Error estimates for the discretization of state
constrained convex control problems

D. Tiba* F. Troltzsch

1 Introduction

We study the following standard convex control problem

(P) Min [ {O(y) + (u)}d
governed by linear evolution equations
y +Ay=Bu+f  in]0,T], (1.1)
y(0) = yo (1.2)
and with restrictions on the control and on the state
ut)e K ae in[0,T], (1.3)
y(t)ye ¢ in[0,T]. (1.4)

We take U and V C H C V* compactly to be Hilbert spaces and the operators
B:U—-V* A:V — V* linear, bounded, such that

(Ay,y)vexv +alyly > Blyly, (1.5)

with certain > 0. Here, | - |x is the norm in the space X and (-,-)m, (-, )vexv
denote the inner product in H or the pairing between V' and V*. It is known that
one can take without loss of generality a = 0 by a simple changement of unknown
function. If yo € H, v € L*(0,T;U), f € L*(0,T;V*), the state system (1.1),
(1.2) has a unique solution y € L*(0,7; V)N W"'2(0,T; V*). In particular, it yields
y € C([0,T]; H), that is (1.3), (1.4) are meaningful.

We assume that K C U, ¢ C H are closed convex sets, © : H — Ry, v : U — R

are convex continuous mappings.
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Let us notice that some of the above hypotheses are imposed for the sake of simplic-
ity and are stronger than needed. For instance, ® may be nonpositive as well and
we can use in the subsequent proofs the fact that it is bounded from below by an
affine mapping, but this would make the argument quite tedious. The continuity of
© and ¥ may be required since we keep the constraints explicit and do not apply
the Moreau-Rockafellar technique to redefine 0,1 by +oo outside C, respectively
K.

Under usual admissibility and coercivity conditions, (P) has an optimal pair de-
noted [y, @] in C([0,T]; H) x L*(0,T;U). As it is well known, an interiority (Slater)
assumption is necessary in the setting of problem (P):

There is [g, @] admissible for (P) such that:
g(t) € int C, tel0,T]. (1.6)

By defining the new variables z = y — § and v = v — u and by shifting 0,¢, K,
it is an elementary calculus to see that one can take yo = 0, f = 0 and to replace

(1.6) by [0,0] is admissible for (P) such that
0€int C. (1.6)'

The notations C, K, 0, will be preserved and we shall fix f =0,y =0, a =0 (in
(1.5)) gy = 0,% = 0 throughout in the sequel.

Our specific assumption is that dv¢ : U — U is bounded and strongly maximal
monotone, that is 0 = al +7v,a >0, 1 : U — U, lu =wu, and v C U x U is
maximal monotone. This yields ¢ coercive and uniformly convex. Then the optimal
pair [7,u] exists and is unique. The standard example for ¢ satisfying the above
conditions is ¥(u) = I|u|f. As concerns the state equation (1.1), (1.2), we recall
that this is an appropriate model for distributed control problems or for boundary
control systems via Neumann or mixed type boundary conditions. The case of the
control acting via Dirichlet boundary conditions is not included in (1.1), (1.2) and
we quote the work of Lasiecka [6], where discretization error estimates are discussed
in the setting of the time optimal control problem without state constraints.
General control problems involving constraints both in the state and control are
studied in the paper by Alt and Mackenroth [2] by a different technique and under
different assumptions. A nonlinear case (without state constraints) is discussed in
the work by Pawlow [8], ch. 6. Our technique can be mainly compared with the
method of Malanowski [7], but uses the optimality conditions in subdifferential form,
not in the projection form. According to Barbu and Precupanu [4], the optimality of
[y, u] is characterized by the existence of p € L*(0,T; V)NL>(0,T; H)NBV(0,T;V*)
such that

—7 + A9 — 0lc(y) D 00(7) in 10, 7, (1.7)

p(T) =0, (1.8)



B(1) € dp(a(t)) + Ok (@(t)) a.cin [0,7T). (1.9)

In the proof of (1.7) - (1.9) the Slater condition (1.6) plays an outstanding role.
In the sequel, we shall construct the discrete analog of (P) and we shall study its
convergence properties, the maximum principle. This will yield finally the desired
error estimates.

The paper is organized as follows. In Section 2 we define the discretized problem
and we prove a first stability result. Section 3 performs the error analysis for the
finite dimensional approximation of problem (P). This is also the subject of the last
section, when we renounce the convexity assumption. Then second order sufficient
conditions have to be used and similar estimates are obtained.

