. Inserting this in (6.2),
we obtain after multiplying (6.2) by D∗−1 = S∗ + λI = S + λI ,

p1 + νu − λµ

y + λu − yc
= S∗ µ

y + λu − yc
=: −p2. (6.3)

The function p2 solves the equation Ap2 = − µ
y+λu−yc

with homogeneous boundary
conditions. Setting p = p1 + p2, we arrive at the adjoint equation

Ap = y − yd − µ
y+λu−yc

in Ω

∂np + p = 0 on Γ.

In view of this, equation (6.3) is nothing more then the gradient equation

p + νu − λµ

y + λu − yc
= 0 in Ω. (6.4)

Together with the state equation, the nonlinear optimality system

Ay = u in Ω Ap = y − yd −
µ

y + λu − yc
in Ω

∂ny + αy = 0 on Γ ∂np + αp = 0 on Γ

p + νu − λµ

y + λu − yc
= 0 a.e. in Ω

(6.5)
must be solved. Notice that (6.5) can be directly obtained as the first-order optimality
system for the problem (2.5)–(2.7) by using the standard formal Lagrange technique.
Our abstract approach that was used to simplify the analysis is consistent with this.

For the computations, (6.5) is discretized by a finite element method in the space
H1(Ω) ⊃ Vh = span{φ1, · · · , φn} with standard piecewise linear elements. The func-
tions y, p, and u are chosen as

y =

n
∑

1

yiφi, p =

n
∑

1

piφi, u =

n
∑

1

uiφi.

First we consider the numerical approximation of our state equation (2.2–2.3).
We will restrict the examples to

−∆y + y = u in Ω (6.6)

∂ny = 0 on Γ. (6.7)

Let K and M be the stiffness- and mass matrices associated with Vh. Note, that
φi(xj) = δij . Then the functions yh and ph and uh can be identified by their coeffi-
cient vectors y = (y1, y2, ..., yn)T , u = (u1, u − 2, ..., un)T , and y = (y1, y2, ..., yn)T ,
respectively. The finite element approximation of (6.6)–(6.7) is

(K + M)y = Mu. (6.8)

To simplify the construction of test examples we introduce a desired control ud,
(cf. (6.10) below) which does not change the validity of our theorems. Further,
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we drop the transformation D−1 = S + λI , which we established to abbreviate the
formulation of our problem. The discretization of ud and yd is taken as above.

Using the discretization (6.8), in view of (6.5), and multiplying the gradient
equation (6.3) with −M, we arrive at

F̃h(y,u,p; µ) =





−M 0 K+M

0 −νM −M

K+M −M 0









y

u

p





+





Myd

νMud

0



+











M

(

µ

y + λu − yc

)

M
λµ

y + λu − yc

0











=





0
0
0



 .(6.9)

This is the discrete optimality system we use for our computations. In (6.9), the

vector
µ

y + λu − yc

is defined by

(

µ

y + λu − yc

)

i

=
µ

yi + λui − (yc)i
.

Note that, due to the linearity of the state equation, the computational all-at-once
approach used here is indeed an implementation of the inexact Newton method de-
scribed in Section 5.

We have tested our method using the example

(PT) min J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u − ud‖2

L2(Ω) (6.10)

subject to

−∆y + y = u in Ω (6.11)

∂ny = 0 on Γ (6.12)

and to the pointwise mixed control-state constraints

y + λu ≥ yc a.e. in Ω (6.13)

with Ω = (0, 1) × (0, 1).

It is easy to verify that (PT) fits into the setting of (P). For all λ > 0, the
Lagrange multiplier η associated with (6.13) belongs to L2(Ω).

After having solved (6.9) by our primal algorithm, we have calculated the La-
grange multiplier η by the relation

η =
µ

y + λu − yc
.

