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Abstract

A mathematical model is set up that can be useful for con-
trolled voltage excitation in time-dependent electromagnetism.
The well-posedness of the model is proved and an associated
optimal control problem is investigated. Here, the control func-
tion is a transient voltage and the aim of the control is the best
approximation of desired electric and magnetic fields in suitable
L2-norms. Special emphasis is laid on an adjoint calculus for
first-order necessary optimality conditions. Moreover, a pecu-
liar attention is devoted to propose a formulation for which the
computational complexity of the finite element solution method
is substantially reduced.
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1 Introduction

In the last two decades, the optimal control of electromagnetic fields
received increasing attention. Optimal control problems for processes
in magnetohydrodynamics (MHD) were studied extensively since the
mid of the 90ies. We mention exemplarily [15, 16, 13, 14, 11, 23, 10,
12, 9] and the references therein. Here, the state equations account for
the flow of electrically conducting fluids and for the electromagnetic
field. In the last years, the numerical analysis of controlled electric or
magnetic fields in electrically conducting media became more active.
We mention, for instance, [4, 26, 20, 21, 27, 22, 6]. In the majority
of these papers, distributed and/or time-dependent electrical currents
were considered as controls.

The control of electrical voltages was first investigated in the time-
harmonic case, see [17, 18, 28, 24, 25]. Here, the dynamical system is of
elliptic type. Often, it is more realistic to control the electrical voltage
in a non-harmonic setting. This leads to specific issues of modeling
and mathematical analysis. To our best knowledge, only the papers
[28, 20, 21] considered the optimal control of electromagnetic fields by
the electrical voltage. A vector potential ansatz was applied to convert
the standard magneto-quasistatic Maxwell equations in a (degenerate)
parabolic system.

In our paper, the mathematical analysis for the optimal control of
voltages is the central aspect. The associated model for the electro-
magnetic fields is close to that proposed in the seminal paper [5]. We
follow a slightly different approach. We merge the modeling ideas of
[5] with both a specific approach aiming at reducing the complexity of
the Maxwell equations for given voltages and some ideas of adjoining
in [24, 25]. We should notice that, using our approach, specific diffi-
culties arise in the process of adjoining. Here, differential operators on
the boundary, namely, the surface gradient and the surface divergence,
can be invoked to overcome this obstacle. The paper is organized as
follows: in Section 2 we point out some assumptions and deduce the
eddy current model. In Section 3 we devise the weak formulation of
the problem and prove that it is well-posed. In Section 4 we derive the
strong formulation, which shows more explicitly the role of the equa-
tions and boundary conditions, and that can be the starting point for
non-variational numerical approximation methods. The fifth section is
devoted to the formulation of the optimal control problem, whereas in
Section 6 the adjoint problem and the necessary optimality conditions
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are derived. Some remarks on numerical approximation are included in
Section 7.

2 Modeling the Maxwell system

The non-stationary Maxwell system reads

∂B

∂t
+ curl E = 0

∂D

∂t
+ JT = curl H

div B = 0

div D = ρ ,

(2.1)

where B, H, D, and E denote the magnetic induction, the magnetic
field, the electric induction, and the electric field, respectively, and the
following constitutive relations hold: D = εE, B = µH, JT = σE + J.
The field J represents the applied electrical current surface density.
The coefficients ε and µ are called electrical permittivity and magnetic
permeability, respectively: they are symmetric and (uniformly) positive
definite matrices, with bounded and measurable real functions as their
entries. The same holds in the conducting region for the electrical
conductivity σ, which vanishes in non-conducting regions. Also the
electric charge volume density ρ is assumed to vanish in non-conducting
regions.

Disregarding the displacement current term ∂D
∂t

, we find the eddy
current model, in which wave propagation is not taken into account:

µ
∂H

∂t
+ curl E = 0 (Faraday equation)

curl H = σE + J (Ampère equation)

div(µH) = 0

div(εE) = 0 .

(2.2)

Here, the last equation has to be imposed only in non-conducting
regions (while the relation div(εE) = ρ is used for computing the elec-
tric charge density in the conducting region, once E is there available).
The electrical voltage is not directly visible in the Maxwell equations.
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Therefore, it is most natural that in control problems the electrical
current was preferred as considered control.

Controlled voltages were mainly considered in the time-harmonic
case (see the references [28, 20, 21], also cited in the Introduction).
Here, instead, we are interested in voltage excitation for the non-statio-
nary case. To set up an associated mathematical model is not a trivial
task. We follow the presentation given in [3, Chap. 8] for the time-
harmonic case, but we also rely on [5], where the main ideas are pre-
sented for including the voltage in the model. The principal novelty
of our paper is a complete analysis of a mathematical model that can
be used in the context of controlled electrical voltages, in a quite gen-
eral geometrical setting and also including a numerical approximation
scheme based on finite elements. After having established a suitable
control model, the associate control theory is more or less standard.
Nevertheless, some special tricks are needed to set up an adjoint calcu-
lus. Here, we follow ideas of our former papers [24, 25]. Moreover, we
slightly modify the model proposed in [5] with a technique, introduced
in [1, 2], which reduces the computational complexity of the numerical
approximation scheme and can be efficiently applied in any geometrical
situation.

Assumption 2.1 (Assumptions on the geometry). The computational do-
main is a simply-connected bounded open set Ω ⊂ R3, with a connected
and Lipschitz boundary ∂Ω. It is split into two Lipschitz subdomains, a
conducting region ΩC and a non-conducting region ΩI = Ω\ΩC; the lat-
ter is assumed to be connected. The conducting region ΩC is not strictly
contained in Ω, i.e., ∂ΩC ∩ ∂Ω 6= ∅; the intersection is also assumed to
be transversal, namely, the surfaces ΓC = ∂ΩC∩∂Ω and Γ = ∂ΩC∩∂ΩI

intersect transversally. For the sake of simplicity, we suppose that ΩC is
simply-connected. Moreover, we suppose that ΓC = ΓE ∪ ΓJ , where ΓE
and ΓJ are two disjoint and connected surfaces on ΓC (‘electric ports’).

In Section 4.1 we present and analyze some more complex geomet-
rical settings for the conducting domain ΩC .

We set also ΓI = ∂ΩI∩∂Ω. Therefore, with these notations we have
∂ΩC = ΓE ∪ ΓJ ∪ Γ, ∂ΩI = ΓI ∪ Γ (see Figure 1). The unit outward
normal vector on ∂Ω, ∂ΩC and ∂ΩI will be denoted by n, nC and nI ,
respectively.

We want to model the electromagnetic problem in the case of an
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Figure 1: The computational domain Ω with the conductor ΩC and the
electric ports ΓE and ΓJ .

electric current passing along the ‘cylinder’ ΩC , and to drive the prob-
lem by assigning a potential difference between ΓE and ΓJ .

Assumption 2.2 (Assumptions on the given data). The matrix-valued
functions ε ∈ L∞(ΩI ,R3×3), µ ∈ L∞(Ω,R3×3) and σ ∈ L∞(ΩC ,R)
are assumed to be symmetric and uniformly positive definite in ΩI , Ω
and ΩC, respectively. The given electrical current density J belongs to
L2(0, T ;L2(Ω)3) and satisfies the necessary condition div J|ΩI

= 0 in
ΩI × (0, T ).