2 Discretization

Let Vi, C V, U, C U be finite dimensional subspaces associated to the discretization
parameter A > 0 (with respect to the space variables in examples). The norms and
the scalar products in V;,, U, will be from H,U. Let R : H — V,,RY : U — U,
be some restriction operators (interpolation or projection operators specific to the
finite element discretization), such that R}|v, and RY|y, are the identity operators.
Define O, : V, — Ry, ¥, : Uy — R by

O, =0 |y, ¥, = | U, and the discretized constraints sets by

K, = RY(K), Cy=RIC + Su(0,s1)) (2.1)

where s, — 0 is some "small” constant to be precised later and Sx(0,s) is the ball
of center 0 and radius s in the space X. Let 7 = % be the time discretization step,
m € N. The finite dimensional optimal control problem is to find y = (y*)7L,,u =
(uF)r, in Vi x U

(Pr,r) Min 37, 7[O4(y"*) 4 ¢ (u”)]

yrH oy
(f#h) +a(y™, en) = (Bu™, op)vexy (2.2)
H

Vn € Vi, k=0,m —1
' =0€eV, (2.3)

e Ky, yteC, k=T,m. (2.4)

Remark It is possible to study this optimization problem as a finite dimensional
mathematical programming problem with equality constraints (2.2) and other con-
straints (2.4). However, we discuss (P ;) as an optimal control problem, since this
parallels the continuous case and is useful for the error analysis.



Remark The Slater assumption (1.6) or (1.6)’ remains valid in this setting "uni-
formly” with respect to A > 0. Namely,

Svh(o,p) cC, Vh>0. (2.5)
This follows since C, D [C' 4+ Sy (0,s.)]NVa D CNVy D Su(0,p) N Vi = Sy, (0, p)

due to the use of the same norm on Vj, as in H. Here, we have chosen p > 0 such
that Sy(0,p) C C according to (1.6)’. In particular, the pair [0,0] € V™ x U
is admissible for (P ;) and we obtain the existence of a unique finite dimensional
optimal pair

e Tnr € Vi x UP( or O x KT').

Remark We underline that throughout the paper we identify freely the vectors
from V) or U" with piecewise constant functions constructed on the given division
of [0, 7] from these vectors, with values in V},, respectively Uj,.

Proposition 2.1 The optimal pairs [§;, ,, U] are bounded in L*(0,T;V) N
NL>(0,T; H) x L*(0,T;U) with respect to h,7 > 0.

Proof: We obviously have

m

S 7 (0@ + (@ )] < T1O(0) +w(0)], (2.6)

k=1
since the pair [0,0] € C7* x K}* is admissible for (P ;) any h,7 > 0. As O is a
positive mapping and ¢, = 1|y, is coercive (with respect to h uniformly), we infer
that

m

ST wa |7, < et. (2.7)

k=1

Fix ¢p = yftl in (2.2) and compute the first term

SN R Ve B P
ZT - yYhr = Z |yhf |H (2-8)
H

k=0 k=0
1
= §|yhT|H’ 1§Z§m
Then, by (1.5)
1 l e
5 | yhT |H —I_ﬁZT | yhT S ];T (Buz,ﬂyi,r)v*xv (29)
I
2¢ ﬂ
< CZ [?T ki + 7 | yhT |v]
k=1
1 <1 < m, and the proof is finished. a

Remark On a subsequence, we have U, — u*, §,, — y* weakly in L*(0,T;U),
L*(0,T;V). Tt will follow later that [y*, u*] = [7,u], the convergence is strong and
on the whole sequence. This will be a consequence of the error estimates.
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3 Error estimates - First approach

We establish first the optimality conditions for (P ;), b and 7 fixed. We recall
that the continuous case is described by (1.7) - (1.9). Due to (2.5) and the specific
construction of Ky, C} some Slater type condition is valid "uniformly” with respect
to h > 0.

We start with a regularization of (P ;) defined by a penalization of the state con-
straint. For A > 0, we introduce

(P)) Min S, 7 [On(y") + In(y*) + u(u®)]
yhHl gk
(fﬂ%) +a(y*t on) = (Bu" pn)vexy  Viu € Vi, (3.1)
H

k=0,m—1

y’ =0, (3.2)

u' € Kp,k=1,m (33)
where

_ 2
]/\(y) = inf{%,v € Ch} .

Above I, is the Yosida regularization of the indicator function I¢, of Cj in V,,. We
denote by [7,, %] the unique optimal pair for (Py), which obviously exists. Define
admissible variations of @y by us = U\ + é(v — ) for any 6 € [0,1],v € K;* and let
ys be the solution of (3.1), (3.2) associated to us.

We have ys = 7, + 6(w —7,), w € V" being the solution of (3.1), (3.2) corre-
sponding to v. Then

i 04(T%) + L(@) + vn(@)] < (3.4)

=1

X

< 37 [ulr) + B0 + vl + a0 ).

The definition of the subdifferential and the Gateaux differentiability of I\ give

Sr (00n(yb), vt — T)m + (VINyE). vk — 7 (3.5)

k=

—_

+(@n(uf), uf —@)u] 2 0.



By the form of ys, us, (3.5) is equivalent with
> 7 [(@0n(h), w = Fh)m + (V5. w* =)+ (3.6
k=1
+ (O (uf), v — @)y ] > 0.

