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Abstract

An optimal boundary control problem for the one-dimensional
heat equation is considered. The objective functional includes
a standard quadratic terminal observation, a Tikhonov regular-
ization term with regularization parameter ν, and the L1-norm
of the control that accounts for sparsity. The switching struc-
ture of the optimal control is discussed for ν ≥ 0. Under natural
assumptions, it is shown that the set of switching points of the
optimal control is countable with the final time as only possi-
ble accumulation point. The convergence of switching points is
investigated for ν ↘ 0.
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1 Introduction

In this paper, we investigate the switching behavior of optimal con-
trols for the following sparse optimal control problem with terminal
observation in Ω = (0, 1):

min J(y, u) :=
1

2

∫
Ω

|y(x, T )−yΩ(x)|2 dx+
ν

2

∫ T

0

|u(t)|2 dt+µ

∫ T

0

|u(t)| dt

(1.1)
subject to the parabolic initial-boundary value problem

yt − yxx = 0 in (0, 1)× (0, T )
yx(0, t) = 0 in (0, T )

yx(1, t) + α y(1, t) = u(t) in (0, T )
y(x, 0) = 0 in (0, 1)

(1.2)

and to the pointwise control constraints

a ≤ u(t) ≤ b, a.e. in (0, T ). (1.3)

Bang-bang and switching properties for the solutions of optimal
boundary control problems were extensively discussed from the 1960ties
on. If ν = µ = 0, then it is well known that the optimal control
is of bang-bang type provided that yΩ is not attained by the optimal
state. This result was discussed in several papers for linear parabolic
equations, see [8, 13, 24], cf. also the monographies [15, 10, 18, 29]. For
the case of the maximum norm as objective functional, the bang-bang
principle was proved in [35, 12, 14]. The finite bang-bang-principle for
supremum-norm problems was first proved in [16] and later in a different
way in [11]. Bang-bang principles for nonlinear parabolic equations
were discussed in [22, 25].

For ν > 0 but µ = 0, the switching behavior of optimal controls was
investigated in [7, 28]. In particular, the convergence of switching points
for ν → 0 was addressed. Numerical examples and numerical methods
exploiting the switching structure were presented in [6, 19, 23]. Bang-
bang properties for time-optimal parabolic boundary control problems
were studied, e.g., in [8, 9, 20, 33, 17, 34]. This list of references on bang-
bang principles and switching properties is by no means exhaustive. We
also refer to the references of these papers.

The main novelty of our paper is the discussion of the switching
structure for sparse optimal controls of parabolic boundary control
problems (i.e., for the case µ > 0). To our best knowledge, the switching
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properties of sparse optimal boundary controls for parabolic problems
were not yet discussed in the literature. In particular, this refers to
the convergence of switching points for the limit ν → 0. In addition
to proving convergence of switching points, we obtain also convergence
rates with respect to ν for the approximation of switching points for
ν ↘ 0.

However, the general bang-bang structure of optimal sparse controls
has already been investigated in a sequence of papers on semilinear
elliptic control problems. We refer to [2]. Our paper was inspired by
these general results.

Assumption 1 (Data). In this setting, real numbers T > 0, ν ≥ 0,
µ > 0, α > 0, and a < 0 < b are fixed. The sign restrictions on
a and b are needed only for some of the structural properties of the
optimal control, neither for the existence of optimal controls nor for
the necessary optimality conditions. The parameter µ is the so called
sparse parameter.

Moreover, we fix a desired final state function yΩ ∈ C[0, 1]. We
require yΩ ∈ C[0, 1] in order to have continuity of the adjoint state up
to the boundary. (For the optimality conditions, yΩ ∈ L2(0, 1) would
suffice.)

2 Well-posedness of the problem and nec-

essary optimality conditions

2.1 Well-posedness of the problem

The linear initial-boundary value problem (1.1) is well posed. For each
function u ∈ L2(0, T ), there exists a unique solution y ∈ W (0, T ) ∩
C(Q̄), where Q := (0, 1)× (0, T ) denotes the open space-time cylinder
and W (0, T ) = {y ∈ L2(0, T ;H1(0, 1)) : y′ ∈ L2(0, T ;H1(0, 1)∗)}.

Let us denote the state y associated with u by yu. The control-
to-state mapping u 7→ yu is linear and continuous from L2(0, T ) to
W (0, T ) ∩ C(Q̄), cf. [1] or [29].

Let us introduce the functionals j : L1(0, T )→ R,

j(u) :=

∫ T

0

|u(t)| dt = ‖u‖L1(0,T )

and fν,

fν(u) :=
1

2

∫
Ω

|yu(x, T )− yΩ(x)|2 dx+
ν

2

∫ T

0

|u(t)|2 dt.
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Then the reduced objective functional F is given by

Fν(u) := J(yu, u) = fν(u) + µ j(u).

Introducing the set of admissible controls by

Uad := {u ∈ L2(0, T ) : a ≤ u(t) ≤ b, for a.a. t ∈ (0, T )},

we can re-write the optimal control problem (1.1)–(1.3) in the short
form

min
u∈Uad

Fν(u). (Pν)

The functional Fν is continuous and convex, hence weakly lower semi-
continuous. Moreover, the set Uad is weakly compact and non-empty.
Therefore, there exists at least one optimal control of the problem (Pν),
which will be denoted by uν to indicate the correspondence to the
Tikhonov parameter ν. By yν := yuν we denote the optimal state as-
sociated with uν . In the case ν = 0 we will drop the index 0 and write
ū := u0 and ȳ := y0.

If ν > 0, then Fν is strictly convex and hence in this case the optimal
control is unique. Under a natural assumption, we show later that this
uniqueness also holds for ν = 0. In addition, in the case ν = 0 the
optimal state is uniquely determined due to the strict convexity of fν
with respect to yu.

2.2 Fourier expansion for (1.2), Green’s function

For convenience of the reader, we recall some known facts on the rep-
resentation of the weak solution by a Green’s function G. We consider
the inhomogeneous initial-boundary value problem

yt(x, t)− yxx(x, t) = f(x, t) in Q

yx(0, t) = 0 in (0, T )

yx(1, t) + α y(1, t) = u(t) in (0, T )

y(x, 0) = y0(x) in (0, 1),

(2.1)

where f ∈ L2(Q), y0 ∈ L2(0, 1), and u ∈ L2(0, T ) are given. Below, we
briefly address the case α = 0, but later we will concentrate on positive
α. The weak solution of (2.1) can be represented by a Green’s function
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G = G(x, ξ, t) as

y(x, t) =

∫ 1

0

G(x, ξ, t) y0(ξ) dξ +

∫ t

0

∫ 1

0

G(x, ξ, t− s) f(ξ, s) dξ ds

+

∫ t

0

G(x, 1, t− s)u(s) ds,

(2.2)
where G is given by the following Fourier expansions:

G(x, ξ, t) =


1 + 2

∞∑
n=1

cos(nπx) cos(nπξ) exp(−n2π2t) for α = 0

∞∑
n=1

1

Nn

cos(ρnx) cos(ρnξ) exp(−ρ2
nt) for α > 0.

