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1 Introduction

In this paper, we investigate the behaviour of a Sequential Quadratic Programming
(SQP)–method applied to the following very simplified model problem (P):

(P) Minimize

1

2

T∫
0

∫
Γ

{
(w(t, ξ)− q(t, ξ))2 + λu(t, ξ)2

}
dSξdt (1.1)

subject to

wt(t, ξ) = (∆ξw − w)(t, ξ) in Ω
w(0, ξ) = 0 in Ω
∂w
∂n (t, ξ) = b(w(t, ξ)) + u(t, ξ) on Γ

(1.2)
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and to the constraints on the control

|u(t, ξ)| ≤ 1, (1.3)

t ∈ [0, T ]. The control u is looked upon in L∞((0, T ) × Γ), while the state w is
defined as mild solution of (1.2) (cf. section 2).

In this setting, a bounded domain Ω ⊂ Rn(n ≥ 2) with C∞–boundary Γ, positive
constants λ, T, and functions b ∈ C2(IR), q ∈ L∞((0, T )×Γ) are given. By n and dS
the outward normal vector and the surface measure on Γ, respectively, are denoted.

Pointwise constraints of the type (1.3) are often imposed for a correct modelling of
the underlying process. They reflect technical limitations to the possible choice of
the control and cannot be realized by a smooth penalization. The term λ‖u‖2 in
(1.1) is to enhance continuity of the optimal control (it may express the cost for the
control, too).

It is known since several years that the SQP algorithm, applied to mathematical
programming problems in finite-dimensional spaces, exhibits local quadratic con-
vergence. The method can be easily extended to infinite-dimensional optimization
problems such as optimal control problems. We refer, for instance, to the works by
Alt [1], [2], Alt and Malanowski [3], Kelley and Wright [7], or Levitin and Polyak [10].
In the context of nonlinear parabolic control problems without control constraint
we mention the numerical work by Kupfer and Sachs [8].

Recently, Alt, Sontag and Tröltzsch [4] proved the local quadratic convergence of
the SQP method for the optimal control of a weakly singular Hammerstein integral
equation with pointwise constraints on the control. In the author’s paper [12], the
proof of convergence was transferred to the one-dimensional heat equation with
nonlinear boundary condition. The aim of this note is to extend the convergence
result to a parabolic equation in a domain of dimension n.

We assume that b and its derivatives up to the order 2 are uniformly bounded and
Lipschitz: There are constants cB, cl:

|b(i)(w)| ≤ cB |b(i)(w1)− b(i)(w2)| ≤ cl, (1.4)

for all w,w1, w2 ∈ IR, i = 0, 1, 2. We may weaken the conditions (1.4) to local ones.
However, this would lead to difficulties, as the solution w of (1.2) could blow up
in finite time. For convenience we consider only the very special type of boundary
condition in (1.2). This enables us to work out the principal behaviour of the SQP–
method and to avoid tedious technical estimates. The case of more general boundary
conditions having the form ∂w/∂n = b1(w) + b2(w)u is discussed in [4].
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2 Integral equation method

Let us define A : L2(Ω) ⊃ D(A) → L2(Ω) by D(A) = {w ∈ W 2
2 (Ω) : ∂w/∂n =

0 on Γ}, Aw = −∆w + w for w ∈ D(A). −A is known to generate an analytic
semigroup {S(t)}, t ≥ 0, of continuous linear operators in L2(Ω). Moreover, we
introduce the Neumann operator N : L2(Γ) → W s

2 (Ω)(s < 1 + 1/2) by N : g 7→
w,∆w − w = 0, ∂w/∂n = g. Next, we fix σ, p ∈ IR by p > n + 1 and n/p < σ <
1 + 1/p. The last two inequalities have a non–void intersection for p > n− 1, while
p > n + 1 is needed to work with states being continuous w.r. to t. In the same
way we may introduce operators Ar, Sr(t), Nr just by substituting above the order
of integrability r for 2, where 1 < r < ∞. Restricting AS(t)N to Lr(Γ)(r ≥ 2), we
obtain ArSr(t)Nr. Therefore, we shall use in the paper the same symbol AS(t)N
regarded in different spaces Lr. To continue our preparations we define a Nemytskĭı
operator B : C(Γ)→ C(Γ) by (Bx)(ξ) = b(x(ξ)).