Clearly, ys — 7, us — @) strongly in V3, U, for 6 — 0. As Oy, 1y, I, are contin-
uous convex functions, then 90, vy, VI, are locally bounded. On a subsequence
we have 9vy,(u5) — a@h(yk) Opr(uf) — Oy (u), VI\(yF) — VI (7%) and we can
take 6 — 0 in (3.6)

S 7 [(00u(Fh), b —FH)u + (VLG b —7h)u + (3.7)

k=1
+ (0n(@h), o =) | >0, Vo€ K.

Define the adjoint system

—k+1 —k
p - P _ _ _
(%’Q‘Oh)[{_ a’<p§v99h) = (a®h<y§+l> + V[/\<y];+l>v99h)v vﬂoh € Vh? (3'8>
k=0,m—1,
py = 0. (3.9)

The existence of the solution for (3.8), (3.9) is obvious since the stiffness matrix
associated to a(-,-) is nonsingular due to the ellipticity condition (1.5).
Take in (3.8) ¢5 = w* — 7% and sum up over k

S [ =t — 7 - (@ Wk - )] =
:]

k
m wk _ wk—'l —k _ —k-1
S Y R e
! (3.10)
= Zr(p]; 1 Bv —BuA)VXv*
k=1
= ZT(B* TJk—ﬁ];>U.
k=1
Combining (3.10), (3.8) and (3.7), we get
Z T <a¢h (@) — B*p ", of — 71];) >0 (3.11)

k=1

for any v € K};*. Relation (3.11) gives the so called "maximum principle” for the
problem (Py) and is equivalent with

Bp\~t € dyn(ay) + 0l (@), k=T,m, (3.12)



where [k, is the indicator function of the convex set K in Uy. We recall that the
relations (3.12), (3.8), (3.1) form the first order optimality conditions for the problem
(Py). We shall establish some estimates with respect to A > 0, which will enable
us to pass to the limit A — 0 and to see the properties of the original discretized

problem.
First, we notice that relation (2.5) yields that

]/\([)’Uh> =0, Yu, € Vh, VA > 0, (313)

if | vy |v,= 1 and h < hg, which is a direct consequence of the Slater condition.

Proposition 3.1 There is p, . € V;™ such that il satisfies logether with 7, . and
Un,r the optimality conditions

Pre = Ph
(;W) — a(P} ., n) = (0OK(TH) + (3.14)
H
+a]0h<yi:t-l>’99h)Ha k=0,m—-1 ,Non € Vi,

pr. =0, (3.15)

B € 0un(ah) + 0L, (@), k =Tm. (3.16)

Proof We pass to the limit in (3.8), (3.9), (3.12) for A — 0 and &, 7 fixed param-
eters. By (3.13), we have

(VIA(_k+1) T+ th) > L(gEt) = L(—pup) = (3.17)
= IL(75) >0, Yo, € Vi,VA > 0,] v, [g= 1.

Take in (3.8) 5 = FiT' 4 pvy, with the above choice

o [B-mT k=1 —k

o7 [ 7?/A)H_G(Z7A_la%)] = (3.18)
k=1

7 -7
[(7)\53_71; ])H+a(yl/¢\7ﬁ§ ]>]

\]

= o> (Gvnad) + O, (), )

IN
2,
=
>

e
o
S
|

=
>

~—
=
> T
P



Here, we use that 0 € K by the original Slater assumption and the construction of

K. By (3.17), (3.18) and again (3.8), we obtain

sz_: [ P @ s UR)H — a(ﬁ’;_l,vh)] > (3.19)
> 37 [04() - Oulpun) + K3 + a(ah) — i(0)] 2

i [\I’h UA \I’h(o)—e)h(p'uh)] >

Obviously, as in the previous section, {@)} is bounded with respect to all parameters
A, h, 7. Since ¥ can be majorized from below by an affine function and © 1s locally
bounded, the constant ¢ in (3.19) is independent of X, 7, h. Applying (3.19) to (3.8),
it yields

[

> r(00u(TE) + VINGY), vi)m > — (3.20)
k=1

‘Q

Since h, 7 are fixed, the boundedness established in the previous section (which many
be extended straightforwardly here) shows that 7, — 7, _ strongly in L>(0,7T; H) as
A — 0. This is in fact some convergence of a vector sequence in a finite dimensional
space. As 00O is locally bounded, we infer that {90,(7%)} is bounded in H for
k=T,m and X > 0. By (3.20), this is also true for {VI\(75)}, k = T,m, X > 0. Let

us now choose ), = p§ in (3.8)

m—1 —k+1 . p -
T( Aaﬁﬁ) Z[ 7p]/€\ H_|p/\ |H]S
k=1 H k=1
- ]
<SS [Lime - L] = A
k:
Since a(p5,p5) > B | p5 |2> 0, the above inequality gives
1 m—1
_5 kZ:l T aGh —k+1 +V]A( k+1) 2—)1;+1) 2
m—1
> (— max |5 1) X0 7| VI + 00u() |
1<k<m p
Due to (3.20), where v, may be choosen
vn = (004(3) + VI\(@2))/ | 004(73) + VIV |,
we obtain
1 — 2 =k
5 | Py [5< Clg}gﬁ | X 1, V=1, m, (3.21)



where ¢ is independent of A h,7. Let ky € {1,2,...,m} be the index where the
maximum occurs in (3.21). Fixing [ = k), we can write