The method was implemented using Matlab and its PDE-toolbox for mesh gener-
ation and matrix-assembling. The stopping criterion for the outer iteration was
µ ≤ ε = 10−12. A regular cross (Friedrichs-Keller) triangulation has been used with
fixed mesh size h = 0.025. In the following, the numerical solutions are denoted by
(·)µ, the exact optimal control, optimal state, and the optimal adjoint state are ū,
ȳ, and p̄ respectively. For fixed mesh size, the numerical solutions converged to the
projection of the exact solution onto the finite element space. All computations were
performed on a Pentium IV/2.8GHz machine with 1GB RAM running under Linux.
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6.1. Example 1. This example is a slight update of Example 1 in [11]. We
choose ū = 2, p̄ = −2 and ȳ = 2. The desired state yd, the bound yc, and the
Lagrange multiplier η are given by

yd(x1, x2) = 4 − max
{

−20
(

(x1 − 0.5)2 − (x2 − 0.5)2
)

+ 1 − 2λ, 0
}

,

yc(x1, x2) = min
{

−20
(

(x1 − 0.5)2 − (x2 − 0.5)2
)

+ 3, 2 + 2λ
}

,

η(x1, x2) = max
{

−20
(

(x1 − 0.5)2 − (x2 − 0.5)2
)

+ 1 − 2λ, 0
}

.

Moreover, we have chosen ud = −λη(x1, x2). In (6.10) we take ν = 1 and
λ = 10−3. The Algorithm 5.1 was applied with σ = 0.75 and µ0 = 1.
The following figures show the functions yd, yc and the Lagrange multiplier η.
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Fig. 6.3. Multiplier η

The figures 6.4–6.7 show the numerical solutions yh, uh, ph, and ηh with λ = 10−3.
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Fig. 6.7. Lagrange multiplier ηh

Tabular 6.1 contains the relative errors err(u) =
‖uµ−ū‖

l2

‖ū‖
l2

, err(y) =
‖yµ−ȳ‖

l2

‖ȳ‖
l2

,

err(p) =
‖pµ−p̄‖

l2

‖p̄‖
l2

, and err(η) =
‖ηµ−η̄‖

l2

‖η̄‖
l2

for the problem regularized with λ = 10−3
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depending on µ. It shows the linear convergence in u, y, and p. This is also reflected
by the figures 6.8–6.11. For a comparison with results computed by a primal-dual
active set strategy we refer to [11]. For µ < 10−10, the discretization error dominates
the values of the error function err(η).

µ err(u) err(y) err(p) err(η)

1.0775e-02 8.9940e-03 8.9802e-03 8.9740e-03 5.9016e-01
1.0611e-03 1.1585e-03 1.1293e-03 1.1472e-03 4.9188e-01
1.0450e-04 3.0274e-04 1.2221e-04 2.6728e-04 4.6082e-01
1.0290e-05 1.7956e-04 1.7204e-05 1.5513e-04 3.0395e-01
1.0134e-06 5.2173e-05 3.0048e-06 4.2306e-05 1.4558e-01
1.1088e-07 1.4471e-05 5.6443e-07 9.8070e-06 6.4546e-02
1.0919e-08 3.5160e-06 9.4222e-08 1.8734e-06 2.2455e-02
1.0753e-09 7.3268e-07 1.4464e-08 3.1009e-07 1.0979e-02
1.0589e-10 1.2286e-07 1.9308e-09 4.2994e-08 1.0093e-02
1.0428e-11 1.5516e-08 2.1608e-10 4.8831e-09 1.0096e-02
1.0269e-12 1.6071e-09 2.1836e-11 4.9450e-10 1.0103e-02

Table 6.1

Relative errors for Example 1.