For the sake of simplicity, in Section 3 we will assume J|ΩI
= 0.

However, we note that the case J|ΩI
6= 0 is also meaningful: In the

modeling of electromagnetic fields, it is often assumed that coils where
the current courses through are not viewed as conductors. As a sub-
set of the non-conducting region, they are simply characterized by the
presence of an impressed current inside (one can envisage a coil as a
package of insulated thin wires, where the current is known).

In order to show more clearly the subdomain where a field is con-
sidered, from now on we will write EC := E|ΩC

, EI := E|ΩI
and use a

similar notation for H. A first point in the modeling is to require that
the electric field is normal to the boundary on the two electric ports,
namely, EC × nC = 0 on ΓE ∪ ΓJ . More precisely, as proposed in [7],
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for each t ∈ [0, T ] we consider the no-flux boundary conditions

µH · n = 0 on ∂Ω
EC × nC = 0 on ΓE ∪ ΓJ
εIEI · nI = 0 on ΓI .

(2.3)

We refer also to the comments presented in [3, Chap. 8], which show
that other possible boundary conditions are not allowed for this type
of problem.

In what follows, we will use the tangential differential operators
divτ , curlτ and grad τ (see, e.g., [19, Chap. 3], [3, Chap. A1] for their
definitions and properties). In particular, for a function φ defined on ∂Ω
the tangential operator curlτ , as usual in a two-dimensional setting, is
the rotation of the tangential gradient, namely, curlτ φ = grad τφ × n;
moreover, for a function v defined in Ω it holds n × grad v × n =
grad τ (v|∂Ω).

Since µH · n = 0 on ∂Ω, from the Faraday law one has, for each
t ∈ [0, T ],

0 = −∂(µH)

∂t
(t) · n = curl E(t) · n = divτ (E(t)× n) on ∂Ω .

Here, we used the vector calculus identity

curl w · n = divτ (w × n),

see (3.10) below.

Because Ω is assumed to be simply-connected, the same holds for
the surface ∂Ω. Hence the condition divτ (E(t)×n) = 0 assures that the
tangential field E(t)×n is the tangential curl of some scalar potential:
namely, for each t ∈ [0, T ] there exists a potential v(t) : Ω 7→ R such
that

E(t)× n = − curlτ v|∂Ω(t) = −grad v(t)× n (2.4)

holds on ∂Ω. Moreover, we have EC(t)×nC = 0 on ΓE∪ΓJ . Therefore,
since the tangential derivatives of v are vanishing on ΓE ∪ ΓJ , for each
t ∈ [0, T ] the function v(t) must be constant on ΓE and on ΓJ with
respect to the space variable x.

We have thus proved that, under the assumption that Ω is simply-
connected, for the eddy current problem the conditions

µH · n = 0 on ∂Ω
EC × nC = 0 on ΓE ∪ ΓJ
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are equivalent to the conditions

µH · n = 0 on ∂Ω
E× n = −grad v × n on ∂Ω
v|ΓJ

and v|ΓE
do not depend on x.

The voltage excitation problem thus reads: given VE : [0, T ] 7→ R and
VJ : [0, T ] 7→ R, we look for a solution of the eddy current problem
(2.2) satisfying for each t ∈ [0, T ] the boundary conditions

µH · n = 0 on ∂Ω
E× n = −grad v × n on ∂Ω
v|ΓJ

and v|ΓE
do not depend on x

v|ΓJ
− v|ΓE

= VJ − VE
εIEI · nI = 0 on ΓI ,

(2.5)

along with the initial condition H|t=0 = H0 := µ−1B0. Here the vector
field B0 has to satisfy the necessary compatibility conditions div B0 = 0
in Ω and B0 · n = 0 on ∂Ω, that derive from taking the divergence of
the Faraday equation (2.2)1 and from (2.5)1.

Remark 1. It is worth noting that, if conditions (2.5) are satisfied, the
quantities VJ and VE are related by

VJ − VE = −
∫
γ̂

EI · τ , (2.6)

where γ̂ is any curve lying on ΓI and joining the electric port ΓE to the
electric port ΓJ , and τ is the unit tangent vector on it.

In fact, from (2.5)2 we know that E × n = −grad v × n on the
boundary ∂Ω, and therefore, if a curve γ̂ lies on ∂Ω and connects the
points p− and p+, we have∫

γ̂

EI · τ = −
∫
γ̂

grad v · τ = −v(p+) + v(p−) .

From (2.5)3 we know that v|ΓJ
and v|ΓE

are constants. Hence, taking
any curve γ̂ ⊂ ΓI ⊂ ∂Ω joining the electric port ΓE to the electric port
ΓJ , we have v(p−) = v|ΓE

and v(p+) = v|ΓJ
, thus∫

γ̂

EI · τ = −v|ΓJ
+ v|ΓE

.

Hence (2.6) follows at once from (2.5)4.
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In conclusion, the voltage excitation problem can also be written as
the eddy current problem with the boundary conditions (2.3) and the
additional condition (2.6).

Since σ is vanishing in ΩI , the electric field EI is not present in
the Ampère equation (2.2)2. Therefore one can face the problem by
splitting it in two steps: in the first step one considers the problem of
finding H in Ω and EC in ΩC , satisfying the Faraday equation (2.2)1

only in ΩC , the Ampère equation (2.2)2 in Ω, with right hand side
σEC + JC in ΩC and right hand side JI in ΩI , and the magnetic Gauss
equation (2.2)3 in Ω. In the second step the electric field in the non-
conducting domain ΩI has to be obtained by solving, for each t ∈ [0, T ],
the curl–div system

curl EI(t) = −µ∂HI

∂t
(t) on ΩI

div(εIEI(t)) = 0 on ΩI

εIEI(t) · nI = 0 on ΓI

EI(t)× nI = −EC(t)× nC on Γ .

(2.7)

We refer to [3, Chap. 8] for the results concerning the solvability of
this problem. Note that the first equation in (2.7) is nothing else than
the Faraday equation in ΩI , and that the matching condition (2.7)4

assures that the electric field defined by EC in ΩC and EI in ΩI has a
well-defined curl, thus it satisfies the Faraday equation in the whole Ω.

In conclusion, if we are able to find, as indicated above, the magnetic
field H in Ω × (0, T ) and the electric field EC in ΩC × (0, T ), for any
fixed time t the determination of EI can be done as a successive step
(or even avoided, if the knowledge of the physical quantity EI is not
important in the problem at hand).

In view of the Ampère equation (2.2)2 in ΩC , we can write

EC = σ−1(curl HC − J) ,

hence it is also possible to formulate the first step of the solving proce-
dure described above in terms of the magnetic field only. This will be
apparent in the next section.
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3 Weak formulation

We start reminding the definition of the (real) Hilbert spacesH(curl; Ω),
H(div; Ω). They are defined as follows:

H(curl; Ω) := {w : Ω 7→ R3 |w ∈ L2(Ω)3, curl w ∈ L2(Ω)3} ,

with the norm

‖w‖2
curl,Ω := ‖w‖2

L2(Ω)3 + ‖ curl w‖2
L2(Ω)3 ,

and

H(div; Ω) := {w : Ω 7→ R3 |w ∈ L2(Ω)3, div w ∈ L2(Ω)} ,

with the norm

‖w‖2
div,Ω := ‖w‖2

L2(Ω)3 + ‖ div w‖2
L2(Ω) .