1 2
— <
2<1<k< 7 |H> ¢ o 17 I

and we see that {p,} is bounded with respect to A, h, 7 in L>(0,T; H). Taking into
account the coercivity of a(-,-), we also see that {p,} is bounded in L*(0,T;V).
Since h, 7 are fixed it is very easy to pass to the limit in (3.8), (3.9), (3.12) and to
get (3.14) - (3.16). We use the demiclosedness of the subdifferential as well. O

Remark As it has been pointed out in the above proof, some of the estimates
are independent of A, 7 > 0 too.

Denote:
z = B'p— 0¥(u) € 0lx(u), (3.22)
Zpr = B*ﬁh,ﬂ' — 8\Dh(ﬁh,7) € 8[;%(%“7), (323)

where the sections of the multivalued mappings occuring in (1.9), respectively (3.16),
are taken into account. We have

Z+0V(u) — Bp = Zpr + 0V (Un,) — By, =0 (3.24)
for a.e. ¢ € [0,T] and with the same remark as above. Denote w**!

k =0,m — 1. Define g, ;, 7, > by

k+1 k
(qh T qh,T

= U\ Jr, (h4+1)7]5

T

,%) —a(gf 1 on) = (004} +0Ic, (rfH), soh) ; (3.25)
H

k= 0,m—1,Vp, € Vj,

it ok 1 (k+1)7
ua@ + a(rftl,goh) = _B/ Ek-l-l dtasoh ) (326>
T H T kT VsV
k= 0,m—1,Vp, € V3,
q;Z’,LT = O’T?L,T = 0 : (327>

Here we should notice that the distance | r;, — 7 |C([07T];H) is supposed to be small.
This defines the constant denoted (without mention of 7) by s, in (2.1). Then r} . €
Cj, and (3.25) is meaningful. The choice of the elements in a@h(ritl) a](;h(ri";l)
will be specified in the last Remark. We establish some important 1nequalitles

T
—/ (B*pm — B*qy.., Up — H) di = (3.28)
0 3 1 1 13

- z"’: T (ﬁi,rl —qn;', Buy , — Bﬂk)

Vxv*
k=1



m —k —k—1 k k-1
_ Z Ynr — Ynr Thy " Thr ko1 k-1
- = T - - yPhyr — Gy -
H

k=1 T
m
—k ko —k-1 k—=1Y __
- Z Ta (yhﬂ' “ThroPhyr — Ghr ) -
k=1
m k-1 —k k=1 2
_ —k k ph,ﬂ' - ph,ﬂ' qh,ﬂ' - qh,f
= —ZT Yhr = Thyrs - - - -
k=1 H

m
Z —k B —k—1 =1\
- Ta\Yhr — ThyroPryr — Guyr | =

k
= Z T(?i,r - rZ,T? 8®h@]}i,f) + a]Ch (yi,ﬂ') -
k=1

—00u(ry, ) = A1¢, (rh )i > 0,
due to the monotonicity of 90; + dl¢,.

T
/0 (O, () — OV(@), s — 1), di = (3.29)
T
= / (0V () — OV(0), Tp,r — )y di +
0
T
+/ (0 (T, ) — OV (Tp,r ), Tp,r — W)y dt >
0

> (1/0 | Upy — |G dt —epy | Uy — T 220,73y -

We have used the strong monotonicity of 0¥, and e » is some error term ey, ; :=
| OV (Un,r) -0V (Un,-) |22(0,my)- If W is some elementary convex function, we may

have e;,, = 0 in (3.29).

The last inequality we use is the following
T T
/ (Zhr — Z, U,y — W)y dt > / (Zhyr, Unyr — W) dt = (3.30)
0 0
T T
= / (Zhry Wy — Ry W)y dt + / (Zh-, RYw — @)y dt >
0 0

T
> /0 (Znm RYT =)y dt > =&y, = —c | RYT— T |1200707) -

Above, we have applied (3.22), (3.23) and the definition of the subdifferential. The
last inequality is given by the interpolation error | RYw —u |22 (0,r37) and the boun-
dedness of (3.23) since the term {0W(up )} is bounded by the boundedness of
{us,- } established in section 2 and the assumption that 0¥ is a bounded operator.
The term {B*p,, .} is bounded in L*(0,T;U) for h,7 > 0 by the estimates from the
proof of Proposition 3.1.