(2.3)
Here, (ρn) is the monotone increasing sequence of non-negative solu-
tions to the equation

ρ tan ρ = α

and

Nn =

∫ 1

0

cos2(ρnx) dx =
1

2
+

sin(2ρn)

4ρn
=

1

2
+

sin2(ρn)

2α

are normalizing constants. The numbers nπ and ρn are the eigen-
values of the differential operator ∂2/∂x2 subject to the homogeneous
boundary conditions in (2.1) for α = 0 and α > 0, respectively. For
the eigenvalues, we know that ρn ∼ (n − 1)π, n → ∞. The functions
x 7→ cos(nπx) and x 7→ cos(ρnx) are associated eigenfunctions, respec-
tively. After normalization by the factors Nn, they form a complete
orthonormal system in L2(0, 1); cf. [30].

Notice that, for our case f = 0 and y0 = 0, the term y(x, T ) in the
objective functional has the series representation

y(x, T ) =
∞∑
n=1

cos (ρnx)
cos (ρn)

Nn

∫ T

0

e−ρ
2
n(T−s)u(s) ds. (2.4)

3 Necessary optimality conditions

3.1 The variational inequality

It is well known that the derivative of the differentiable functional fν
can be represented in the form

f ′ν(u)v =

∫ T

0

(ϕu(1, t) + ν u(t)) v(t) dt,
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where ϕu is the adjoint state associated with u. It is the unique weak
solution to the adjoint equation

−ϕt − ϕxx = 0 in Q
ϕx(0, t) = 0 in (0, T )

ϕx(1, t) + αϕ(1, t) = 0 in (0, T )
ϕ(x, T ) = yu(x, T )− yΩ(x) in (0, 1).

(3.1)

Notice that yΩ is assumed to be continuous. Moreover, the function
x 7→ yu(x, T ) is also continuous, because u ∈ L∞(0, T ). Therefore, we
have ϕu ∈ C(Q̄) and the continuity of the function t 7→ ϕu(1, t) on
[0, T ].

Theorem 1 (Necessary optimality condition). Let ν ≥ 0 be given,
and let uν ∈ Uad be optimal for the problem (Pν). Then there exists a
function λν ∈ ∂j(uν), such that the variational inequality∫ T

0

(ϕν(1, t) + νuν(t) + µλν(t))(u(t)− uν(t)) dt ≥ 0 ∀u ∈ Uad. (3.2)

is satisfied with the adjoint state ϕν := ϕuν .

This result is completely standard for the case µ = 0, where Fν is
smooth, see [18]. If µ > 0, the associated tools from subdifferential
calculus can be found, for instance in [3, Thm. 3.1]. It is fairly obvious
how these methods can be transferred to our problem. Therefore, we
omit the proof. An equivalent formulation is obtained by replacing the
subdifferential in (3.2) by directional derivatives, which is∫ T

0

(ϕν(1, t) +νuν(t))(u(t)−uν(t)) dt+µ′(uν ; u−uν) ≥ 0 ∀u ∈ Uad.

(3.3)
By a standard argument, we find that this variational inequality of
integral type implies the following pointwise inequality:

(ϕν(1, t) + νuν(t))(v − uν(t)) + µ′(uν(t); v − uν(t)) ≥ 0 ∀a ≤ v ≤ b
(3.4)

for a.a. t ∈ (0, T ). Here, we denote by ′(u, h) the directional derivative
of the real function (u) := |u| at u ∈ R in the direction h ∈ R.

3.2 The case ν = 0, bang-bang-bang properties

In the case ν = 0, a detailed discussion of the variational inequality
(3.2) leads to nice structural properties of the optimal control ū. We
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recall that for ν = 0 the optimal control and the optimal state are
denoted by ū and ȳ, respectively.

Associated with ū, we introduce the following measurable sets

E+ = {t ∈ (0, T ) : ū(t) > 0},
E0 = {t ∈ (0, T ) : ū(t) = 0},
E− = {t ∈ (0, T ) : ū(t) < 0}.

The pointwise discussion of the variational inequality (3.2) yields the
following result.

Lemma 1. If ν = 0, then for almost all t ∈ (0, T ), the following
implications hold true:

t ∈


E+ ⇒ ϕ̄(1, t) + µ ≤ 0,
E− ⇒ ϕ̄(1, t)− µ ≥ 0,
E0 ⇒ ϕ̄(1, t) + µ λ̄(t) = 0.

(3.5)

Proof. For a.a. t ∈ E+, we have ū(t) > 0, hence λ̄(t) = 1. Therefore
(3.2) almost everywhere implies

ϕ̄(1, t) + µ λ̄(t) = ϕ̄(1, t) + µ ≤ 0.

On E−, the discussion is analogous. In E0, we have a.e. a < ū(t) < b,
hence the reduced gradient must vanish here, ϕ̄(1, t) + µ λ̄(t) = 0 a.e.
on E0.

This discussion showed how the function t 7→ ϕ̄(1, t) + µ λ̄(t) de-
pends on the sign of ū. Another investigation will reveal the switching
structure of ū related to the function t 7→ ϕ̄(1, t) + µ λ̄(t). To this end
let us define the open sets

Φ+ = {t ∈ (0, T ) : ϕ̄(1, t)− µ > 0},
Φ0 = {t ∈ (0, T ) : |ϕ̄(1, t)| < µ},
Φ− = {t ∈ (0, T ) : ϕ̄(1, t) + µ < 0}.

Lemma 2. If ν = 0, then for almost all t ∈ (0, T ), the following
implications hold true:

t ∈


Φ+ ⇒ ū(t) = a,
Φ− ⇒ ū(t) = b,
Φ0 ⇒ ū(t) = 0.

(3.6)
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Proof. We first prove the claim for Φ+. The equation ū(t) = a is
obtained as follows: We have |λ̄(t)| ≤ 1, hence

0 < ϕ̄(1, t)− µ ≤ ϕ̄(1, t) + µ λ̄(t)

is satisfied a.e. in Φ+. Now the variational inequality (3.2) implies
ū(t) = a a.e. in Φ+. The continuity of the function t 7→ ϕ̄(1, t) yields
that Φ+ is an open set. The proof for Φ− is analogous. The statement
of Lemma 1 shows that Φ0 ∩ (E+ ∪ E−) has measure zero. Hence it
holds ū = 0 almost everywhere on Φ0.