A function w ∈ C([0, T ],W σ
p (Ω)) is said to be a mild solution of (1.2), if the Bochner

integral equation

w(t) =

t∫
0

AS(t− s)N(B(τw(s)) + u(s))ds (2.1)

holds on [0, T ] (τ : trace operator). The expression on the right hand side makes
sense, as u ∈ L∞((0, T )×Γ) ⊂ Lp((0, T )×Γ) = Lp(0, T ;Lp(Γ)) and W σ

p (Ω) ⊂ C(Ω)
by n/p < σ (here we regard AS(t)N as operator from Lp(Γ) to W σ

p (Ω), t > 0).
Owing to the strong assumption (1.4), to each u ∈ L∞((0, T ) × Γ) a unique global
solution w of (2.1) exists (cf. Tröltzsch [11]). Turning over to the trace x(t) = τw(t)
in (2.1) we arrive at the integral equation

x(t) =

t∫
0

τAS(t− s)N(B(x(s)) + u(s))ds (2.2)

for x ∈ C([0, T ], C(Γ)).

The estimate (see Amann [4])

‖AS(t)N‖Lr(Γ)→Wσ
r (Ω) ≤ c t−α, (2.3)

where α = 1 − (σ′ − σ)/2 and 0 < σ < σ′ < 1 + 1/r, turns out to be essential for
investigating properties of the integral operator K,

(Kz)(t) =

t∫
0

τAS(t− s)Nz(s)ds. (2.4)
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Let us briefly discuss (2.3) for r := p: Taking σ = n/p+ε, σ′ = 1+1/p−ε(ε > 0) we
find that (2.3) holds for all α > 0.5+(n−1)/2p. K maps continuously Lp(0, T ;Lp(Γ))
into C([0, T ], C(Γ)) provided that p > 1/(1− α). This holds together with the last
inequality for α, if p > n+ 1. For p ↓ n+ 1 we may take α ↓ n/(n+ 1).

For convenience we regard K between different spaces: K may be viewed as operator
in Lr(0, T ;Lr(Γ)) for all 1 < r < ∞. Let its adjoint K∗ be defined for r = 2. It is
known that

(K∗z)(t) =

T∫
t

τAS(s− t)Nz(s)ds,

hence K∗ has the same transformation properties as K. By means of these prereq-
uisites we are able to write (P) as

(P) f(x, u) =
1

2

T∫
0

{‖x(t)− q(t)‖2
L2(Γ) + λ‖u(t)‖2

L2(Γ)}dt = min!

subject to

x = K(B(x) + u), u ∈ Uad. (2.5)

Here we have introduced B in C([0, T ], C(Γ)) by (Bx)(t, ·) = B(x(t, ·)) and Uad :=
{u ∈ L∞((0, T ) × Γ) : |u(t, ξ)| ≤ 1}. The equation in (2.5) is well defined, as K
maps Lp(0, T ;Lp(Γ)) into C([0, T ], C(Γ)).
In the paper, the following notation is used: We write Lr = Lr(0, T ;Lr(Γ)), 1 ≤
r < ∞, L∞ = L∞((0, T ) × Γ), C = C([0, T ], C(Γ)) = C([0, T ] × Γ) and endow the
spaces with their natural norms ‖ · ‖r and ‖ · ‖∞, respectively. The natural norm
of Lα(0, T ;Lβ(Γ)), 1 < α, β < ∞, is denoted by ‖ · ‖Lα,β . For α = β = ∞ we
set ‖ · ‖L∞,∞ := ‖ · ‖∞. In product spaces of this type, the norm is defined as
the sum of the corresponding norms. In C × Lr, ‖(x, u)‖∞,r = ‖x‖∞ + ‖u‖r, 1 ≤
r ≤ ∞, and ‖(x, u)‖r := ‖(x, u)‖r,r, in C × Lr × Lr : ‖(x, u, y)‖∞,r = ‖x‖∞ +
‖(u, y)‖r, ‖(x, u, y)‖∞ := ‖(x, u, y)‖∞,∞. An ”inner product” is defined formally by

< x, y > =

T∫
0

∫
Γ

x(t, ξ)y(t, ξ) dSξdt

just denoting integration of x y over [0, T ]× Γ.