Theorem 3.2 We have the estimate

1
| Uhr =T 120700~ OWa(Whr) = OV (Wnr) |r2o,mer) + (3.31)
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Proof The inequalities (3.28) - (3.30) give

T T
/0 (Zhyr — 2, Up,r — Wy dl — /0 (B*Phr — B Ghyrs Unyr — Wo dt +

T T
+ [ @it = 00, — [ -
0 0
“Chyrr | ﬁhﬂ' —u |L2(0,T;U) _éh,r-

That is, we obtain, due to (3.24), the following

afy |Tne =T} dt <eps | Tnr — T 120070y Henet | Ui — T |12007m07) -
| Zhy —Z = BPy, + B quy + 0Vi(a) — 0V(4) |120,m30)
= enr | Unyr — U |2010) + Enet | Une — T |200,150) -
| B*p — B*qi, |L2(0,T;U) .

We have taken a¢ <1 without loss of generality. O

Remark All the terms in the right-hand side of (3.31), except one, depend of
various interpolation error of @, dW, that is on the regularity properties.

If U(u) =1 |ulf then

2

8\Ilh(m77) — 8\II(U;L7T) = 0,

and sufficient regularity is available for @ in some simple cases (Malanowski [7], Tiba
and Neittaanmaki [9], ch. V.1.).

The term | B*p — B*qy » |L2(07T;U) includes the discretization error for the linear
parabolic equation. Moreover, one has to fix the section of the multivalued right-
hand side in (3.25) such that | 00(y) + dIc(y) — 0OL(rh,) — Ole, (1h,r) |[12(0’T;H) is

small. Similar considerations for 90U can be made in this setting as well.

4 Error estimates and sufficient second order op-
timality conditions

The theory of the preceding sections relies heavily on the linearity of the state-
equation and the convexity of the objective. If one of these basic assumptions
is not true, then (P) behaves totally different. To derive error estimates, second
order optimality conditions may be helpful in this case. We mention the results by
Alt [1] with application to control problems governed by nonlinear ODE and the
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convergence analysis of Troltzsch [10], [11] for nonlinear parabolic boundary control
problems.

In this section, we shall discuss the error analysis for problems, where © is nonconvex
while the equation of state is still linear. We are able to derive similar results for
semilinear equations, too. However, the presentation would be much more technical.
For the same reason, we omit the state constraint (1.4) setting C' = H. Further, K is
required to be a bounded convex set of /. Then feasible controls u are automatically
uniformly bounded.

We assume © and ¥ to be twice continuously Fréchet differentiable on V' and U,
respectively. Moreover, we assume that

Fly,u) = [10(y(0) + W(u(t))} de

is twice continuously Fréchet differentiable on L*(0,7;V) x L?(0,T;U) for some
p € [2,00). It should be underlined that these requirements of differentiability are
often too strong, in particular for parabolic control problems in domains of higher
dimension. Then we must work in a dense subspace LOO(O,T;V) X LP(O,T;U),
where F'is sufficiently smooth. However, the discussion of the corresponding two-
norm technique would go beyond the scope of this paper. We restrict ourselves to
explain the main ideas in a simplified setting.

Let rg denote the second order remainder term of ©,

N | —

Ay, ) = 5 [(0"(y + sh) = ©7(y)[h, K]ds.

Analogously, r3 is defined. In order to cope with the well known two-norm discrep-
ancy we assume that

T
im0 p0) | e[y 1o =0 (4.1)

[lyllzeo(0,7;v)—0 0

and
T
tim [ @@, um) | de 1o =0 (+:2)
[lullzp0,7;0)—0 )

The equation of state must be well posed in C'([0,7]; V) x L?(0,T;U). This means
higher regularity of solutions to parabolic equations. We refer, for instance, to
Amann [3]. In our setting, we require the continuity property that the mapping u +—
y assigning the state to the control is continuous from L?(0,7;U) to C([0,T]; V).
The parameter p must be chosen sufficiently large to enhance this property. Let
[y, u] be optimal for (P). The existence of an optimal pair can be shown under
additional assumptions, among them the convexity of W is most essential.
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We just assume that [y, u] is feasible for (P) and satisfies the optimality conditions
(1.7) - (1.9). Owing to the differentiability of U and ©, they simplify as follows:
The adjoint state p € Ly(0,T; V)N W20, T; V*) solves the adjoint equation

p'(t) = A™p(t) = ©'(y(t)), p(T)=0 (4.3)

(note that ©'(y(-)) € C[0,T;V*]). The control u satisfies the variational inequality

/0 C(WE(0) = BB, u(t) = T dt > 0 (4.4)

for all w € Ly(0,7;U) such that u(t) € K a.e. on [0,T]. (4.3) - (4.4) form the
standard, expected system of first order necessary optimality conditions. To derive
them from optimality is not an easy task in the nonconvex case. Moreover, [y, ] is

supposed to fulfil the following second order condition:
There is a 6 > 0 such that