3.3 Switching points of ū

For ν = 0, the switching behavior of the optimal control depends on
the solutions of the two equations

ϕ̄(1, t) + µ = 0 and ϕ̄(1, t)− µ = 0, t ∈ [0, T ].

To estimate their number, we need the following result:

Lemma 3. The function t 7→ ϕ̄(1, t) is continuous in [0, T ]. It can be
extended to a holomorphic function in the complex half plane {z ∈ C :
<(z) < T}.

Proof. The continuity of the function t 7→ ϕ̄(1, t) follows from ȳ ∈ C(Q̄)
and yΩ ∈ C[0, 1]. Therefore, the terminal data for ϕ̄(T ) are continuous
in [0, 1], hence ϕ ∈ C(Q̄) and the function t 7→ ϕ̄(1, t) is continuous.
We refer to [1, 21], and [29, Thm. 5.5].

The fact that the function t 7→ ϕ̄(1, t) can be extended to a holomor-
phic function follows from its Fourier expansion. By the transformation
of time τ := T − t, we find from (2.2) and (2.3) that

ϕ̄(1, t) =

∫ 1

0

G(1, x, T − t)(ȳ(x, T )− yΩ(x)) dx

=
∞∑
n=1

cos (ρn)

Nn

e−ρ
2
n(T−t)

∫ 1

0

d(x) cos (ρnx) dx,
(3.7)

where
d(x) := ȳ(x, T )− yΩ(x).

The eigenvalues ρn behave asymptotically like (n−1)π, n→∞. There-
fore, the factor e−ρ

2
n(T−t) converges very fast to zero as n→∞ provided

that t < T . For t ≤ T − ε, ε > 0 fixed, the convergence of the series
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(3.7) and of all of its derivatives w.r. to t is uniform in −∞ < t ≤ T−ε.
The same holds true for the complex extension

ϕ̄(1, z) :=
∞∑
n=1

cos (ρn)

Nn

e−ρ
2
n(T−z)

∫ 1

0

d(x) cos (ρnx) dx,

if <(z) ≤ T − ε. Therefore, the series defines a holomorphic function
in the half plane {z ∈ C : <(z) < T} and ϕ̄(1, t) is obtained as its real
part.

Let us re-write the expansion of ϕ̄(1, t) in the shorter form

ϕ(1, t) =
∞∑
n=1

cos (ρn)

Nn

e−ρ
2
n(T−t)dn, (3.8)

where the numbers

dn :=

∫ 1

0

d(ξ) cos (ρnξ) dξ

correspond to the Fourier coefficients of d (the exact Fourier coefficients
are given by dn/

√
Nn ). The decisive result for the switching behavior

of ū is the following:

Lemma 4. Let 0 < ε < T be given and assume ‖ȳ(·, T )−yΩ(·)‖L2(0,1) >
0. Then the equations

ϕ̄(1, t) + µ = 0 and ϕ̄(1, t)− µ = 0 (3.9)

have at most finitely many solutions in [0, T − ε].
Therefore, in [0, T ] these equations have at most countably many

solutions that may accumulate only at t = T .

Proof. Let us consider only the first equation,

ϕ̄(1, t) + µ = 0, t ∈ [0, T − ε].

Assume to the contrary that it has infinitely many solutions in [0, T−ε].
Then they must have an accumulation point t̄ ∈ [0, T − ε]. By the
identity theorem for holomorphic functions, we deduce

ϕ̄(1, t) + µ = 0 ∀t ∈ (−∞, T − ε].
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Differentiating this equation, we obtain d
dt
ϕ̄(1, t) = 0, hence

∞∑
n=1

cos (ρn)

Nn

ρ2
ne
−ρ2n(T−t)dn = 0 in (−∞, T − ε]. (3.10)

We multiply (3.10) by eρ
2
1(T−t) and get

cos (ρ1)

N1

ρ2
1 d1 +

∞∑
n=2

cos (ρn)

Nn

ρ2
ne
−(ρ2n−ρ21)(T−t)dn = 0 in (−∞, T − ε].

Now, we pass to the limit t→ −∞. Since ρ2
n > ρ2

1 holds for n ≥ 2 and
the series is uniformly convergent, it follows exp (−(ρ2

n − ρ2
1)(T − t))→

0, hence
cos (ρ1)

N1

ρ2
1 d1 = 0, (3.11)

and hence d1 = 0. Notice that cos(ρn) 6= 0 holds for all n ∈ N. There-
fore, the first item in (3.10) is zero. Multiplying (3.10) by eρ

2
2(T−t) and

passing to the limit t → ∞, we find d2 = 0. Repeating this method
infinitely many times, it follows dn = 0 for all n ∈ N.

The system of functions {cos (ρn·) : n ∈ N} is complete in L2(0, 1),
hence d = 0 must hold in the sense of L2(0, 1). This contradicts the
assumption that d = ȳ(·, T )− yΩ 6= 0.

Theorem 2. Suppose ‖ȳ(·, T )− yΩ(·)‖L2(0,1) > 0. For each ε ∈ (0, T ),
the sets Φ+∩(0, T−ε), Φ0∩(0, T−ε), and Φ−∩(0, T−ε) are the union
of finitely many open intervals. Consequently, Φ+, Φ0, and Φ− are the
union of at most countably many open intervals (the components of Φ+,
Φ0, and Φ−) which can accumulate only at t = T .

Proof. The continuity of the function t 7→ ϕ̄(1, t) yields that Φ+ is
an open set. All components of Φ+ are bounded by two zeros of the
function t 7→ ϕ̄(1, t) − µ in [0, T − ε] or by the numbers 0, T − ε. By
Lemma 4, the number of solutions to the equation ϕ̄(1, t) − µ = 0 in
(0, T−ε) is finite, hence the number of components of Φ+ in (0, T−ε) is
finite, too. The statement on the accumulation of components in [0, T ]
is an obvious consequence. The claim for Φ0 and Φ− can be proven
analogously.

In addition, it follows that the complement of Φ+ ∪Φ0 ∪Φ+, which
is the set of solutions of (3.9), is countable. Hence, the switching condi-
tions of Lemma 2 uniquely define ū almost everywhere on (0, T ). This
implies that ū almost everywhere attains values from the discrete set
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{a, 0, b}. Moreover, ū is piecewise constant on [0, T − ε) for all ε > 0
with discontinuities only located at the solutions of (3.9). These points
will be called switching points in the sequel.