3 Known optimality conditions

The functional f : C × Lp → IR and the mapping (x, u) 7→ B(x) + u from C × Lp
to Lp are twice continuously Fréchet differentiable. This enables us to apply lateron

4



second order methods to (P ). Owing to the convexity of f and the linear appearance
of u in (1.2), standard methods show the existence of at least one optimal control
u0 for (P ). Let x0 be the corresponding state. For y ∈ L∞ the Lagrange function

L(x, u, y) = f(x, u)− < y, x−K(B(x) + u) >

is defined. From Lx = 0 we obtain formally the equation y0 = fx +B′(x0)∗K∗y0 for
the Lagrange multiplier y0. A careful discussion (taking derivatives in C × L∞ and
regarding the derivatives as linear operators in Lp) justifies this (cf. Tröltzsch [11]):

y0(t) = x0(t)− q(t) +B′(x0(t))

T∫
t

τAS(s− t)N y0(s)ds. (3.1)

Here, we took advantage of (B′(x0(t, ·))h(t, ·))(ξ) = b′(x0(t, ξ)) ·h(t, ξ), hence B′(x0)
is formally self–adjoint. The variational inequality < Lu, u − u0 > ≥ 0 ∀u ∈ Uad

yields < λu0 +K∗y0, u− u0 > ≥ 0. After a standard pointwise discussion we arrive
at

u0(t, ξ) = P[−1,1]{−λ−1(K∗y0)(t, ξ)}, (3.2)

where P[−1,1] : IR → [−1, 1] denotes projection onto [−1, 1]. We assume that in
addition to the first order necessary conditions (3.1), (3.2) the following second
order sufficient optimality condition is satisfied: There is a δ > 0 such that

(SSC) Lvv(x0, u0, y0)[v − v0, v − v0] ≥ δ‖v − v0‖2
2 (3.3)

for all v = (x, u) satisfying the linearized equation

x− x0 = K(B′(x0)(x− x0) + u− u0). (3.4)

In (3.3), Lvv denotes the second order F -derivative of L w.r. to v = (x, u) in C×Lp
at v0 := (x0, u0). The sufficiency of (SSC) was discussed in [6]. We finish this section
by the following very useful Lemma:

Lemma 3.1 Let 1 ≤ r, ρ ≤ ∞, D be the linear continuous operator in Lr,ρ defined
by (Dx)(t, ξ) = β(t, ξ)x(t, ξ), where β ∈ L∞. Then (I − DK)−1 and (I − KD)−1

exist as linear continuous operators in Lr,ρ and their norm is bounded by a constant
crρ which depends only ‖β‖∞, r, and ρ.

Proof. The invertibility follows from a standard application of the Banach fixed
point theorem. Let z ∈ Lr,ρ be given. We estimate the solution of the equation
x = BKx+ z. Then

‖x(t)‖Lρ(Γ) ≤
t∫

0
‖β‖∞‖τAS(t− s)N‖Lρ(Γ)→Lρ(Γ)‖x(s)‖Lρ(Γ)ds+ ‖z(t)‖Lρ(Γ)

≤ c
t∫

0
(t− s)−α‖x(s)‖Lρ(Γ)ds+ ‖z(t)‖Lρ(Γ).
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Here, c > 0 depends only on ρ, ‖β‖∞, and α ∈ (0, 1). ‖x(t)‖ is majorized by the real
function ϕ(t) solving the corresponding weakly singular integral equation. Therefore

‖x‖Lr,ρ = (

T∫
0

‖x(t)‖rLρ(Γ)dt)
1/r ≤ ‖ϕ‖Lr(0,T ) ≤ c(

T∫
0

‖z(t)‖rLρ(Γ)dt)
1/r = c‖z‖Lr,ρ .

In this way the Lemma is shown for I −DK. The arguing for I −KD is identical.
2

4 The SQP method, Hölder estimates

Initiating from a starting point (x1, u1, y1) in C × L∞ × L∞ the (full) SQP method
generates sequences {xn}, {un}, {yn} by solving certain quadratic programs. Adopt-
ing the notation by Alt [1], one step of the method can be described as follows:
Let w = (xw, uw, yw) be the result of the last iteration. As before, we write
vw = (xw, uw), v = (x, u). The next iterate vw = (xw, uw) is obtained as the so-
lution of

(QP )w F (v;w) = f ′(vw)(v − vw) +
1

2
Lvv(vw, yw)[v − vw, v − vw] = min! (4.1)

x = K(B′(xw)(x− xw) +B(xw) + u), u ∈ Uad. (4.2)

yw is the corresponding Lagrange multiplier.