Here and in the sequel, the differential operators are defined in the
distributional sense.

We also need to recall some properties of the vector functions be-
longing either to H(curl; Ω) or to H(div; Ω) (see, e.g., [19], p. 107). For
all w ∈ H(curl; Ω), we know that the tangential trace is continuous on
interfaces, in particular

wC × nC = −wI × nI on Γ , w ∈ H(curl; Ω) , (3.8)

the minus sign being due to the fact that on the interface Γ we have
nC = −nI . For all w ∈ H(div; Ω), we know that the normal trace is
continuous on interfaces, in particular

wC · nC = −wI · nI on Γ , w ∈ H(div; Ω) . (3.9)

Moreover, we also have that all w ∈ H(curl; Ω) satisfy (in a suitable
weak sense)

divτ (w × n) = curl w · n on Σ , (3.10)

where Σ is any Lipschitz surface contained on Ω (see, e.g., [19], p. 59;
[3], p. 313).

To set up a weak formulation of the eddy current problem, we in-
troduce the spaces

W = {w ∈ H(curl; Ω) | curl wI = 0 in ΩI}
X = {w ∈ L2(Ω)3 | curl wI = 0 in ΩI} .

(3.11)
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The former is endowed with the scalar product and norm induced by
H(curl; Ω); for reasons that will be clear later, the latter is endowed
with the scalar product

(w,q)X :=

∫
Ω

µw · q (3.12)

and the associated norm ‖ · ‖X, which are equivalent to the standard
scalar product and norm in L2(Ω)3.

It is straightforward to check that they are closed subspaces of
H(curl; Ω) and L2(Ω)3, respectively. Since H(curl; Ω) and L2(Ω)3 are
separable Hilbert spaces, W and X are separable Hilbert spaces, too.

Before starting to derive the weak formulation, let us warn the
reader that for convenience duality pairings are simply expressed by
integrals. For instance,

∫
∂Ω

n× E(t) ·w means 〈n× E(t),n×w × n〉,
i.e., the duality pairing between the space of tangential traces n × E
and the tangential components n × w × n for E ∈ H(curl; Ω) and
w ∈ H(curl; Ω).

Similarly,
∫

Γ
curl wC · nC means 〈curl wC · nC , 1〉 with the duality

pairing between the Sobolev spaces H−1/2(Γ) and H1/2(Γ).

Multiplying the Faraday equation (2.2)1 by w ∈W, integrating in
Ω, and integrating by parts we find for t ∈ (0, T ):

0 =

∫
Ω

µ
∂H

∂t
(t) ·w +

∫
Ω

curl E(t) ·w

=

∫
Ω

µ
∂H

∂t
(t) ·w +

∫
ΩC

EC(t) · curl wC +

∫
∂Ω

(n× E(t)) ·w .

(3.13)

Note now that the vector field curl w is clearly divergence free in Ω,
because div curl = 0. Therefore, by (3.9) we have that curl wC · nC =
− curl wI · nI on Γ. Looking back at the definition of the space W, we
also know that curl wI = 0 in ΩI , thus we conclude that curl wC ·nC = 0
on Γ. Therefore, the divergence theorem implies

0 =

∫
ΩC

div curl wC =

∫
Γ∪ΓJ∪ΓE

curl wC · nC =

∫
ΓJ∪ΓE

curl wC · nC ,

(3.14)
and hence ∫

ΓE

curl wC · nC = −
∫

ΓJ

curl wC · nC . (3.15)
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We have now to remind some results. First, from (2.5) we know
that E(t)× n = −grad v(t)× n on ∂Ω, and that the potential v(t) has
the properties that v|ΓJ

(t) and v|ΓE
(t) do not depend on x and

v|ΓJ
(t)− v|ΓE

(t) = (VJ − VE)(t) .

Second, since w ∈W we know that curl wI = 0 in ΩI and thus curl wI ·
n = 0 on ΓI . Third, using an integration by parts formula on the
boundary we have∫

∂Ω

(w × n) · grad τφ = −
∫
∂Ω

divτ (w × n)φ .

Hence the boundary term in (3.13) can be rewritten as∫
∂Ω

(n× E(t))· w = −
∫
∂Ω

(n× grad v(t)) ·w

= −
∫
∂Ω

(w × n) · grad τv(t)

=

∫
∂Ω

divτ (w × n) v(t) =

∫
∂Ω

(curl w · n) v(t)

=

∫
ΓJ∪ΓE

(curl wC · nC) v(t)

= v|ΓJ
(t)

∫
ΓJ

curl wC · nC + v|ΓE
(t)

∫
ΓE

curl wC · nC

= (VJ(t)− VE(t))

∫
ΓJ

curl wC · nC ,

(3.16)
having used (3.10) in the fourth equality and (3.15) in the last one.

Using the Ampère equation (2.2)2 in ΩC we obtain

EC(t) = σ−1(curl HC(t)− JC(t)) ,

therefore (3.13) becomes

d

dt

∫
Ω

µH(t) ·w +

∫
ΩC

σ−1 curl HC(t) · curl wC

=

∫
ΩC

σ−1JC(t) · curl wC − (VJ − VE)(t)

∫
ΓJ

curl wC · nC .

(3.17)

On the other hand we also have the Ampère equation (2.2)2 in ΩI ,
namely,

curl HI = JI in ΩI .
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For the sake of simplicity, from now on we assume that JI = 0 in
ΩI (the general case can be treated by following the arguments in [3,
Chap. 8]). By this assumption we have that the Ampère equation in
ΩI becomes curl HI = 0.

Problem 1. The weak formulation of the eddy current problem reads
as follows: given the data JC ∈ L2(0, T ;L2(ΩC)3), VJ ∈ L2(0, T ), VE ∈
L2(0, T ) and H0 ∈ X with div(µH0) = 0 in Ω and µH0 · n = 0 on ∂Ω,
find H ∈ L2(0, T ; W) ∩ C0([0, T ]; X) such that

d

dt

∫
Ω

µH(t) ·w +

∫
ΩC

σ−1 curl HC(t) · curl wC

=

∫
ΩC

σ−1JC(t) · curl wC − (VJ − VE)(t)

∫
ΓJ

curl wC · nC ,

(3.18)
for all w ∈W and a.a. t ∈ (0, T ), and

H|t=0 = H0 in Ω . (3.19)

Note that, indeed, it would be enough to assume that the voltage
drop VJ − VE belongs to L2(0, T ).

Proving well-posedness of this problem is an easy task.

Theorem 3.1. For all JC ∈ L2(0, T ;L2(ΩC)3), VJ ∈ L2(0, T ), VE ∈
L2(0, T ) and H0 ∈ X with div(µH0) = 0 in Ω and µH0 · n = 0 on ∂Ω,
Problem 1 has a unique solution H ∈ L2(0, T ; W) ∩ C0([0, T ]; X).