T
SO GDl(),y(W] + U (u(t))fu(t), u(t)]} dt (4.5)
> oy 17, 0mm + T ulli,orm)
for all y, u solving the parabolic equation

y'(t)+ Ay(l) = Bu(l)

y(0) = 0. (4.6)

Proposition 4.1 If [§,u]| salisfies the first order necessary optimality conditions
(4.3) - (4.4) together with the second order condition (4.5) - (4.6), then [y, u] affords
to ' a strong local minimum in the following sense:

There is a constant r > 0 such that

F(yau’) > F(ﬁ,ﬁ) (47>
for all [y, u] solving (4.6), u(t) € K a.e. [0,T], and || u — ||zp@,r0) <7

Proof We have

Fly,u)= [{0(y(1) + W)k dt + [(B(1). /(1) + Ay(t) = Bu(t))vxv- dr
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for [y,u] satisfying (4.6). Owing to our continuity assumption, [y,u] and [y, 7]
belong to C([0,T]; V) x L?(0,T;U), where F is supposed to be twice continuously
differentiable. Hence, by a Taylor expansion

Py, )= [{O((1)) + Y(@(0)} i + [(3(1),7(1) + A(1) — Ba(i)) vy di
+ g{(@’(y(t)), y(t) —g(t))vexy + (V'(T(t)), u(t) —w(t))uxwv} dit
+ 0, (0~ 7)) + Aly ~)0) ~ Blu—D)O)ver- di

(OGNl - 70, (v~ D)0
() (= )2, (= ()]}
+ TR, (0 = D)0) + @), (= w)(0))} d

_F(,T) + (jJT"(\I/’(ﬂ(t)) _ BB(), u(t) — (1) e di
OGO+ @)}

T
I {rd + 1) de
0

PN

by (4.3) and the state-equation for [7,u]. Taking advantage of (4.4) and the second

order condition (4.5) - (4.6), we continue

Fly,u) > Fg, @)+ 1y =7 L 0mm T e =7, 000)) -
S T
5+ [{rg+riyd- U1y =7 Wsomm + 1w =710 r0) ™)
0

By (4.1) - (4.2), the part [...] is greater than §/4 provided that r is sufficiently small.
This proves the assertion. O

Remark Proposition 4.1 shows, why p < oo is supposed. The choice p = oo
would restrict the neighbourhood of optimality of @ to functions u having exactly
the same jumps as @ (provided there are some).

Next, we shall analyze the convergence of discretized solutions [7, ., @5 -] to [7,7].
Since [7,W] is only locally optimal, we can expect this convergence only in a suffi-
ciently small L>(0,7T; V) x L?(0,T; U) - neighbourhood N of [y, %]. In the following,
this neighbourhood N is fixed, independent from h and 7. A pair [g, _, @ ] is said
to be optimal for (P, ;) in N, if [, _, @, .| affords to F' the minimum among all pairs
being feasible for (P ;) and contained in N.

We need the following functions on [0, T']:

As before, 77, (1) = ¥y . and Wy, (1) = u; . on Jtg_y, 1],k = 1,...,m. Moreover we

14



introduce

. 1 _ ke
hrr(t) = = / Ri/p(t)dt = p " on [tior, ti]
te—1
1
o) = - / RVT(t)dt = @t . on Jtey,y]
7— b
tp—1 )
Ine(t) = Tir + (L= te1)@hr = Thy') o0 [le-rs ]
. AT N e
phﬂ'(t) = pZ,Tl + ;(t - tk_l)(piﬂ' - pi,fl) on [tk—17tk]7
k =1,...,m. Note that §; . and pj, are piecewise linear and continuous functions,

while pp -, ¥, -, and W - are step functions. We further mention that

NE

Fuo(ynruns) = 2 7(0(yy ) + U(u ;)

1

{0(ynr(1)) + W(un (1)} dt = F(yn,z,uns)

Il
O\Hﬁ‘

for step functions y; - and wuy ;.

Proposition 4.2 (Upper estimate): Let [y, ,,Tn s be optimal for (Py ;) in N. As-
sume that [§n -, up | belongs to N for all sufficiently small h and 7, where gy, . is the
solution of the discrete system (2.2) - (2.3) associated to tp, ;.

Then a constant ¢ > 0 exists, which does not depend on h and 7, such that

Frr(Thrs nr) < F(@,@) + (| T = G sy + [ @ = s |n,0m07) (48)
for all sufficiently small h and 7.