Definition 1. All points t ∈ (0, T ), where one of the two functions
t 7→ ϕ̄(1, t) − µ and t 7→ ϕ̄(1, t) + µ changes the sign, are said to be
switching points of ū.

Theorem 3 (Bang-Bang-Bang Principle). Let ν = 0 and assume ‖ȳ(·, T )−
yΩ‖L2(0,1) > 0. Then the following switching properties hold true:

(i) For each 0 < ε < T , the number of switching points of ū in [0, T−
ε] is finite. Therefore, the set of switching points of ū in [0, T ]
is at most countable and switching points can only accumulate at
t = T .

Between two subsequent switching points, the optimal control ū is
identically constant and equal to one of the values b, a or 0.

(ii) If |ϕ̄(1, T )| 6= µ, then the number of switching points of ū is finite
and there is a sufficiently small δ > 0 such that, for a.a. t ∈
(T − δ, T ],

ū(t) =


b if ϕ̄(1, T ) < −µ
0 if −µ < ϕ̄(1, T ) < µ
a if ϕ̄(1, T ) > µ

(3.12)

is fulfilled.

(iii) If ϕ̄(1, T ) = µ, then, in a certain neighborhood (T − δ, T ], the
optimal control can switch at most countably many times between
a and 0. In the case ϕ̄(1, T ) = −µ it can switch at most countably
many times between b and 0 in (T − δ, T ].

(iv) Switching-over of ū between a and b cannot happen.

Proof. (i) Switching points can only be boundary points of the sets Φ+,
Φ−, and Φ0. Therefore, they must solve one of the two equations (3.9).
By Lemma 4, the number of their solutions is at most countable and
can accumulate only at t = T . Between switching points, ū can only
attain the values b, a, and 0, cf. Lemma 2. This proves (i).

(ii) If |ϕ̄(1, T )| 6= µ, then we are in one of the cases ϕ̄(1, t) > µ,
−µ < ϕ̄(1, t) < µ, or ϕ̄(1, t) < −µ at t = T . In either case, by
continuity of the function t 7→ ϕ̄(1, t), these inequalities remain valid
for all t in a sufficiently small interval (T − δ, T ].
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Now we apply Theorem 1: In the first case, we have t ∈ Φ+ and
hence ū = a in (T −δ, T ]. In the second, we have t ∈ Φ0, hence ū(t) = 0
in (T − δ, T ], and in the third we obtain analogously that ū(t) = b in
(T − δ, T ].

(iii), (iv) If ϕ̄(1, T ) = µ or ϕ̄(1, T ) = −µ is satisfied, we cannot
exclude an accumulation of switching points at t = T . By the continuity
of t 7→ ϕ̄(1, t), these can only be a switchover between b and 0 or a and
0, respectively.

Theorem 4. If ν = 0 and ‖ȳ(·, T ) − yΩ‖L2(0,1) > 0, then the optimal
control ū is unique.

Proof. Let two optimal controls ū and v̄ be given. Due to strict con-
vexity of fν , the optimal state is unique, which gives ȳ = yū = yv̄.
Thanks to Theorem 3, both controls must be of bang-bang-bang type:
Almost everywhere and in open intervals, they admit only the values a,
b or 0. Since the control problem is convex, every convex combination
θū + (1 − θ)v̄ is an optimal control and bang-bang-bang. This is only
possible if ū = v̄ holds almost everywhere.

Definition 2. Assume that ‖ȳ(·, T )− yΩ‖L2(0,1) > 0 holds for the solu-
tion of (P0). Then the optimal control ū is has at most countably many
switching points. The switching points in (0, T ) solving ϕ̄(1, t) = µ
are denoted by tµj and the ones solving ϕ̄(1, t) = −µ are denoted by

t−µj , j ≥ 1. These switching points are ordered such that tµj < tµj+1 and

t−µj < t−µj+1 holds for all j ≥ 1.

3.4 The case ν > 0

Now we assume ν > 0 and consider the problem (Pν), i.e., the problem

min
u∈Uad

{∫
Ω

|yu(x, T )− yΩ(x)|2 dx+ µ

∫ T

0

|u(t)| dt+
ν

2

∫ T

0

|u(t)|2 dt

}
.

(3.13)
We recall that yu is defined as solution of the equation (1.2) associated
to u.

Again, this problem has an optimal control uν with associated opti-
mal state yν := yuν . By strict convexity of the functional in (3.13), the
optimal control is unique. The associated adjoint state is ϕν := ϕuν .
The necessary optimality condition is stated in Theorem 1.

By a detailed pointwise discussion of the variational inequality (3.2),
the following result is deduced completely analogous to a result of [3, 27]
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for a class of elliptic equations. We also refer to a later result for
a parabolic problem in [4]. In the theorem, the projection function
P[s1,s2] : R→ [s1, s2] is defined by

P[s1,s2](s) = max{s1,min{s, s2}}.

Theorem 5. For almost all t ∈ [0, T ], the following equations are
fulfilled:

uν(t) = P[a,b]

(
−1

ν
(ϕν(1, t) + µλν(t))

)
, (3.14)

uν(t) = 0 if and only if |ϕν(1, t)| ≤ µ, (3.15)

λν(t) = P[−1,1]

(
− 1

µ
ϕν(1, t)

)
. (3.16)

The relation (3.15) expresses the sparsity of the optimal control,
while (3.16) extracts a single element out of the subdifferential of j(uν).
We skip the proof, because it is completely analogous to the one in [3].

As a simple conclusion of Theorem 5 we get that, for ν > 0, the
functions λν and uν are continuous on [0, T ]: Indeed, the function t 7→
ϕν(1, t) is continuous, hence (3.16) yields the continuity of λν . Inserting
this in (3.14), we see the continuity of uν .

Let us determine the structure of uν . We might follow the presen-
tation in [5], but for the convenience of the reader we prove the results
again in our framework. Inserting (3.16) in (3.14), we find

uν(t) = P[a,b]

(
−1

ν

(
ϕν(1, t) + µP[−1,1]

(
− 1

µ
ϕν(1, t)

)))
. (3.17)

Discussing this representation, we find the following result:

Theorem 6. Assume ν > 0. Then the implications

ϕν(1, t) ∈ (−∞,−µ− νb) ⇒ uν(t) = b (3.18)

ϕν(1, t) ∈ (−µ− νb,−µ) ⇒ uν(t) = −1

ν
(ϕν(1, t) + µ) (3.19)

ϕν(1, t) ∈ (−µ, µ) ⇒ uν(t) = 0 (3.20)

ϕν(1, t) ∈ (µ, µ− νa) ⇒ uν(t) = −1

ν
(ϕν(1, t)− µ) (3.21)

ϕν(1, t) ∈ (µ− νa,∞) ⇒ uν(t) = a (3.22)

hold almost everywhere in [0, T ].