Moreover, there is a constant cw > 0 not depending on JC , VJ , VE,
and H0 such that

‖H‖L2(0,T ;W) + ‖H‖C0([0,T ];X)

≤ cw
(
‖JC‖L2(0,T ;L2(ΩC)3) + ‖VJ − VE‖L2(0,T ) + ‖H0‖L2(ΩC)3

)
.

(3.20)

Proof. The existence and uniqueness theory for this problem can be
easily brought back to classical results, for instance the Lions theorem
(see, e.g., [8], pp. 512–513). The couple of separable Hilbert spaces is
given by W and X, with W ⊂ X; let us remind that X is endowed
with the scalar product (3.12).

By [5, Lemma 3.2] we know that W is dense in X. Finally, the
bilinear form

a(H,w) =

∫
ΩC

σ−1 curl HC · curl wC (3.21)
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satisfies
a(w,w) + β‖w‖2

X ≥ α‖w‖2
W (3.22)

for suitable constants β > 0 and α > 0 (say, α = σ−1
max, β = σ−1

maxµ
−1
min,

where σmax is an upper bound for the maximum eigenvalue of σ(x) in
ΩC and µmin is a lower bound for the minimum eigenvalue of µ(x) in Ω),
and thus all the hypoteses in [8], Theor. 1, pp. 512–513, are fulfilled.

4 Strong formulation

Let us furnish the strong interpretation of the variational problem
(3.18), as it is interesting in itself, and moreover can be the starting
point for numerical approximation not based on variational methods.

We start by defining the space of harmonic fields

Hµ
I = {v : ΩI 7→ R3 | curl v = 0 in ΩI , div(µv) = 0 in ΩI , µv·n = 0 on ∂ΩI} .

(4.23)
Here we have used the weight µ for orthogonality reasons (see (4.26)
and (4.27)), as the scalar product in X is given by (3.12) .

This space is trivial if and only if the domain ΩI is simply-connected.
Its dimension coincides with the dimension of the first homology group
of ΩI , namely, the first Betti number of ΩI . From a geometrical point of
view, the first Betti number is the number of “handles” of the domain.

In the geometrical situation we are considering the space Hµ
I has

dimension 1. We denote by ρ the basis function satisfying the normal-
ization condition ∮

∂+ΓJ

ρ · τ+
J = 1. (4.24)

By the notation ∂+ΓJ we mean that the associated tangent vector τ+
J

is given by
τ+
J = κJ nC |ΓJ

× nC |Γ ,

where κJ = |nC |ΓJ
×nC |Γ|−1 is just a normalizing factor. Note that, by

the assumption on the geometry 2.1, we know that the intersection of
ΓC and Γ is transversal, thus nC |ΓJ

and nC |Γ are not parallel.

On the other electric port ΓE we define

τ+
E = −κE nC |ΓE

× nC |Γ ,
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with κE = |nC |ΓE
×nC |Γ|−1; in this way the two closed cycles ∂+ΓJ and

∂+ΓE are homologically equivalent, and, due to the fact that ρ is curl
free, we have ∮

∂+ΓE

ρ · τ+
E = 1 (4.25)

as well.

Since the domain ΩI is not simply-connected, though the magnetic
field HI is curl free in ΩI it is not possible to represent it as a gradient.
However, it is the sum of a gradient plus a vector field belonging to Hµ

I .

More precisely, for each t ∈ [0, T ] we can write

HI(t) = gradψI(t) + I0(t)ρ, (4.26)

where ψI(t) ∈ H1(ΩI)/R and I0(t) ∈ R. It is also easily verified that the
two terms in this decomposition are orthogonal in X, as by integration
by parts we obtain at once∫

ΩI

µgrad ηI · ρ = 0 ∀ ηI ∈ H1(ΩI) (4.27)

since ρ ∈ Hµ
I .

Let us explain the the physical interpretation of the function t 7→
I0(t). Since ∂+ΓJ is a closed curve contained in ΩI , we clearly have∮

∂+ΓJ

HI(t) · τ+
J =

∮
∂+ΓJ

(
gradψI(t) + I0(t)ρ

)
· τ+

J

= I0(t)

∮
∂+ΓJ

ρ · τ+
J = I0(t) .

Due to the matching condition HC(t) × nC = HI(t) × nC on Γ, by a
direct manipulation we find∮

∂+ΓJ

HI(t) · τ+
J =

∮
∂+ΓJ

HI(t) · κJ (nC |ΓJ
× nC |Γ)

= −
∮
∂+ΓJ

κJ (HI(t)× nC |Γ) · nC |ΓJ

= −
∮
∂+ΓJ

κJ (HC(t)× nC |Γ) · nC |ΓJ

=

∮
∂+ΓJ

κJ HC(t) · (nC |ΓJ
× nC |Γ) =

∮
∂+ΓJ

HC(t) · τ+
J .

(4.28)
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The closed curve ∂+ΓJ is not the boundary of a surface contained
in ΩI , but it is the boundary of ΓJ , and the surface ΓJ is a part of the
boundary of ΩC . Therefore, by the Stokes theorem we obtain

I0(t) =

∮
∂+ΓJ

HC(t)·τ+
J =

∫
ΓJ

curl HC(t)·nC =

∫
ΓJ

(
σEC(t)+JC(t)

)
·nC .

This shows that I0(t) is the total current intensity passing at time t
through ΓJ in the direction of nC .

We are now in a position to state the following formal result:

Theorem 4.1. In terms of the magnetic field H only, the strong form
of problem (3.18) is the following:

µ
∂HC

∂t
+ curl(σ−1 curl HC) = curl(σ−1JC) in ΩC × (0, T )

div (µH) = 0 in Ω× (0, T )

curl HI = 0 in ΩI × (0, T )

HC × nC + HI × nI = 0 on Γ× (0, T )

(σ−1 curl HC)× nC = (σ−1JC)× nC on (ΓJ ∪ ΓE)× (0, T )

µH · n = 0 on ∂Ω× (0, T )

H|t=0 = H0 in Ω ,
(4.29)

along with the voltage condition(∫
ΩI

µρ · ρ
)
dI0

dt
+

∫
Γ

σ−1 curl HC · (ρ× nI)

= −(VJ − VE) +

∫
Γ

σ−1JC · (ρ× nI) in (0, T ) ,

(4.30)
where I0(t) :=

∮
∂+ΓJ

HI(t) · τ+
J (and, clearly, I0(0) :=

∮
∂+ΓJ

H0,I · τ+
J ).

Proof. The conditions curl HI = 0 in ΩI and HC × nC = −HI × nI
on Γ are satisfied as H ∈ W, while the condition H|t=0 = H0 in Ω is
explicitly stated in the weak formulation (see (3.19)).

The Faraday equation (4.29)1 follows straightforwardly taking in the
weak formulation (3.18) a test function w ∈ C∞(Ω)3 with supp w ⊂ ΩC

and integrating by parts.

We can repeat the same computation with a test function w ∈
H(curl; Ω) with wI = 0 in ΩI (hence wC × nC = 0 on Γ by (3.8)) and

15



wC × nC = 0 on ΓE. Recalling that ∂ΩC = Γ∪ ΓJ ∪ ΓE it follows that∫
ΩC

(
µ
∂HC

∂t
+ curl[σ−1(curl HC − JC)]

)
·wC

+

∫
ΓJ

σ−1(curl HC − JC) · (nC ×wC)

= −(VJ − VE)

∫
ΓJ

curl wC · nC .