Proof: By definition of K}, we have 1y (1) € Kj for all ¢, hence 1y, is feasible
for (Puyr). As [gnr, tnz] belongs to N, we have Fy (Fy,,Unr) < Fur(Jhrs tnr).
Hence

m

Fhe (T ins) <03 7{O(Gh,,) + (a5 ,)}

1

{0 (1) + W(iin- (1))} i

o~
Il

[0(1) + ()}t + [{0-(1) — O (1))} dr

{W(an- () — (u(t))} dl

@.7%) + el 7 = s llraorwy + 117 = tnr [lno,m0)

IN

Il
Pt — g T T

15



owing to the Lipschitz property of ©® and W. O

To apply this estimate we need [§ -, U ;] — [7,7] as h — 0,7 — 0. This property
holds provided that % is sufficiently smooth. Moreover, we should mention that (4.8)
implies the same estimate in any L,-norm, ¢ €]1, oc].

Let e(h) denote the one-sided distance of Kj to K,

e(h) = sup (inf || v — uy |v).

Up EI{h uE A

Proposition 4.3 (Lower estimale)

a)  Suppose that [y,u] satisfies the first order condiltions (4.3) - (4.4) together
with the second order condition (4.5), which is assumed to hold for all [y,u] €
Ly(0,T; H) x Ly(0,T;U) (strengthened second order condition). Let [y, .U, -] be a
solution of (Pyr) in N C L=(0,T;V) x L?(0,T;U) having a sufficiently small
diameter r > 0.

Then constants ¢ > 0 and o > 0 exist, which are independent from h and 7, such
that

Fre(Thyrs Unr) = F(?v @)+ (| Gor = 7 iso,mm) + | Trr = @ 17, 0,707)

B } B (4.9)
—c(e(h)+ || —(p;” —P) oy + | Prr — P lny0,1:v))-

b)  Let the same condilions hold as above with the exception thal (4.5) is only
required for all [y, u] salisfying the linearized equation (4.6). Then analogously

Fh,T(yh,ﬂ"ﬂh,T) > (410)
> F@) + ol U, =T o + 1 T — T 7,000
d . _ . _
—cle(h)+ || = (Prr = D) o + |1 e = Pllnio1iv)

+ W ine =7 a0mm + 1 nr = T lzaomim)

holds.
Proof:
a) Adding a zero to Fj (7, ,,Tn,r) we get
Fre(h s Uny) = F(GhrUn,r)
zﬂmmmﬂ-+§:{ﬁfg‘ ~ T D
+ (y;mp;” ) — (P}, Bu) v*xv} (4.11)

= PG, tns) + /{ ners T (D) + (T (1), (1)

—<Fﬁammammwyw
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Here we took advantage of the simple calculation

m . B L m 1 . -
> (o 717 ~@hr = T N = 2B = Bhs) Wi
k=1 k=1

Rewriting the integral in (4.11) we find

/{ i = /{ (~5(1) + AP0, T ()

—(B™P(t), Unr (1)) oex } dl + Ri,

where
T
d . _ . o
Ry = / {(_E(phﬂ' =)+ A (Pryr = D)5 Upr)vexv — (B*(Pr,r — P)s Un,r) U*xU}dt
0
Hence
T
/{} dt = p + A payhﬂ' - y)V*XV - (B*ﬁ7ﬁh,7' - H)U*XU} dt
0

{(-
{ P+ A*p,Y)vexv — (B, ) U*xU}(]f-I-Rl
{-o

_|_
O T T T

— y)V*XV — (B*}_), Up,r — ﬁ)U*XU} dt + Ry

by means of the adjoint equation (4.3) for p and the equations (1.1) - (1.2) for g
(note that yo = 0, f =0 ). To insert (1.1) - (1.2), an integration by parts must be
performed under the second integral on the right hand side. Now we return to (4.11).
After a Taylor expansion around [y, u] we continue inserting the final expression of

T
[{.Ydtin (4.11)

Fh’vT (yhﬂ" ﬁhﬂ’)
= F(yv ﬂ)

~ O
o -
— @
< <
— —~
= =
el —
o~
2| ~—
> ~——
B =)
= 3
~— bl
—~
| o~
~—
=
o~
~— =2
o~
=" ~—
~ 3
<
>~
4
—~
o~
~—
|
<|
—
o~
~——
QL
~

~
N
=
—~
o~
~—
~—
~—~
=
>

(1) — (1)) di (1.19)

+ + 4+ o+ o+
O%H e
<
—
=
—
o~
S—
S—
=
>
B
—~
o~
S—
I
=
—
o~
SN—
=
>
Bl
~~
o~
S—
—
=
&.
o~

O Oy NI O 3Oy =

~
(O™
~~
I~
N
o~
SN—
<
B
)
P
o~
SN—
|
<
P
o~
SN—
SN—
QL
o~



(the parts containing @ disappear by opposite signs). Let wuy (1) be the function
with values in K realizing the distance between uy, , (1) € K} and K.
Therefore,

|| up-(t) —Un-(t) [|v <e(h) a.ein[0,T]

and

/T — B, w0 - 7)), / — BU(t), uno(1)—

(1), dt+/ — BB, W () — o (1)),
> —ce(h)

by the variational inequality (4.4). Invoking the strenghened second order condition
we conclude

Foe(UprsUny) > F(y,u) + 2{1| 91, — ¥ ||%2(0,T;H) + || @, — @ ||%2(0,T;U)}
T
+ [{rd+ri}dt+ R — ce(h)
0

T
= F@0) + {1 9, =7 oo + | Tr =T, 00} - {5 + ({("‘% +rg) dt-
W nyr =7 Woormm + 1 e =T |7,070)) 7'} + B — ce(h).