Remark. Define g(v) = g(x, u) = x −K(B(x) + u). Then the state equation (2.5)
reads g(v) = 0. (4.2) is its linearization g(vw) + g′(vw)(v− vw) = 0, which simplifies
by linearity w.r. to u.

The Lagrange function L̃ to (QP )w is

L̃(v, y) = F (v;w) − < y, x−K(B′(xw)(x− xw) +B(xw) + u) > .

L̃x = 0 leads to the (adjoint) equation

y = B′(xw)K∗y + fx(vw) + fxx(vw)[xw − xw, ·]
+B′′(xw)[xw − xw, ·]K∗yw

(4.3)

for y = yw. After a simple calculation we find

yw(t) = B′(xw(t))
T∫
t
τAS(s− t)Nyw(s)ds+ xw(t)− q(t)

+B′′(xw(t))[xw(t)− xw(t), ·]
T∫
t
τAS(s− t)Nyw(s)ds.

(4.4)
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The variational inequality determining uw, < L̃u, u− uw >≥ 0 ∀u ∈ Uad, gives

uw(t, ξ) = P[−1,1]{−λ−1(K∗yw)(t, ξ)}. (4.5)

A straightforward calculation by means of (SSC) yields

F (v;w0) ≥ δ‖v − v0‖2
2 = F (v0;w0) + δ‖v − v0‖2

2 (4.6)

for all v being admissible for (QP )w0 (where w0 = (v0, y0) = (x0, u0, y0)).

Lemma 4.1 For all w in a sufficiently small C × Lp × Lp–neighbourhood N1(w0),
(QP )w admits a unique solution (xw, uw) = vw with associated Lagrange multiplier
yw. There is a constant cH not depending on w, such that

‖vw − v0‖2 ≤ cH‖w − w0‖1/2
2 (4.7)

‖yw‖∞ ≤ cH (4.8)

for all w ∈ N1(w0).

Proof. We shall only briefly sketch the proof, which is along the lines of Alt [1]
or Alt, Sontag and Tröltzsch [3]. A first step initiates from the simple observation
F (vw;w) ≤ F (ṽw;w), where ṽw = (x̃w, uw) and x̃w is the state obtained from (4.2)
for u = uw. By means of Lemma 3.1 the upper estimate

F (vw;w) ≤ c‖w − w0‖2 (4.9)

can be derived. A lower estimate

F (vw;w) ≥ δ

2
‖v̄w − v0‖2

2 − c‖w − w0‖2 (4.10)

follows from re-writing terms like f ′(vw) or Lvv(vw, yw) in terms of f ′(v0),Lvv(v0, y0)
etc., estimating the correction parts and exploiting (SSC) and Lemma 3.1. We omit
the details of the lengthy computations. (4.9) and (4.10) yield (4.7). As regards
(4.8), we first observe that uw is uniformly bounded, hence ‖x‖∞ is bounded, too
(this is a consequence of (4.2) for u = uw : ‖xw‖∞ is bounded, as w ∈ N1(w0); apply
Lemma 3.1 to x = xw in (4.2)). Now the uniform boundedness of yw is an immediate
conclusion of (4.4) and Lemma 3.1. 2
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Corollary 4.2 The estimate (4.7) holds true in the form

‖vw − v0‖∞,p ≤ c′H‖w − w0‖1/p
∞,p (4.11)

for all w ∈ N ′1(w0) ⊂ N1(w0).

Proof. (4.7) means in particular ‖uw−u0‖2 ≤ cH‖w−w0‖1/2
2 . Exploiting |uw−u0| ≤

2 it is easy to show that

‖uw − u0‖p ≤ c‖w − w0‖1/p
2 ≤ c′‖w − w0‖1/p

∞,p. (4.12)

Subtracting the equations for x2 and x0 we get

(xw − x0)−KB′(xw)(xw − x0) =
K(B(xw)−B(x0) +B′(xw)(x0 − xw) + uw − u0).