Using the Faraday equation (4.29)1 just obtained in ΩC we find∫
ΓJ

(
[σ−1(curl HC − JC)]× nC

)
·wC = −(VJ − VE)

∫
ΓJ

curl wC · nC .

In (3.15) we have proved that for w ∈ W it holds
∫

ΓJ
curl wC · nC =

−
∫

ΓE
curl wC · nC . Since by (3.10) we have curl wC · nC = divτ (wC ×

nC) = 0 on ΓE, in the present situation we have
∫

ΓJ
curl wC · nC = 0,

hence ∫
ΓJ

(
[σ−1(curl HC − JC)]× nC

)
·wC = 0 .

Since w is arbitrary on ΓJ , we have therefore obtained

[σ−1(curl HC − JC)]× nC = 0 on ΓJ .

Converting the role of ΓJ and ΓE, we obtain the same result on ΓE,
proving that (4.29)5 is satisfied.

Now we choose w = grad η with η ∈ C∞0 (Ω). We find

d

dt

∫
Ω

µH · grad η = 0,

hence
∫

Ω
µH · grad η is independent of t. Integrating by parts, we see

that the same is true for
∫

Ω
div(µH) η. Using that the initial datum

H0 satisfies div(µH0) = 0 in Ω, we obtain∫
Ω

div(µH(t)) η =

∫
Ω

div(µH0) η = 0.

Due to the fact that η is arbitray, this gives equation (4.29)2.

The choice w = grad η with η ∈ H1(Ω) furnishes, integrating by
parts,

0 =
d

dt

∫
Ω

µH·grad η = − d

dt

∫
Ω

div(µH) η+
d

dt

∫
∂Ω

µH·n η =
d

dt

∫
∂Ω

µH·n η .
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Therefore,
∫
∂Ω
µH ·n η is independent of t. Using that the initial datum

satisfies µH0 · n = 0 on ∂Ω, it follows∫
∂Ω

µH(t) · n η =

∫
∂Ω

µH0 · n η = 0,

namely, since η is arbitrary on ∂Ω, equation (4.29)6.

Finally, take in (3.18) a test function w ∈ W with w|ΩI
= ρ.

Integrating by parts we first find∫
ΩC

σ−1(curl HC − JC) · curl wC

=

∫
ΩC

curl[σ−1(curl HC − JC)] ·wC

+

∫
Γ

[σ−1(curl HC − JC)] · (nC ×wC) .

The Faraday equation (4.29)1 reads

curl[σ−1(curl HC − JC)] = −µ ∂HC

∂t
;

using it along with relation (3.8) that gives nC×wC = wI×nI = ρ×nI ,
we are left with

d

dt

∫
ΩI

µHI · ρ +

∫
Γ

[σ−1(curl HC − JC)] · (ρ× nI)

= −(VJ − VE)

∫
ΓJ

curl wC · nC .
(4.31)

By the Stokes theorem, it follows
∫

ΓJ
curl wC · nC =

∮
∂+ΓJ

wC · τ+
J .

Moreover, as in (4.28), we have
∮
∂+ΓJ

wC · τ+
J =

∮
∂+ΓJ

wI · τ+
J ; since

the test function w we are using satisfies w|ΩI
= wI = ρ, we rewrite

this relation as
∮
∂+ΓJ

wC ·τ+
J =

∮
∂+ΓJ

ρ ·τ+
J . Because by (4.24) it holds∮

∂+ΓJ
ρ · τ+

J = 1, we have at last∫
ΓJ

curl wC · nC = 1 . (4.32)

Finally, since from (4.26) and (4.27) we can write HI(t) = gradψI(t) +
I0(t)ρ with

∫
ΩI
µgradψI · ρ = 0, we conclude

d

dt

∫
ΩI

µHI · ρ =
d

dt

∫
ΩI

µ(gradψI + I0ρ) · ρ =
dI0

dt

(∫
ΩI

µρ · ρ
)
,

and equation (4.30) follows readily from this last relation, (4.31) and
(4.32).
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Remark 2. Setting EC = σ−1(curl HC − JC) in ΩC, it is clearly ver-
ified that with this definition the Ampère equation in ΩC is satisfied;
moreover, (4.29)1 can be read as the Faraday equation in ΩC.

The proof that the solution to the variational problem (3.18) satis-
fies the boundary conditions (2.5)2–(2.5)5 needs some additional effort.
First of all, to determine the electric field E globally in Ω, one has to
solve problem (2.7). Then we can conclude as follows:

Theorem 4.2. Let H be the weak solution of problem (3.18). Then
problem (2.7) has a unique solution EI in ΩI (in particular, (2.5)5 is
satisfied). Moreover, the electric field given by EC = σ−1(curl HC−JC)
in ΩC and by the solution EI to problem (2.7) in ΩI satisfies (2.5)2–
(2.5)4.

Proof. For the solvability of problem (2.7) refer to [3, Theor. 8.6] (the
only difference being that there the right hand side comes from the
time-harmonic expression of the time-derivative).

From the Faraday equation, the boundary condition (4.29)6 and
(3.10) we know that

divτ (E× n) = curl E · n = 0 on ∂Ω× (0, T ).

Since ∂Ω is simply connected, for each t ∈ (0, T ) from (2.4) we have
that (2.5)2 is satisfied, i.e.,

E× n = −grad υ × n on ∂Ω. (4.33)

Let us indicate the boundary values of the function υ on ΓJ and
ΓE by υ|ΓJ

= UJ and υ|ΓE
= UE. Since we have defined EC =

σ−1(curl HC − JC) in ΩC , the boundary condition (4.29)5 states that
EC × nC = 0 on ΓJ ∪ ΓE, namely, by (4.33), grad υ|ΩC

× nC = 0 on
ΓJ ∪ ΓE. Both surfaces ΓJ and ΓE are connected, thus we deduce that
UJ and UE do not depend on the space variable, which is condition
(2.5)3.

As seen before in (4.31) and (4.32), the voltage condition (4.30) can
be also written as

d

dt

∫
ΩI

µHI · ρ +

∫
Γ

EC · (ρ× nI) = −(VJ − VE) .

18



By the matching condition (2.7)4 on Γ, this is equivalent to

d

dt

∫
ΩI

µHI · ρ +

∫
Γ∪(∂Ω∩∂ΩI)

EI · (ρ× nI)

−
∫
∂Ω∩∂ΩI

EI · (ρ× nI) = −(VJ − VE) .
(4.34)

We have Γ ∪ (∂Ω ∩ ∂ΩI) = ∂ΩI , hence integration by parts yields∫
Γ∪(∂Ω∩∂ΩI)

EI · (ρ× nI) =

∫
ΩI

curl EI · ρ ,

having used that curlρ = 0 in ΩI . This relation and Faraday equation
(2.7)1 permit to rewrite (4.34) as

−
∫
∂Ω∩∂ΩI

EI · (ρ× nI) = −(VJ − VE) . (4.35)

By (4.33) we have E × n = −grad υ × n on ∂Ω, hence the left hand
side of (4.35) is given by

−
∫
∂Ω∩∂ΩI

EI · (ρ× nI) =

∫
∂Ω∩∂ΩI

EI × nI · ρ

= −
∫
∂Ω∩∂ΩI

grad υ × nI · ρ =

∫
∂Ω∩∂ΩI

grad τυ · (ρ× nI) .