13



Proof. (a) The implication (3.20) follows immediately from (3.15).
(b) Now we show (3.19). Here, the inclusion for ϕν is equivalent to

1 < − 1

µ
ϕν(1, t) < 1 +

νb

µ
. (3.23)

The left-hand side implies that P[−1,1](− 1
µ
ϕν(1, t)) = 1, hence (3.17)

yields

uν(t) = P[a,b](−
1

ν
(ϕν(1, t) + µ)). (3.24)

The last inequality of (3.23) is equivalent with − 1
ν
(ϕν(1, t) + µ)) < b,

hence

uν(t) = −1

ν
(ϕν(1, t) + µ),

i.e., (3.19) is shown. (c) To prove (3.18), we mention that the inclusion
ϕν(1, t) ∈ (−∞,−µ− νb) is equivalent with

− 1

µ
ϕν(1, t)) > 1 +

ν

µ
.

Again, we arrive at (3.24). However, the inclusion above also yields the
inequality − 1

ν
(ϕν(1, t) + µ) > b, and hence from (3.24) we obtain the

conclusion of (3.18).
The implications (3.21) and (3.22) can be confirmed in the same

way.

This theorem reveals that the solutions of the four equations

ϕν(1, t) + µ+ νb = 0 (3.25)

ϕν(1, t) + µ = 0 (3.26)

ϕν(1, t)− µ = 0 (3.27)

ϕν(1, t)− µ+ νa = 0 (3.28)

determine the switching behavior of uν . In other words, uν can only
switch in the zeros of the four functions standing in the left-hand side
of (3.25)–(3.28).

Definition 3. For ν > 0, any t ∈ (0, T ), where one of the functions
in the left-hand side of (3.25)–(3.28) changes its sign, is said to be a
switching point of uν.

Lemma 5. Assume ν > 0. If ‖yν(·, T ) − yΩ‖L2(0,1) > 0, then each of
the equations (3.25)–(3.28) can have at most countably many solutions
that can accumulate only at t = T . Therefore, uν can have at most
countably many switching points that can accumulate only at t = T .

14



Proof. The proof is almost identical with that of Lemma 3, since the
adjoint state ϕν solves the same adjoint equation as ϕ̄, but with termi-
nal value yν(·, T )− yΩ. Therefore, we have

ϕν(1, t) =

∫ 1

0

G(1, ξ, T − t)(ȳ(ξ, T )− yΩ(ξ)) dξ

=
∞∑
n=1

cos (ρn)

Nn

e−ρ
2
n(T−t)

∫ 1

0

dν(ξ) cos (ρnξ) dξ,

where dν = yν(·, T ) − yΩ. Now we proceed as in the proof of Lemma
3.

Definition 4. The switching points of uν, i.e., the solutions in (0, T ) of
(3.25), (3.26), (3.27), and (3.28), where the associated function changes
its sign, are denoted by t−µ−νbj , t−µ,νj , tµ,νj , and tµ−νaj , respectively, for
all j ≥ 1 that may occur.

Since the set of switching points is countable with possible accumu-
lation only at t = T , we can assume that the sequences of switching
points are ordered w.r. to j, namely tsj < tsj+1 holds for all j ≥ 1 that
appear and all upper indices s ∈ {−µ− νb, (−µ, ν), (µ, ν), µ− νa}.

4 Pass to the limit ν → 0

In this section, we discuss the convergence of controls uν for ν ↘ 0. In
addition, the convergence of switching points can be shown. First, we
discuss the convergence of the sequences (uν), (yν) and (ϕν) of optimal
quantities for (Pν).

Theorem 7. (i) For ν ↘ 0, the sequence (uν) contains a strongly
convergent subsequence in L2(0, 1), denoted w.l.o.g. by (uν) again, such
that uν → û as ν ↘ 0. The control û is optimal for (P0). The associated
subsequences (yuν ) and (ϕuν ) converge uniformly in Q̄ to yû and ϕû,
respectively, as ν ↘ 0.

(ii) If the optimal control ū of (P0) is unique, then these convergence
properties hold for the whole sequences (uν), (yuν ), and (ϕuν ).

Proof. (i) Since Uad is weakly compact, the existence of a weakly con-
vergent subsequence (uν) with weak limit û ∈ Uad is obvious. Let ū be
optimal for (P0). Then we have

Fν(ū) ≥ Fν(uν) ≥ F0(uν) ∀ν > 0. (4.1)

15



Passing to the limit, we obtain from (4.1)

F0(ū) = lim
ν↘0

Fν(ū) ≥ lim inf
ν↘0

F0(uν) ≥ F0(û),

where we used the weak lower semicontinuity of F0 to get the last
inequality. Therefore, û must also be optimal for (P0).

From optimality of uν and û for (Pν) and (P0), respectively, we get

Fν(uν) ≤ Fν(û) =
1

2

∫
Ω

|yû(x, T )− yΩ(x)|2 dx+ µj(û) +
ν

2

∫ T

0

|û(t)|2 dt

≤ 1

2

∫
Ω

|yuν (x, T )− yΩ(x)|2 dx+ µj(uν) +
ν

2

∫ T

0

|û(t)|2 dt.

This implies
ν

2

∫ T

0

|uν(t)|2 dt ≤ ν

2

∫ T

0

|û(t)|2 dt

and hence, dividing by ν/2 we obtain∫ T

0

|û(t)|2 dt ≤ lim inf
ν↘0

∫ T

0

|uν(t)|2 dt ≤ lim sup
ν↘0

∫ T

0

|uν(t)|2 dt

≤
∫ T

0

|û(t)|2 dt.

This implies convergence of norms and strong convergence uν → û
in L2(0, T ) for ν ↘ 0. The strongly convergent subsequence (uν) in
L2(0, 1) is transformed to a uniformly convergent subsequence (yuν ),
i.e., yuν → yû in C(Q̄). Therefore, we also have ϕuν → ϕû in C(Q̄),
because the mapping associating the solution of the adjoint equation
to the final datum is continuous from C[0, 1] to C(Q̄) and we have
ϕuν (T ) = yuν (T )− yΩ.

(ii) If the optimal control of (P0) is unique, say ū, then all sub-
sequences of uν contain a subsequence converging weakly to the same
limit ū. Then the whole sequence (uν) converges to ū. This transfers
to the sequences (yuν ) and (ϕuν ).