Therefore, the L∞–norm of the left–hand side is less or equal ‖K‖Lp→C(c1‖xw −
x0‖∞ + c2‖uw − u0‖p) ≤ c‖w − w0‖1/p

∞,p by (4.12) (provided that ‖w − w0‖∞,p ≤ 1).
Now Lemma 3.1 applies to the left–hand side,

‖xw − x0‖∞ ≤ c′′‖w − w0‖1/p
∞,p,

implying (4.11). 2

In the same way, subtraction of the equations for y0, yw yields

Corollary 4.3 There is a constant c′′H > 0 such that

‖yw − y0‖∞ ≤ c′′H‖w − w0‖1/p
∞,p (4.13)

for all w ∈ N ′′1 (w0) ⊂ N1(w0).

We omit the proof. In what follows let N1(w0) denote the intersection N1(w0) ∩
N ′1(w0) ∩N ′′1 (w0).

8



5 Right hand side perturbations, Lipschitz esti-

mate

Following Alt [1], [2], we consider now the close relationship between the stability
of (QP )w and certain perturbations of (QP )w0 . We discuss the perturbed problem

(QS)π f ′(v0)(v − v0) + 1
2
Lvv(v0, y0)[v − v0, v − v0]− < d, v − v0 > = min!

x = e+K(B′(x0)(x− x0) +B(x0) + u), u ∈ Uad (5.1)

belonging to the perturbation π = (d, e) = (dx, du, e) ∈ L∞ × L∞ × C. For π = 0
this problem has the unique solution v0 = (x0, u0). In (QS)π we regard x, u in L2,
although the constraint u ∈ Uad automatically generates only L∞−solutions.

(QS)π is a linear–quadratic parabolic control problem, where the theory is already
widely investigated. Owing to (SSC), the following result is therefore standard:
There is a neighbourhood N2(0), and a positive constant ch > 0 such that for all
e ∈ N2(0) and all d ∈ L∞×L∞ problem (QS)π admits a unique solution vπ = (xπ, uπ)
and

‖vπ − v0‖2 ≤ ch‖π‖1/2
2 (5.2)

for all π = (d, e) such that e ∈ N2(0). We are able to improve this estimate in
Theorem 5.3.

Lemma 5.1 Let yπ be the Lagrange multiplier belonging to vπ and 2 ≤ α, β ≤ ∞.
Then there is a constant cαβ > 0 such that

‖yπ − y0‖Lα,β ≤ cαβ (‖xπ − x0‖Lα,β + ‖π‖Lα,β) (5.3)

for all π ∈ L∞ × L∞ × C.

Proof. The adjoint equations defining y0, yπ are (3.1) and

yπ = (xπ − q)− dx +B′(x0)K∗yπ +B′′(x0)[xπ − x0, ·]K∗y0. (5.4)

Subtraction of these equations yields after some estimations

‖(y0 − yπ)−B′(x0)K∗(y0 − yπ)‖Lα,β
= ‖dx + xπ − x0 +B′′(x0)[xπ − x0, ·]K∗y0‖Lα,β .

Applying Lemma 3.1

‖y0 − yπ‖Lα,β ≤ c1‖dx‖Lα,β + c2‖xπ − x0‖Lα,β
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is obtained. This implies (5.3). 2

One of the decisive steps for showing quadratic convergence is the following Lipschitz
estimate improving (5.2):

Theorem 5.2 There is a constant cL > 0 such that

‖vπ − v0‖2 ≤ cL‖π‖2 (5.5)

for all π ∈ L∞ × L∞ × C.

Proof. We outline the main steps of the proof. The first order condition for vπ as
a solution of (QS)π is

0 ≤ < L̃v(vπ, yπ), v − vπ > ∀v ∈ L2 × Uad,

i.e.