(4.36)

We need now to perform an integration by parts, related to the
tangential operators grad τ and divτ , on the surface ∂Ω ∩ ∂ΩI , whose
boundary is given by the two curves ∂ΓJ and ∂ΓE. We set ν = nI|∂Ω×
τ+
J on ∂ΓJ and ν = −nI|∂Ω×τ+

E on ΓE. In this way, ν is a unit vector,
tangential to ∂Ω ∩ ∂ΩI and orthogonal to the curves ∂ΓJ and ∂ΓE; in
particular, it points outward ∂Ω ∩ ∂ΩI , looked as a surface on ∂Ω, on
both ∂ΓJ and ∂ΓE. An integration by parts on the surface ∂Ω ∩ ∂ΩI

thus gives∫
∂Ω∩∂ΩI

grad τυ · (ρ× nI)

= −
∫
∂Ω∩∂ΩI

υ divτ (ρ× nI) +

∮
∂ΓJ∪∂ΓE

υ ν · (ρ× nI|∂Ω)

= −UJ
∮
∂ΓJ

ρ · (ν × nI|∂Ω)− UE
∮
∂ΓE

ρ · (ν × nI|∂Ω).

(4.37)
Here, we took into account that υ|ΓJ

= UJ and υ|ΓE
= UE do not

depend on x and that, by (3.10), divτ (ρ×nI) = curlρ ·nI = 0 on ∂ΩI .
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By our definitions of ν, it is easy to check that ν × nI|∂Ω = τ+
J on

∂ΓJ and ν × nI|∂Ω = −τ+
J on ∂ΓE. Therefore,

∫
∂ΓJ

ρ · (ν × nI|∂Ω) =∫
∂ΓJ

ρ · τ+
J = 1 and

∫
∂ΓE

ρ · (ν × nI|∂Ω) = −
∫
∂ΓE

ρ · τ+
J = −1 follow

from (4.24) and (4.25), and from (4.36) and (4.37) we conclude

−
∫
∂Ω∩∂ΩI

EI · (ρ× nI) = −(UJ − UE) .

Hence (4.35) gives −(UJ − UE) = −(VJ − VE), and the boundary con-
dition (2.5)4 follows.

4.1 More general geometrical settings

Suppose that the geometrical situation is the one described before, with
only one exception: we suppose that ΓC = ∂ΩC ∩ ∂Ω is the (disjoint)
union of M + 1 connected surfaces ΓE, Γ1

J , . . . , ΓMJ , M ≥ 2 (see Figure
2).

Then, for each fixed t ∈ [0, T ], the surface potential v(t) turns out
to be equal to a constant Vk(t) on each surface ΓkJ , k = 1, . . . ,M , and
equal to another constant VE(t) on ΓE. Proceeding as in (3.14) and
(3.16), the boundary term

∫
∂Ω

(n× E) ·w can be written as∫
∂Ω

(n× E) ·w =
M∑
k=1

∫
Γk
J

(curl wC · nC) vC(t) +

∫
ΓE

(curl wC · nC) vC(t)

=
M∑
k=1

Vk(t)

∫
Γk
J

curl wC · nC + VE(t)

∫
ΓE

curl wC · nC

=
M∑
k=1

(Vk − VE)(t)

∫
Γk
J

curl wC · nC ,

as
∫

ΓE
curl wC ·nC = −

∑M
k=1

∫
Γk
J

curl wC ·nC , because curl wC is diver-

gence free in ΩC . Therefore, the weak formulation of the problem needs
only one change: the right hand side of (3.18) has to be substituted by∫

ΩC

σ−1JC · curl wC −
M∑
k=1

(Vk − VE)(t)

∫
Γk
J

curl wC · nC .

If interested in the strong formulation, a further step can be carried
out: in the geometrical situation we are now considering the space of
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Figure 2: A first alternative geometrical configuration: a connected
conductor ΩC with five electric ports.

harmonic fields Hµ
I has dimension M , and a basis for it is given by the

unique vector fields ρl ∈ H
µ
I such that∮

∂+Γk
J

ρl · τ+
Jk

= δlk, l = 1, . . . ,M.

Taking in the weak formulation a test function wl ∈W such wl|ΩI
= ρl,

it is easy to see that equation (4.31) now becomes

d

dt

∫
ΩI

µHI · ρl +

∫
Γ

[σ−1(curl HC − JC)] · (ρl × nI)

= −
M∑
k=1

(Vk − VE)(t)

∫
Γk
J

curl wl,C · nC
(4.38)

for l = 1, . . . ,M . Moreover, proceeding as in the proof of (4.32), by the
Stokes theorem one finds∫

Γk
J

curl wl,C · nC =

∮
∂+Γk

J

wl,C · τ+
J .

Furthermore, as in (4.28) we have
∮
∂+Γk

J
wl,C · τ+

J =
∮
∂+Γk

J
wl,I · τ+

J =∮
∂+Γk

J
ρl · τ+

J . Hence we have found∫
Γk
J

curl wl,C · nC =

∮
∂+Γk

J

ρl · τ+
Jk

= δlk .
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Finally, writing HI(t) = gradψI(t) +
∑M

k=1 I0
k(t)ρk it follows∫

ΩI

µHI(t) · ρl =

∫
ΩI

µ

(
gradψI(t) +

M∑
k=1

I0
k(t)ρk

)
· ρl

=
M∑
k=1

I0
k(t)

(∫
ΩI

µρk · ρl
)
.

Hence the voltage equation (4.30) becomes the system

M∑
k=1

(∫
ΩI

µρk · ρl
)
dI0

k

dt
+

∫
Γ

σ−1 curl HC · (ρl × nI)

= −(Vl − VE) +

∫
Γ

σ−1JC · (ρl × nI) in (0, T ) ,

(4.39)
for each l = 1, . . . ,M , where the M voltage jumps (Vl − VE)(t) have
been assigned.

A similar argument can be applied when the conductor ΩC is the
(disjoint) union of M ≥ 2 connected components ΩC,k, k = 1, . . . ,M ,
each one having two electric ports ΓE,k and ΓJ,k (see Figure 3).

Γ
J,1

Ω
C,1

Ω
C,2

Γ
E,1

Γ
E,2

Γ
J,2

Ω

Figure 3: A second alternative geometrical configuration: a non-
connected conductor ΩC with four electric ports.

In this geometrical situation, we have to assign M voltage jumps
(VJ,k − VE,k)(t), k = 1, . . . ,M , and the dimension of the space Hµ

I is
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still equal to M . Denoting by ρl the basis function with the property
that

∮
∂+ΓJ,k

ρl · τ+
Jk

= δlk, l = 1, . . . ,M , in this case the voltage system

becomes

M∑
k=1

(∫
ΩI

µρk · ρl
)
dI0

k

dt
+

∫
Γ

σ−1 curl HC · (ρl × nI)

= −(VJ,l − VE,l) +

∫
Γ

σ−1JC · (ρl × nI) in (0, T ) ,

(4.40)
for each l = 1, . . . ,M .