Lemma 6. For each k ∈ N and ε ∈ (0, T ), there is a constant c > 0
such that∥∥∥∥ dk

dtk
ϕuν (1, ·)−

dk

dtk
ϕû(1, ·)

∥∥∥∥
C([0,T−ε])

≤ c ‖yuν (·, T )− yû(·, T )‖L2(Ω)

holds for all û ∈ Uad.
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Proof. In [0, T − ε], the formally differentiated Fourier series is given
by

d

dt
ϕuν (1, t) =

∞∑
n=1

ρ2
n

cos ρn
Nn

∫ 1

0

cos (ρnx)(yuν (x, T )−yΩ(x)) dx e−ρ
2
n(T−t).

It is uniformly convergent, since the series

(M + ‖yΩ‖C[0,1])
∞∑
n=1

1

Nn

ρ2
n e
−ρ2nε

with M = supu∈Uad ‖yu‖C(Q̄) is a convergent majorant. Let û ∈ Uad be

given. Then d
dt
ϕû(1, t) has an analogous series representation. Hence,

we can estimate∣∣∣∣ d

dt
ϕuν (1, t)−

d

dt
ϕû(1, t)

∣∣∣∣
=

∣∣∣∣∣
∞∑
n=1

ρ2
n

cos ρn
Nn

∫ 1

0

cos (ρnx)(yuν (x, T )− yû(x)) dx e−ρ
2
n(T−t)

∣∣∣∣∣
≤ ‖yuν (·, T )− yû(·, T )‖L2(Ω)

∞∑
n=1

ρ2
n

1√
Nn

e−ρ
2
n(T−t),

which proves the claim for k = 1. The proof can be completed by an
induction argument with respect to k.

The norm ‖yuν (·, T )− yû(·, T )‖L2(Ω) can be estimated with the help
of the following result.

Lemma 7. Let û be optimal for (P0). Then it holds

‖yuν (·, T )− yû(·, T )‖2
L2(Ω) + ν ‖uν − û‖2

L2(0,T ) ≤ ν(û, û− uν)L2(0,T ).

Proof. This is an immediate consequence of the optimality conditions,
see, e.g., [31, Lemma 2.5].

Combining these two results, we obtain a convergence rate for ν ↘ 0
for the adjoint states.

Lemma 8. Let û be optimal for (P0). Then for each k ∈ N and ε ∈
(0, T ), there is a constant c > 0 such that∥∥∥∥ dk

dtk
ϕuν (1, ·)−

dk

dtk
ϕû(1, ·)

∥∥∥∥
C([0,T−ε])

≤ c ν1/2

is satisfied for all ν > 0.
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Proof. This is consequence of the previous two lemmas and the bound-
edness of Uad.

Now we are able to prove the convergence of switching points of
optimal controls for ν ↘ 0.

Theorem 8. Assume that ‖ȳ(·, T ) − yΩ‖L2(0,1) > 0 is fulfilled. Let
tµj ∈ (0, T ) be such that ϕ̄(1, tµj ) = µ, and let n be the smallest positive
integer such that

dn

dtn
ϕ̄(1, tµj ) 6= 0. (4.2)

Then there are ν0 > 0 and τ > 0 with the following properties:

(i) For all ν ∈ (0, ν0), each of the equations (3.27) and (3.28) has at
most n solutions in the interval (tµj − τ, tµj + τ). The equations
(3.25) and (3.26) do not have solutions in (tµj − τ, t

µ
j + τ).

(ii) Additionally, there is c > 0 such that

|tµj − tν | ≤ c ν
1
2n , (4.3)

|tµj − tν | ≤ c (‖yuν (·, T )− yû(·, T )‖
1
n

L2(Ω) + ν
1
n ), (4.4)

for all ν < ν0 and all tν ∈ (tµj − τ, tµj + τ) solving one of the
equations (3.27)–(3.28).

(iii) If n is odd, in particular if tµj is a switching point of ū, then there
is ν1 ∈ (0, ν0) such that for all ν ∈ (0, ν1) there exist switching
points of uν in the interval (tµj − τ, t

µ
j + τ) that solve one of the

equations (3.27)–(3.28).

Analogous results hold for solutions t−µi of ϕ̄(1, t) = −µ.

Proof. Denote t̄ := tµj . Assume for the moment that Λ := dn

dtn
ϕ̄(1, t̄) > 0

holds in (4.2). Take τ > 0 such that t̄+ τ < T and

ϕ̄(1, t) ≥ µ

2

as well as
dn

dtn
ϕ̄(1, t) ≥ Λ

2
> 0 (4.5)

are satisfied for all t ∈ (0, T ) with |t − t̄| < τ . Thanks to Lemma 6,
we have uniform convergence of dn

dtn
ϕν(1, ·) to dn

dtn
ϕ̄(1, ·) in [t̄− τ, t̄+ τ ].

Therefore, there is ν0 > 0 such that

ϕν(1, t) ≥ 0

18



and
dn

dtn
ϕν(1, t) ≥

Λ

4
> 0

hold for all ν ∈ (0, ν0) and t ∈ (0, T ) with |t − t̄| < τ . Hence, the
equation ϕν(1, t) = µ can have at most n distinct solutions in (t−τ, t+
τ). Analogously, the equation ϕν(1, t) = µ− νa has at most n distinct
solutions in (t−τ, t+τ). In addition, by ϕν(1, t) ≥ 0 in (t−τ, t+τ), the
equations ϕν(1, t) = −µ and ϕν(1, t) = −µ − νb do not have solutions
in (t− τ, t+ τ).

Let now t ∈ (0, T ) be given with |t − t̄| < τ . Then, performing a
Taylor expansion and invoking the assumption, we find

ϕ̄(1, t) = µ+
1

n!

dn

dtn
ϕ̄(1, ξ)(t− t̄)n (4.6)

with some intermediate point ξ.
Let n be an odd integer. Setting t = t̄− τ and t = t̄+ τ and taking

(4.5) into account, yields

ϕ̄(1, t̄− τ)− µ ≤ − Λ

2n!
τn,

ϕ̄(1, t̄+ τ)− µ ≥ +
Λ

2n!
τn.

By uniform convergence of the adjoint state, there is ν1 ∈ (0, ν0) such
that

‖ϕ̄(1, ·)− ϕν(1, ·)‖C([t̄−τ,t̄+τ ]) ≤
Λ

4n!
τn

for all ν < ν1. This implies

ϕν(1, t̄− τ)− µ ≤ − Λ

4n!
τn < 0,

ϕν(1, t̄+ τ)− µ ≥ +
Λ

4n!
τn > 0.

By the intermediate value theorem, there is a solution to ϕν(1, t)−µ = 0
in (t̄ − τ, t̄ + τ). At least one of these solutions is indeed a switching
point of uν , as ϕν(1, t)− µ changes sign in the interval (t̄− τ, t̄+ τ).