The figures 6.8–6.11 show the differences between the numerical solutions uµ,yµ

pµ and ηµ and the exact solutions ū, ȳ, p̄ and η̄, measured in the L2-norm at a
regularization parameter λ = 10−3 depending on the path-parameter µ. Both axes
are scaled logarithmically. The behavior of the Lagrange multiplier for µ → 0 is
remarkable: It converges very slowly up to µ ≈ 10−5, between µ ≈ 10−5 and µ = 10−9

it converges linearly, and for µ < 10−9 we see a saturation caused by numerical errors.
Compare also the figures 6.12–6.15 below.
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The next figures show the evolution of the multiplier ηµ along the central path.
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Fig. 6.12. Multiplier ηh at µ = 10−2
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Fig. 6.13. Multiplier ηh at µ = 10−6
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Fig. 6.14. Multiplier ηh at µ = 10−7
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6.2. Example 2. This example is constructed such that ȳ, ū and p̄ are trigono-
metric functions of the form ϕ(x1, x2) = c cos (πx1) cos (2πx2). We choose c = 1 for
ȳ and c = (−5νπ2) for p̄ . From the state equation and the optimality condition we
get ū = −∆ȳ + ȳ =

(

5π2 + 1
)

ȳ, and ud = ū + 1
ν p̄ − λ

ν η = ȳ − λ
ν η, respectively.

By ŷ = 2 sin (2πx1) − 1.5, η̄ = max {ŷ − ȳ, 0}, and yc = min {ŷ, ȳ} − λū, the comple-
mentary slackness condition is fullfilled. All these functions are continuous. Therefore,
the adjoint equation does not contain measures as data. From the adjoint equation
we get yd = ∆p̄− p̄+ ȳ− η̄ =

((

5νπ2
) (

5π2 + 1
)

+ 1
)

ȳ− η̄. Figures 6.16–6.18 present
the functions yd yc and η.
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The following figures show the numerical solutions for ν = 10−3 and λ = 10−3.
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Fig. 6.22. Multiplier ηµ

Table 6.2 displays the relative error err(·) for u, y, p, and η. Here, the discretization
error dominates err(·) for all values µ < 10−6.
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µ err(u) err(y) err(p) err(η)
1.0775e-02 1.7515e-02 4.2897e-02 1.4888e-02 3.2848e-01
1.0611e-03 5.0088e-03 6.7794e-03 3.8653e-03 1.4802e-01
1.0450e-04 1.3658e-03 1.1136e-03 9.0134e-04 5.9756e-02
1.0290e-05 4.4222e-04 3.9979e-04 3.0695e-04 2.1376e-02
1.0134e-06 2.8956e-04 3.7943e-04 2.4390e-04 1.1738e-02
1.1088e-07 2.7751e-04 3.8078e-04 2.3967e-04 1.0866e-02
1.0919e-08 2.7666e-04 3.8100e-04 2.3932e-04 1.0830e-02
1.0753e-09 2.7662e-04 3.8102e-04 2.3930e-04 1.0833e-02

Table 6.2

Relative errors for Example 2.

Figures 6.23–6.26 present the differences between the numerical solutions and the
optimal solutions at ν = 10−3 and λ = 10−3.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−3

10
−2

10
−1

µ

er
r(

u)

Fig. 6.23. err(u)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−3

10
−2

10
−1

µ

er
r(

y)

Fig. 6.24. err(y)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−210

−4

10
−3

10
−2

10
−1

µ

er
r(

p)

Fig. 6.25. err(p)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−210

−2

10
−1

10
0

µ

er
r(

η)

Fig. 6.26. err(η)

The figures illustrate the evolution of the Lagrange multiplier ηµ along the central
path.
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Fig. 6.27. Multiplier ηmu at µ = 0.001
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Fig. 6.28. Multiplier ηµ at µ = 10−4
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Fig. 6.29. Multiplier ηµ at µ = 10−5
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Fig. 6.30. Multiplier ηµ at µ = 10−6

7. Pass to the limit λ ↓ 0. We have considered our method for fixed λ > 0.
Nevertheless, we briefly mention for convenience how close the solution ū of the problem
with pure state constraint y ≥ 0 is approximated by ūλ, the one associated to the Lavrentiev
regularized constraint λu + y ≥ 0. It is known from [10] that ‖ū − ūλ‖ → 0 as λ ↓ 0. To get
a convergence rate, we require the following two assumptions:

Uniform boundedness: There is M > 0 such that

‖ūλ‖∞ ≤ M ∀ λ > 0. (7.1)

Notice that (7.1), together with ūλ → ū in L2, implies that ‖ū‖∞ ≤ M .
Slater condition: There is some u0 ∈ L∞ and an ε > 0 such that

y0(x) ≥ yc(x) + ε ∀x ∈ Ω̄ (7.2)

holds for the associated state y0 = S u0.