One can also consider the following geometrical situation. The con-
ductor is composed by two connected components: one, denoted by
Ω

(1)
C , is like the conductor in Section 1, and is a simply-connected do-

main not strictly contained in Ω. This means that it has an intersection
with ∂Ω, denoted by ∂Ω

(1)
C ∩ ∂Ω = ΓE ∪ ΓJ , where ΓE and ΓJ are two

disjoint and connected ‘electric ports’ on ∂Ω. We also suppose that the
intersection of ∂Ω

(1)
C and ∂Ω is transversal. The other connected com-

ponent Ω
(2)
C is like a hollow cylinder (namely, a torus), and is strictly

contained in Ω. One can think of Ω
(1)
C as an induction coil that envelops

the workpiece Ω
(2)
C , without touching it (see Figure 4).

Γ
J

Γ
E

Ω
C

(1)

Ω
C

(2)

Ω

Figure 4: A third alternative geometrical configuration: a non-
connected conductor ΩC with two electric ports.

In this situation, one can identify two non-bounding cycles in ΩI :
the first one, as in the previous cases, is σ(1) = ∂+ΓJ . The other one is
σ(2), a cycle linking the hollow cylinder Ω

(2)
C , passing into its hole.
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Therefore, the dimension ofHµ
I is equal to 2. Let us choose a basis of

Hµ
I . First we fix an orientation on σ(2); than one basis field ρ1 satisfies∮
∂+ΓJ

ρ1 · τ+
J = 1 and

∮
σ(2) ρ1 · τ = 0, whereas the other basis field ρ2

satisfies
∮
∂+ΓJ

ρ2 · τ+
J = 0 and

∮
σ(2) ρ2 · τ = 1. It is readily seen that

the voltage system now is given by

2∑
k=1

(∫
ΩI

µρk · ρl
)
dI0

k

dt
+

∫
Γ

σ−1 curl HC · (ρl × nI)

= −(VJ − VE)δl1 +

∫
Γ

σ−1JC · (ρl × nI) in (0, T ) ,

(4.41)
for each l = 1, 2. Note that this example clearly shows that voltage
drops cannot be imposed if the conducting domain ΩC is strictly con-
tained in Ω and does not have electric ports (in that case, ρ1 does not
exist and (4.41) simply becomes an equation for ρ2, in which the first
term at the right end side disappears).

5 The optimal control problem

In the previous sections, we prepared the analysis of our state equation,
i.e., our Maxwell control system. Now we take the voltage VJ − VE
as control function. For this reason, we set V (t) = VJ(t) − VE(t).
Thanks to Theorem 3.1 we know that (for fixed and given current den-
sity JC and initial function H0) to each function V a unique magnetic
field H in Ω and a unique electric field EC in ΩC are associated. Let
us denote these fields by HV and EC,V , respectively, to indicate their
correspondence to the given voltage V . The control-to-state mapping
V 7→ (HV ,EC,V ) is affine between the corresponding spaces. By (3.20),
it is also continuous.

The main goal of the control is to approach given state functions
Hd ∈ L2 (desired magnetic field) and EC,d ∈ L2 (desired electric field)
in the associated L2-norms, while the “cost” for the electrical voltage
V is considered by a Tikhonov regularization term with weight ν ≥ 0.
This leads to minimizing the following objective functional,

F (V ) :=
νH
2

∫ T

0

‖HV −Hd‖2
µ,Ω

+
νE
2

∫ T

0

‖EC,V − EC,d‖2
σ,ΩC

+
ν

2

∫ T

0

|V |2.
(5.42)
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The electric field EC,V is equal to EC,V = σ−1(curl HV,C−JC), hence we
can express the objective functional entirely in terms of the magnetic
field,

F (V ) =
νH
2

∫ T

0

‖HV −Hd‖2
µ,Ω

+
νE
2

∫ T

0

‖σ−1(curl HV,C − JC)− EC,d‖2
σ,ΩC

+
ν

2

∫ T

0

|V |2.

(5.43)

The control functions V may be restricted by the constraint V ∈ Vad,
where Vad is a non-empty, convex, and closed subset of L2(0, T ). In
this way, our optimal control problem admits the following short form:

min
V ∈Vad

F (V ). (5.44)

A control V ∗ ∈ Vad is said to be optimal if

F (V ∗) ≤ F (V ) ∀V ∈ Vad.

In other words, an optimal control V ∗ is defined by F (V ∗) = min
V ∈Vad

F (V ).

Theorem 5.1. If Vad is bounded or ν > 0, then the optimal control
problem (5.44) has at least one optimal control. In the latter case, the
optimal control is unique.

Proof. In view of Theorem 3.1, the control-to-state mapping V 7→
(HV ,EV ) is (affine) and continuous. Therefore, the functional F is
weakly lower semicontinuous in L2(0, T ). The set Vad is convex and
closed in L2(0, T ), hence weakly closed. If Vad is in addition bounded,
then Vad is weakly compact and the result follows in a standard way.
If ν > 0, then we can restrict the search for an optimal control to a
bounded and weakly closed subset of Vad and the result follows in the
same way.

To proceed with necessary optimality conditions, we need the deriva-
tive F ′ of F . The derivative at V̂ in the direction V is given by

F ′(V̂ )V = νH

∫ T

0

∫
Ω

µ(HV̂ −Hd) ·H0
V

+νE

∫ T

0

∫
ΩC

(EC,V̂ − EC,d) · curl H0
V,C + ν

∫ T

0

V̂ V ,

(5.45)
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where HV̂ and EC,V̂ = σ−1(curl HV̂ − JC) are the states associated to

V̂ , with initial datum H0 and current density JC , while H0
V is the state

associated to V , subject to vanishing initial datum and current density
equal to zero.

Obviously, the terms

νH

∫ T

0

∫
Ω

µ(HV̂ −Hd) ·H0
V and νE

∫ T

0

∫
ΩC

(EC,V̂ − EC,d) · curl H0
V,C

depend linearly on V . However, V enters in an implicit way via H0
V

and curl H0
V,C .

For finding an explicit expression in terms of V , an adjoint equation
is introduced in a standard way. This is based on a duality argument.
Later, first-order optimality conditions for an optimal control V ∗ are
based on this approach.

6 The adjoint problem

Let us first define the adjoint equation.

Definition 6.1 (Adjoint equation). Let V̂ ∈ L2(0, T ) be a given control
with corresponding states HV̂ and EC,V̂ . Moreover, let

Hd ∈ L2(0, T ;L2(Ω)3), EC,d ∈ L2(0, T ;L2(ΩC)3) be the given desired
states. The problem to find w ∈ L2(0, T ; W) ∩ C0([0, T ]; X) with

− d

dt

∫
Ω

µw(t) · h +

∫
ΩC

σ−1 curl wC(t) · curl hC

= νH

∫
Ω

µ(HV̂ −Hd)(t) · h + νE

∫
ΩC

(EC,V̂ − EC,d)(t) · curl hC

(6.46)

for all h ∈W and a.a. t ∈ (0, T ), and

w|t=T = 0 in Ω (6.47)

is called adjoint equation. Its solution w is said to be the adjoint state
associated with V̂ ∈ L2(0, T ) and denoted by wV̂ .