0 ≤ f ′(v0)(v − vπ) + Lvv(v0, y0)[vπ − v0, v − vπ]
− < d, v − vπ > − < yπ, (x− xπ)−K(B′(x0)(x− xπ) + u− uπ) >

for all x ∈ L2, u ∈ Uad. Now we insert x = x0, v = (x0, u0), u = u0 and find after
exploiting the first order necessary optimality conditions for v0 as a solution for (P )

Lvv(v0, y0)[vπ − v0, vπ − v0] ≤ − < e, y0 − yπ > − < d, v0 − vπ >
≤ ‖y0 − yπ‖2 ‖e‖2 + ‖d‖2 ‖v0 − vπ‖2

≤ c ‖π‖2
2 + c ‖π‖2 ‖v0 − vπ‖2

(5.6)

by Lemma 5.1. The difference ξ = vπ − v0 = (xπ − x0, uπ − u0) = (ξx, ξu) solves
ξx − K(B′(x0)ξx + ξu) = e, hence ξ does not satisfy the linearized equation (3.4),
where (SSC) applies. Define ξ̂ = (ξ̂x, ξu), where ξ̂x is the solution of ξ̂x−K(B′(x0)ξ̂x+
ξu) = 0. Then ξx = ξ̂x + ∆, and ‖∆‖2 ≤ c ‖π‖2 (apply Lemma 3.1). (SSC) is valid
for ξ̂x, hence simple estimations yield

Lvv(v0, y0)[ξ, ξ] ≥ δ‖ξ̂‖2
2 − 2c ‖ξ̂‖2 ‖∆‖2 − c ‖∆‖2

2

≥ δ ‖ξ‖2
2 − c(‖ξ‖2 ‖∆‖2 + ‖∆‖2

2).
(5.7)

Taking into account (5.6) and ‖∆‖2 ≤ c ‖π‖2 we easily find

‖ξ‖2
2 ≤ c(‖ξ‖2 ‖π‖2 + ‖π‖2

2) ≤ c ‖ξ‖2 ‖π‖2,

if ‖π‖ ≤ ‖ξ‖. This implies (5.5), if ‖ξ‖ ≥ ‖π‖. Thus (5.5) holds for cL :=
max(1, c). 2

The estimate (5.5) in the L2−norm is not sufficient for our purposes. However, we
are able to show
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Theorem 5.3 There is a constant c′L > 0 such that

‖vπ − v0‖∞ ≤ c′L‖π‖∞,p (5.8)

for all π ∈ L∞ × L∞ × C.

Proof. We start with the equation for xπ − x0,

xπ − x0 −KB′(x0)(xπ − x0) = e+K(uπ − u0). (5.9)

We have K(uπ−u0) = τw, where w solves the PDE (1.2) with boundary condition
∂w/∂n = uπ − u0. By L2−regularity,

‖w‖L2(0,T ;H3/2−ε(Ω)) ≤ c ‖uπ − u0‖2,

(ε > 0 fixed sufficiently small), hence

‖K(uπ − u0)‖L2(0,T ;H1−ε(Γ)) ≤ c‖uπ − u0‖2. (5.10)

Sobolev embedding theorems yield H1−ε(Γ) ⊂ L 2(n−1)
n−1−2(1−ε)

(Γ) = L n−1
(n−1)/2−(1−ε)

(Γ) =:

Lp1(Γ). Denote the left hand side of (5.9) by E. Thus ‖E‖L2,p1
≤ ‖e‖L2,p1

+ c‖uπ − u0‖2 ≤ ‖e‖L2,p1
+ c‖π‖2 (Theorem 5.2) ≤ c‖π‖L2,p1

.

By Lemma 3.1,

‖xπ − x0‖L2,p1
≤ c ‖E‖L2,p1

≤ c ‖π‖L2,p1
. (5.11)

Invoking the first order necessary conditions for uπ, uπ = P[−1,1]{−λ−1(K∗yπ−du)},
a simple estimation yields

‖uπ − u0‖L2,p1
≤ λ−1‖K∗‖ ‖yπ − y0‖L2,p1

+ λ−1‖du‖L2,p1

≤ c ‖xπ − x0‖L2,p1
+ c ‖π‖L2,p1

≤ c ‖π‖L2,p1

(5.12)

by Lemma 5.1 and (5.11). In this way, we have already extended (5.5) to the
L2(0, T ;Lp1(Γ))−norm performing one step of a bootstrapping argument. Now we
continue estimating (5.9) by means of the Lp1−regularity of parabolic equations.
The solution w can be estimated in the L2(0, T ;W 1+1/p1−ε

p1
(Ω))−norm, hence we

have for its trace τw = K(uπ − u0)