Analogously, we can show existence of solutions of ϕν(1, t)−µ+aν =
0. Here, we obtain for ν < ν1 making ν1 smaller if necessary

ϕν(1, t̄− τ)− µ+ aν ≤ aν − Λ

4n!
τn ≤ − Λ

8n!
τn < 0,

ϕν(1, t̄+ τ)− µ+ aν ≥ aν +
Λ

4n!
τn ≥ Λ

8n!
τn > 0.
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This shows existence of solutions of (3.28) close to t̄ for small ν.
Let now t ∈ (t̄− τ, t̄+ τ) be a solution of (3.27). Then we get

|ϕ̄(1, t)− ϕν(1, t)| =
∣∣∣∣µ+

1

n!

dn

dtn
ϕ̄(1, ξ)(t− t̄)n − µ

∣∣∣∣ ≥ Λ

2n!
|t− t̄|n.

Since |ϕ̄(1, t)−ϕν(1, t)| ≤ cν1/2 by Lemma 8, we obtain |t− t̄| ≤ c′ ν
1
2n .

If t is a solution of (3.28) in (t̄− τ, t̄+ τ), then we obtain

|ϕ̄(1, t)− ϕν(1, t)| =
∣∣µ+ 1

n!
dn

dtn
ϕ̄(1, ξ)(t− t̄)n − µ+ νa

∣∣
≥ Λ

2n!
|t− t̄|n − ν|a|.

This proves the estimate |t− t̄| ≤ c′ ν
1
2n for all ν < ν0. The inequality

(4.4) can be proven by using Lemma 6 instead of Lemma 8 to estimate
|ϕ̄(1, t)− ϕν(1, t)|.

With obvious modifications, the result can be proven if Λ < 0 or
t = t−µi holds.

Remark 1. (i) An integer n satisfying (4.2) must exist, since the
mapping t 7→ ϕ̄(1, t) is analytic in (−∞, T ).

(ii) For n = 1, we obtain the following particular case of Theorem 8:
Assume that tµj is a switching point of ū such that (4.2) is satisfied
with n = 1. Then, for all 0 < ν < ν1, exactly two switching
points tµ,νj and tµ−νaj of uν exist that solve equation (3.27) and

(3.28), respectively. We have limν↘0 t
µ,ν
j = limν↘0 t

µ−νa
j = tµj . An

analogous result holds for t−µj with points t−µ,νj and t−µ−νbj .

Corollary 1. Under the same conditions as in the previous Theorem
8, for every point t̄ ∈ (0, T ) with |ϕ̄(1, t)| = µ there exists c > 0 such
that∫ t̄+τ

t̄−τ
ϕ̄(1, t)(u(t)− ū(t)) +µ′(ū(t); u(t)− ū(t)) dt ≥ c‖u− ū‖n+1

L1(t̄−τ,t̄+τ)

holds for all u ∈ Uad, where n and τ are as in Theorem 8. Here we
used again the notation (u) := |u|.

Proof. Let t̄ := tµj be a switching point of ū. As in the proof of Theorem

8, cf., (4.5) and (4.6), there is τ > 0 and K = |Λ|
2·n!

> 0 such that for all
t ∈ (t̄− τ, t̄+ τ) it holds ϕ̄(1, t) ≥ µ

2
and

|ϕ̄(1, t)− µ| ≥ K|t− t̄|n. (4.7)
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In addition, we have ū(t) ∈ {a, 0} for almost all t in this interval. Define
for ε > 0

Aε := {t ∈ (t̄− τ, t̄+ τ) : |ϕ̄(1, t)− µ| ≥ ε}, Iε = (t̄− τ, t̄+ τ) \ Aε.

Hence, due to (4.7), there is a constant c′ > 0 such that it holds |Iε| ≤
c′ ε1/n for all ε > 0.

Let now u ∈ Uad be given. Take t ∈ Aε with ϕ̄(1, t) − µ ≥ ε. This
implies ū(t) = a < 0 and

ϕ̄(1, t)(u(t)− ū(t)) + µ′(ū(t); u(t)− ū(t)) = (ϕ̄(1, t)− µ)(u(t)− ū(t))

≥ ε|u(t)− ū(t)|.

On the other hand, take t ∈ Aε with ϕ̄(1, t)−µ ≤ −ε. As τ was chosen
such that ϕ̄(1, t) ≥ µ

2
> 0 holds on (t̄− τ, t̄+ τ), it follows ū(t) = 0 and

ϕ̄(1, t)(u(t)− ū(t)) + µ′(ū(t); u(t)− ū(t))
= ϕ̄(1, t)(u(t)− ū(t)) + µ|u(t)− ū(t)|
≥ (µ− ϕ̄(1, t))|u(t)− ū(t)|
≥ ε|u(t)− ū(t)|.

Invoking (3.4), we conclude∫ t̄+τ

t̄−τ
ϕ̄(1, t)(u(t)− ū(t)) + µ′(ū(t); u(t)− ū(t)) dt

≥
∫
Aε

ϕ̄(1, t)(u(t)− ū(t)) + µ′(ū(t); u(t)− ū(t)) dt

≥ ε‖u− ū‖L1(Aε)

≥ ε(‖u− ū‖L1(t̄−τ,t̄+τ) − ‖u− ū‖L1(Iε))

≥ ε(‖u− ū‖L1(t̄−τ,t̄+τ) − c′|b− a| ε1/n).

Setting
ε := (2c′|b− a|)−n‖u− ū‖nL1(t̄−τ,t̄+τ)

yields∫ t̄+τ

t̄−τ
ϕ̄(1, t)(u(t)−ū(t))+µ′(ū(t); u(t)−ū(t)) dt ≥ ε

2
‖u−ū‖L1(t̄−τ,t̄+τ)

= c‖u− ū‖1+n
L1(t̄−τ,t̄+τ)

with c = (2c′|b− a|)−n/2.
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Theorem 9. Assume that ‖ȳ(·, T )−yΩ‖L2(0,1) > 0 is fulfilled. Further-
more, we require that |ϕ̄(1, T )| 6= µ. Then there are constants n ∈ N,
ν2 > 0, and c > 0 such that it holds

‖uν − ū‖L1(0,T ) ≤ c ν1/n

for all ν ∈ (0, ν2).

Proof. The condition |ϕ̄(1, T )| 6= µ implies that there are finitely many
solutions of |ϕ̄(1, t)| = µ in (0, T ). Let t1 . . . tm be the solutions of
|ϕ̄(1, t)| = µ in (0, T ). If |ϕ̄(1, 0)| = µ, then we add the point t = 0
to this set. Denote by ni and τi the constants given by Theorem 8
associated with the points ti, i = 1 . . .m. Note that Theorem 8 is also
true if t = 0 is taken, with obvious modifications of the proof. Set
Ii := (ti − τi, ti + τi), I =

⋃m
i=1 Ii, J := (0, T ) \ I, n := maxi=1...m ni.