Under these assumptions, the first of them being quite strong, but often satisfied in
concrete examples, the estimate

‖ū − ūλ‖ ≤ C
√

λ (7.3)

is obtained by a fairly standard technique, cf. for instance Alt [2]. We briefly sketch the
main steps: In view of the assumptions (7.1) and (7.2), there exist positive constants c0 and
λ0, and controls ũ(λ), û(λ) with associated states ỹ(λ), ŷ(λ) having the following properties:
For all λ ∈ (0, λ0], it holds

λ ũ(λ) + ỹ(λ) ≥ yc, ‖ū − ũ(λ)‖ ≤ c0 λ (7.4)

ŷ(λ) ≥ yc, ‖ūλ − û(λ)‖ ≤ c0 λ. (7.5)

The upper estimate is obtained as follows: We define ũ(λ) = (1 − ρ)ū + ρu0 with suitable
ρ > 0. Then by ȳ ≥ yc and (7.2),

λ ũ(λ) + ỹ(λ) = λ (1 − ρ)ū + λρu0 + (1 − ρ)ȳ + ρy0

≥ λ (1 − ρ)ū + λρu0 + (1 − ρ)yc + ρ(yc + ε)

= λ (1 − ρ)ū + λρu0 + ρε + yc.
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For 0 < ρ ≤ 1, we get ‖λ(1 − ρ)ū + λρu0‖∞ ≤ λ (M + ‖u0‖∞). Take

ρ =
λ

ε
(M + ‖u0‖∞) (7.6)

and assume that λ is so small, say λ ≤ λ0, such that ρ ≤ 1 holds. Then

λ(1 − ρ)ū + λρu0 + ρε + yc ≥ −λ (M + ‖u0‖∞) + ρε + yc ≥ yc

so that λ ũ(λ) + ỹ(λ) ≥ yc. Moreover,

‖ū − ũ(λ)‖ = ‖ū − (1 − ρ)ū − ρu0‖ ≤ ρ(M + ‖u0‖∞) ≤ c0λ

because of (7.6).
In the same way, the relations (7.5) are shown by the ansatz û(λ) = (1 − ρ)ūλ + ρu0

with certain ρ ∈ (0, 1). We exploit λūλ + ȳλ ≥ yc, hence ȳλ ≥ yc −λM . The term −λM can
be compensated by adding a small multiple of y0.

Invoking (7.4), (7.5), the estimate (7.3) is now obtained immediately: The functional
f(u) is uniformly Lipschitz with constant L on the set of all u with ‖u‖∞ ≤ M . We find by
Taylor expansion

f(ūλ) − f(ū) ≥ f
′(ū)(ūλ − ū) +

κ

2
‖ūλ − ū‖2

= f
′(ū)(û(λ) − ū) +

κ

2
‖ūλ − ū‖2 + f

′(ū)(ūλ − û(λ))

≥ κ

2
‖ūλ − ū‖2 − c1 Lλ

since û(λ) satisfies the constraints of (P), and hence the variational inequality is fulfilled.
Moreover, (7.5) was used. On the other hand,

f(ūλ) − f(ū) = f(ūλ) − f(ũ(λ)) + f(ũ(λ)) − f(ū) ≤ 0 + c2Lλ

is found. Altogether, κ‖ūλ − ū‖2 ≤ 2 (c1 + c2)Lλ follows from the last two inequalities,

implying the estimate (7.3).
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