‖K(uπ − u0)‖L2(0,T ;W 1−ε
p1

(Γ)) ≤ c ‖uπ − u0 ‖L2,p1
.
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Embedding W 1−ε
p1

(Γ) ⊂ L n−1
(n−1)/p1−(1−ε)

(Γ) = L n−1
(n−1)/2−2(1−ε)

(Γ) = Lp2(Γ)

‖xπ − x0‖L2,p2
≤ c ‖π‖L2,p2

is obtained as above. Proceeding in the same way we arrive after at most [(n−1)/2]+
1 steps at the case (n − 1)/2 − k(1 − ε) < 0, while (n − 1)/2 − (k − 1)(1 − ε) > 0
(provided ε > 0 is sufficiently small). Here we end up with the possibility of an
estimate in the norm of L2(0, T ;C(Γ)). However, we use only

‖K(uπ − u0)‖L2,p ≤ c‖K(uπ − u0)‖L2(0,T ;W 1−ε
pk−1

(Γ))

≤ c‖π‖L2,pk−1
≤ c‖π‖L2,p .

provided that pk−1 ≤ p. If pk−1 > p, then we use the argument

‖K(uπ − u0)‖L2,p ≤ c‖K(uπ − u0)‖L2,pk−1
≤ c‖π‖L2,pk−2

≤ c‖π‖L2,p

(note that pk−2 < p must hold, as L2,pk−2
is still not transformed into C).

Thus finally (invoking (5.9) and the optimality conditions for uπ, u0)

‖vπ − v0‖L2,p ≤ c‖π‖L2,p (5.13)

can be derived.

It remains to lift the regularity with respect to the time t. From Krasnosel’skĭı
a.o. [9] it is known that a weakly singular integral operator with weak singularity
α ∈ (0, 1) maps continuously Lp(0, T ) into Lp′(0, T ), if 1/p′ > 1/p+α−1. Put δ = 1−
α > 0 and take λ ∈ (0, 1). Then K transforms L2(0, T ;Lp(Γ)) into Lβ1(0, T ;Lp(Γ)),
where 1/β1 = 1/2− λδ. Arguing as in the first part of the proof,

‖u0 − uπ‖Lβ1,p ≤ c‖π‖Lβ1,p (5.14)

is obtained. K transforms Lβ1(0, T ;Lp(Γ)) into Lβ2(0, T ;Lp(Γ)), provided that
1/β2 = 1/β1 − λδ = 1/2 − 2λδ. Therefore, the estimate (5.14) can be derived
in the norm of Lβ2(0, T ;Lp(Γ)). Proceeding in this way, (5.14) is seen to hold in the
‖ · ‖p−norm after finitely many steps. (5.8) follows easily, as K transforms Lp into
C. 2

The next two results are standard. We refer to the proofs given by Alt in [1], which
simplify considerably for our model problem (P).
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Lemma 5.4 There is a C × Lp × Lp−neighbourhood N3(w0), such that for all w ∈
N3(w0) the following equivalence holds true: If w ∈ N3(w0), then the solution vw =
(xw, uw) is also the unique solution of (QS)π for the following choice of π = (d, e) =
(dx, du, e) : du = 0,

dx = B′′(x0)[xw − x0, ·]K∗y0 −B′′(xw)[xw − xw, ·]K∗yw
−(B′(xw)−B′(x0))K∗yw

(5.15)

e = K(B′(xw)(xw − xw)−B′(x0)(xw − x0) +B(xw)−B(x0)). (5.16)

Proof. We know that (QS)π is a convex problem with a solution determined
uniquely by the conditions (5.1), (5.4), and

uπ = P[−1,1]{−λ−1(K∗yπ − du)}. (5.17)

Thus it suffices to show that the triplet (xw, uw, yw) fulfils these relations for an
appropriate π and yπ := yw. As regards xw, it is a solution of

xw = K(B′(xw)(xw − xw) +B(xw) + uw).

In order to comply with (5.1), it must hold

xw = K(B′(x0)(xw − x0) +B(x0) + uw) + e.