By continuity, there is σ > 0 such that
∣∣|ϕ̄(1, t)| − µ

∣∣ ≥ σ for all
t ∈ J . Due to uniform convergence ϕν → ϕ̄, there is ν2 > 0 such that
it holds

∣∣|ϕν(1, t)| − µ∣∣ ≥ σ/2 > ν(b − a) for all t ∈ J and ν ∈ (0, ν2).
Consequently uν and ū coincide on J .

The intervals Ii were constructed in Theorem 8 such that |ϕ̄(1, t)| >
µ/2 holds for all t ∈ Ii. Due to uniform convergence of the adjoint
states, we get |ϕν(1, t)| > µ/4 for all t ∈ I and for all ν ∈ (0, ν2) by
making ν2 smaller if necessary. Hence, the signs of ϕ̄(1, t) and ϕν(1, t)
coincide on I, which implies ū(t)uν(t) ≥ 0 for all t ∈ I.

In the next step we will invoke Corollary 1. Let ci be the constant
given by Corollary 1 associated to the point ti. Then we find∫ T

0

ϕ̄(1, t)(uν(t)− ū(t)) + µ′(ū(t); uν(t)− ū(t)) dt

=
m∑
i=1

∫
Ii

ϕ̄(1, t)(uν(t)− ū(t)) + µ′(ū(t); uν(t)− ū(t)) dt

≥
m∑
i=1

ci‖uν − ū‖1+ni
L1(Ii)

.

Since |ūν − uν | ≤ b− a and ni ≤ n, we obtain with

c̃ := min
i=1...m

ci(2τi(b− a))ni−n
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∫ T

0

ϕ̄(1, t)(uν(t)− ū(t)) + µ′(ū(t); uν(t)− ū(t)) dt

≥
m∑
i=1

ci‖uν − ū‖1+ni
L1(Ii)

=
m∑
i=1

ci‖uν − ū‖ni−nL1(Ii)
‖uν − ū‖1+n

L1(Ii)

≥
m∑
i=1

ci(2τi(b− a))ni−n‖uν − ū‖1+n
L1(Ii)

≥ c̃‖uν − ū‖n+1
L1(I).

(4.8)

Testing the variational inequality (3.3) for uν with ū and adding it to
the inequality (4.8), we obtain∫ T

0

(νuν(t) + ϕν(1, t)− ϕ̄(1, t))(ū(t)− uν(t)) dt

+ µ(′(uν ; ū− uν) + ′(ū; uν − ū)) ≥ c̃‖uν − ū‖n+1
L1(I).

Since ū = uν on J and ū(t)uν(t) ≥ 0 on I it holds ′(uν ; ū − uν) +
′(ū; uν− ū) = 0. Due to the definition of the adjoint equation, it holds∫ T

0

(ϕν(1, t)− ϕ̄(1, t))(ū(t)− uν(t)) dt = −‖yuν (·, T )− yū(·, T )‖2
L2(Ω).

Combining these facts, we find

‖yuν (·, T )−yū(·, T )‖2
L2(Ω)+ν‖uν−ū‖2

L2(0,T )+c̃‖uν−ū‖n+1
L1(I) ≤ ν(ū, ū−uν)L2(I).

See also [26, Lemma 1.3] and [32, Lemma 3.1] for similar results. By
Young’s inequality, we can estimate the right-hand side,

ν(ū, ū− uν)L2(I) = ν(ū, ū− uν)L2(I)

≤ ν |max{b, |a|}| ‖uν − ū‖L1(I)

≤ n

n+ 1
c̃−1/n(ν|b− a|)

n+1
n +

c̃

n
‖uν − ū‖n+1

L1(I).

The last item can be absorbed by the left-hand side. This shows that
the convergence rates

‖yuν (·, T )− yū(·, T )‖L2(Ω) ≤ c ν
1
2

+ 1
2n ,

‖uν − ū‖L2(0,T ) ≤ c ν
1
2n ,

‖uν − ū‖L1(0,T ) ≤ c ν
1
n
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are satisfied for ν small enough with some constant c > 0 independent of
ν. Here, we used again that uν = ū on J , which implies ‖uν− ū‖L1(I) =
‖uν − ū‖L1(0,T ).

Remark 2. Let us point out an extension of the previous theorem: The
assumption |ϕ̄(1, T )| 6= µ can be omitted if we require instead that there
are finitely many solutions of |ϕ̄(1, t)| = µ in (0, T ), and that there
exists τ > 0, n > 0, and c > 0 such that it holds∣∣∣ {t ∈ (T − τ, T ) :

∣∣|ϕ̄(1, t)| − µ
∣∣ < ε}

∣∣∣ ≤ c ε1/n ∀ε > 0.

Then the conclusion of Corollary 1 is valid for the interval (T − τ, T ),
and the proof of Theorem 8 remains valid with minor modifications.

5 Extensions

The results of this paper can be easily extended to the following slightly
more general situations:

(i) We considered problems with homogeneous initial condition
y(·, 0) = 0. All results remain true for the non-homogeneous initial
condition y(·, 0) = y0(·) with y0 ∈ L2(Ω). To see this, we solve the
heat equation with homogeneous boundary data and initial condition
y(·, 0) = y0 and denote the solution by ŷ. Then y(x, T )−yΩ = yu(x, t)−
(yΩ− ŷ(x, T )) so that the results can be proven with ŷΩ := yΩ− ŷ(x, T ).

(ii) For distributed controls of the form f(x, t) = e(x)u(t) that act
in the right-hand side of the heat equation with homogeneous boundary
conditions, the solution y is given by the series representation

y(x, T ) =
∞∑
n=1

en
Nn

∫ T

0

e−ρ
2
n(T−s)u(s) ds, (5.9)

where

en :=

∫ 1

0

cos(ρnξ)e(ξ) dξ.

In this way, the Fourier coefficients en replace the numbers cos ρn in
(2.4). For proving the switching properties, in (3.11) we used the fact
that cos ρn 6= 0 holds for all n ∈ N. Therefore, an easy inspection of the
proofs shows that all results of the paper remain true for distributed
controls of the form f(x, t) = e(x)u(t) with fixed e ∈ L2(Ω), if the
condition ∫ 1

0

cos(ρnξ)e(ξ) dξ 6= 0 ∀n ∈ N
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is fulfilled. In other words, the theory remains true for functions e
where all Fourier coefficients with respect to the system cos(ρnx) are
non-vanishing.
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