The functions 7, . and @ ; belong to a bounded set of L>(0,7;V) and L*(0,T;U),
respectively, as N and K}, are bounded. Therefore,

—c(]] o (th =) llzarvey + | P — P |2 0,7v))- (4.13)

If r is sufficiently small, then the term in braces is not less than /4 by (4.1) - (4.2).
Owing to (4.12), this proves the part a) of our assertion, where o = §/4.

b) In case (4.5) holds only in the weaker form, we are not able to estimate ©” and
U" directly, as [7;, ,,Un, -] does not satisfy the linearized equation (4.6).

Let ¢4,-(¢) denote the (continuous) solution of (4.6) associated to the discrete optimal
control function @y, ;.

Initiating from (4.12), we substitute ¥, . = yar + (5., — Un,r) in the part connected
with ©". Then, g, —¥ satisfies the linearized equation, while i, . — gy, - is expected
to be small. Arguing as before,

_ o, O _ _ _
Fhﬂ'(yh,ﬂ'?uhﬂ') 2 F(?/;“) + 5{” Y — Y ||%2(0,T;H) + || Tn,r — ||%2(0,T;U)}

+/{7~g +r2Vdt+ Ry — e(h) + R,
0
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where

Ry > —c || gnr — T, ||%2(0,T;H) —c || Gnr = Tnr oo,y - (4.14)
Next, we re-substitute 75, = 7, . + (Jn,r — ¥p,) in the norms standing with 6/2.
Finally, we arrive at

Fror(GhesUnr) 2> F@0) + 51 9nr = 7 10 + 1| Thr =T E 000}
T
+ [{ré +ry}dt + R —e(h) + Ra.
0

Now we are able to finish the proof completely analogous to the further arguments
of a). O
As an immediate conclusion we obtain the

Theorem 4.4  Let the assumptions of Proposition 4.2 be fulfilled together with
those of Proposition 4.3 a) or b), respectively. Then

| Thyr =7 ||%2(0,T;H) + || Wy — T ||%2(0,T;U) < R(h,T),

where

R(h,7) = R,(h,7)
= c(e(h)+ || & Pnr —P) vy + |l P — P llis 01w
+ 17— s vy + 1| @ = s o, 0,100))

in case a) and

R(h,7) = Ra(h,7) + eIl Gnr = Tnr Wporry + 11 9nr = T ooz,

in case b), where ¢ > 0 does not depend on h and .

Proof The result follows from combining (4.8) with (4.9) and (4.10), respectively.

O
Remark We should underline, that in case b) an error estimate for the distance
of yn,- to 7, . is necessary, although % ; is given as a (nonsmooth) step function.
To make this result useful, the discretization in time of (1.1) with respect to y(¢)
should be finer than that for u(¢). Then the theory can be developed similarly and
ends up with the estimate of Theorem 4.4.

5 Example

Let us now regard a slightly changed situation. We delete the state constraints (5.5)
and consider the minimization of the functional

/Qﬁ(:c,y(t,:c))dxdt+%/Qif(t,x) dzdt. (5.1)
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Here, ¥ = J(x,y) is real-valued and twice continuously differentiable on Q x IR with
respect to y. We assume 2 C IR to have the continuous embedding V = H}(Q) C

C(€Q). The functional 8 in (P) is

o(y) = [ H(a.y(x))da.

f is twice continuously Frechet-differentiable on V. The same holds true for the
functional (5.1) on C([0,T]; V) x Ly(0,T; H), where H = Ly(Q). We assume that a

feasible pair [7, ] is given such that the condition
Dy (2, (1, 7)) > 6 > 0 (5.2)

holds for almost all (£,z) € Q. Then
L 0", k(] dt = [§ Jo Oy (e, 5(t, 2))h* (¢, 2) dedt

8NP, 0,750y

(5.3)

AVAN|

hence the strengthened second order condition is satisfied with 6 = min(6’,1/2).

From @ € Ly (Q) we obtain §y € C(Q) by parabolic regularity, thus 9,(z,y(t, z))

belongs to C(Q), too. Therefore, the solution p of
—p'=Ap = 9,(9) in ()
p(T,-) = 0 in () (5.4)
p = 0 on X,

belongs to H'(Q). Repeating the same arguments as before, the regularity @ €
H(Q) is obtained.
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