Subtracting the last equations we end up with (5.16). The adjoint state yw is defined
by (4.4). Comparing this with (5.4),

yw = xw − q − dx +B′(x0)K∗yw +B′′(x0)[xw − x0, ·]K∗y0,

we easily arrive at formula (5.15). Obviously, uw satisfies (4.5) together with (5.17)
iff du = 0. 2

Lemma 5.5 Define d and e according to (5.15), (5.16). Then for all w ∈ N4(w0)

‖e‖∞ ≤ cT (‖x0 − xw‖2
∞ + ‖xw − x0‖∞‖xw − x0‖∞) (5.18)

‖d‖∞ ≤ cT (‖yw‖p‖x0 − xw‖2
∞ + ‖xw − x0‖∞(‖xw − x0‖∞

+ ‖yw − y0‖p) + ‖xw − x0‖∞(‖yw − y0‖p + ‖yw − y0‖p))
(5.19)

with a certain constant cT not depending on w.

The proof follows completely analogous to [4] from re–arranging and estimating
(5.15) – (5.16).
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6 Quadratic convergence of the SQP–method

Theorem 6.1 There is a C×Lp×Lp–neighbourhood N5(w0), and a positive constant
ν such that for all w ∈ N5(w0) the solution vw of (QP )w and the corresponding
Lagrange multiplier yw satisfy

‖(vw, yw)− (v0, y0)‖∞,p ≤ ν‖w − w0‖2
∞,p. (6.1)

Proof. We take at first N(w0) ⊂ N1(w0) ∩ N4(w0) such that the radius of N(w0)
is less than 1. According to Corollary 4.2., ‖xw − x0‖∞ and ‖yw‖p remain bounded
by a constant c > 0 for all w ∈ N(w0). From (5.15) - (5.16)

max(‖e‖∞, ‖d‖∞) ≤ c(‖v0 − vw‖2
∞ + ‖w0 − ww‖∞,p)

≤ c‖w − w0‖∞,p
(6.2)

as the diameter of N(w0) is less than 1.

Thus on N(w0),

‖π‖∞ ≤ c‖w − w0‖∞,p. (6.3)

On the other hand, Lemma 5.4. and Theorem 5.3. yield now yπ = yw and

‖vw − v0‖∞,p ≤ c‖π‖∞,p ≤ c‖w − w0‖∞,p. (6.4)

Analogously we find

‖yw − y0‖p ≤ c‖w − w0‖∞,p (6.5)

by Lemma 5.1. and (6.3), (6.4). Inserting (6.4) - (6.5) in (5.18) - (5.19) we obtain

‖π‖∞,p ≤ c‖π‖∞ = ‖e‖∞ + ‖d‖∞ ≤ c‖w − w0‖2
∞,p, (6.6)

implying together with (6.4), (5.3) the relation (6.1) 2

Now we reformulate the SQP–method and state the result on its local convergence.
The SQP−method runs as follows.

(SQP): Choose a starting point w1 = (v1, y1). Having wk = (vk, yk) compute
wk+1 = (vk+1, yk+1) to be the solution and the associated Lagrange multiplier of the
quadratic optimization problem (QP )wk .

Using Theorem 6.1. it follows now by standard proof techniques that this method
converges quadratically to w0 = (x0, u0, y0), if the starting point w1 is chosen suffi-
ciently close to w0 (see [2], Theorem 5.1.). Let ν be defined by Theorem 6.1. Denote
by Bδ(w0) the open ball around w0 with radius r in the sense of C × Lp × Lp.
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Theorem 6.2 Suppose that the assumptions (1.4) and (SSC) are satisfied. Choose
p > n+ 1 and let γ > 0 be such that δ := νγ < 1, and Bγδ(w0) ⊂ N5(w0). Then for
any starting point w1 ∈ Bγδ(w0) the SQP method computes a unique sequence wk
with

‖wk − w0‖∞,p ≤ γ δ2k−1 ,

and wk ∈ Bγδ(w0) for k ≥ 2.

The proof is identical to that given in [2].

Thus we have local quadratic convergence of the SQP method in (x, u, y). More
precisely, Theorem 6.2 expresses r-quadratic convergence, while Theorem 6.1 shows
q-quadratic convergence of the method.
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[9] Krasnoselskĭı, M.A. et al.: Linear operators in spaces of summable functions (in
Russian). Nauka, Moscow, 1966.

15



[10] Levitin, E.S. and B.T. Polyak: Constrained minimization methods. USSR J. Comput.
Math. and Math. Phys. 6 (1966), 1–50.
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