Since the bilinear forms at the left hand side of (3.18) are symmet-
ric, it is easy to confirm that the adjoint equation has a unique (weak)
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solution w, hence the adjoint state associated with V̂ is uniquely de-
termined. Moreover, the adjoint equation is well-posed. In particular,
the mapping L2(0, T ) 3 V̂ 7→ w ∈ L2(0, T ; W) ∩ C0([0, T ]; X) is con-
tinuous.

Now we have all prerequisites to formulate optimality conditions.

Theorem 6.2 (Necessary optimality conditions). Let V ∗ be an opti-
mal control of problem (5.44) and let HV ∗ and EC,V ∗ be the associated
optimal magnetic and electric fields, respectively. Then the variational
inequality ∫ T

0

(−I0,∗ + ν V ∗)(V − V ∗) ≥ 0 ∀V ∈ Vad, (6.48)

has to be satisfied, where I0,∗ is the total current intensity passing at
time t through ΓJ in the direction of nC that is generated by the adjoint
magnetic field wV ∗. It is defined by

I0,∗(t) :=

∮
∂+ΓJ

wV ∗,I(t) · τ+
J .

Proof. We know that the optimal control V ∗ must obey the variational
inequality F ′(V ∗)(V − V ∗) ≥ 0 for each V ∈ Vad. The first two terms

at the right hand side of (5.45) with V̂ substituted by V ∗ and V sub-
stituted by V − V ∗ are

νH

∫ T

0

∫
Ω

µ(HV ∗ −Hd) · (H0
V −H0

V ∗)

+νE

∫ T

0

∫
ΩC

(EC,V ∗ − EC,d) · curl(H0
V,C −H0

V ∗,C) .

Using (6.46) with h = H0
V −H0

V ∗ gives

νH

∫ T

0

∫
Ω

µ(HV ∗ −Hd) · (H0
V −H0

V ∗)

+ νE

∫ T

0

∫
ΩC

(EC,V ∗ − EC,d) · curl(H0
V,C −H0

V ∗,C)

= −
∫ T

0

d

dt

∫
Ω

µwV ∗ · (H0
V −H0

V ∗)

+

∫ T

0

∫
ΩC

σ−1 curl wV ∗,C · curl(H0
V,C −H0

V ∗,C) .

(6.49)
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Due to the fact that wV ∗|t=T = 0 and that (H0
V − H0

V ∗)|t=0 = 0, we
have ∫ T

0

d

dt

∫
Ω

µwV ∗ · (H0
V −H0

V ∗) = 0 .

Hence, by a change of sign in this vanishing term and by taking into
account the symmetry of the bilinear forms, equation (6.49) can be
rewritten as

νH

∫ T

0

∫
Ω

µ(HV ∗ −Hd) · (H0
V −H0

V ∗)

+ νE

∫ T

0

∫
ΩC

(EC,V ∗ − EC,d) · curl(H0
V,C −H0

V ∗,C)

=

∫ T

0

d

dt

∫
Ω

µ(H0
V −H0

V ∗) ·wV ∗

+

∫ T

0

∫
ΩC

σ−1 curl(H0
V,C −H0

V ∗,C) · curl wV ∗,C

= −
∫ T

0

(V − V ∗)
∫

ΓJ

curl wV ∗,C · nC ,

having used (3.18) in the final equality. On the other hand, from the
Stokes theorem and the matching condition wV ∗,C×nC = −wV ∗,I×nI ,
as in the proof of (4.32) we find∫

ΓJ

curl wV ∗,C · nC =

∮
∂+ΓJ

wV ∗,C · τ+
J =

∮
∂+ΓJ

wV ∗,I · τ+
J = I0,∗ ,

and the result easily follows.

7 Some remarks on numerical approxima-

tion

In this section we only present how finite elements could be used for
the space discretization of the state and the adjoint problems. A more
detailed analysis will be the subject of a further research.

It is clear that an advantage of the proposed formulation (3.18) is
that the magnetic field H is looked for in the space W, whose ele-
ments w have to satisfy the constraint curl wI = 0 in ΩI . Therefore,
the number of degrees of freedom that are needed for the numerical
approximation in ΩI is less than that necessary for a standard approx-
imation of H(curl; ΩI).
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In other words, we know that in ΩI we have HI = gradψI +I0ρ, and
it is natural to discretize this vector field by employing as degrees of
freedom the nodal values of an approximation of the magnetic potential
ψI (plus the coefficient I0).

However, the explicit introduction of the magnetic potential ψI is
not required (in this sense, our method is simpler than that proposed in
[5]). In fact, it is much straightforward to furnish a discretization of W
by introducing a suitable finite dimensional subspace Wh ⊂W. This
can be easily done: let us give the description of all the basis functions
of Wh.

Let us denote by Nh the space of Nédélec finite elements of the low-
est order, and by Lh the space of piecewise-linear, globally continuous
Lagrange elements (see, e.g., [19, Chap. 5]). As it is well-known, the
degrees of freedom of Nh are given by the line integral over the edges
of the mesh, whereas the degrees of freedom of Lh are expressed by the
nodal values.

The basis of Wh is constructed in this way: for all the edges in
ΩC that have at most one endpoint on Γ we select the Nédélec basis
function associated to that edge; for all the nodes that are in ΩI , except
one, we select the gradient of the Lagrange basis function associated
to that node; for the non-bounding cycle in ΩI we choose a curl free
Nédélec element with line integral equal to 1 on that cycle (in a more
general geometrical situation, this must be repeated for all the non-
bounding cycles in ΩI). In [1, Theor. 3] and [2, Theor. 1] it is proved
that this is a basis of Wh.

A few additional words could be addressed to the way in which
the curl free Nédélec element with line integral equal to 1 on the non-
bounding cycle is constructed. In [1] it is shown how this can be done,
in any geometrical configuration, by means of an automatic procedure
that only needs the knowledge of the mesh of the domain. However, in
many cases the construction is more direct and, in fact, simpler: it is
enough to identify a surface Σ which ‘cuts’ the non-bounding cycle, and
‘double’ the nodes of the mesh on it. In this way the surface has two
sides, and the vector field we need is the gradient of the piecewise-linear
Lagrange interpolant taking value 1 on all the nodes on one side of Σ,
and value 0 on all the other nodes, including those on the other side of
Σ.
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The spatial discretization of the state problem (3.18) is simply

d

dt

∫
Ω

µHh ·wh +

∫
ΩC

σ−1 curl Hh,C · curl wh,C

=

∫
ΩC

σ−1JC · curl wh,C − (VJ − VE)

∫
ΓJ

curl wh,C · nC ,

(7.50)
for all wh ∈Wh and for almost all t ∈ (0, T ). A similar discretization
can be devised for the adjoint problem (6.46).

We can thus conclude that, with respect to other formulations of
the eddy current problem (say, in terms of the electric field E, or of
the magnetic vector potential A satisfying curl A = µH), the one we
propose is the cheapest one with respect to the total number of degrees
of freedom. Moreover, the algebraic structure of the finite element
stiffness matrix is quite favorable, as it is symmetric and positive semi-
definite; consequently, any implicit time-discretization scheme will lead
at each time step to the solution of an algebraic linear system associated
to a sparse, symmetric and positive definite matrix.
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provided them with the pictures.

References
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