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Abstract. This paper deals with a class of optimal control problems governed by elliptic equa-
tions with nonlinear boundary condition. The case of boundary control is studied. Pointwise con-
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1. Introduction. In contrast to the optimal control of linear systems with a
convex objective, where first order necessary optimality conditions are already suffi-
cient for optimality, higher order conditions such as second order sufficient optimality
conditions (SSC) should be employed to verify optimality for nonlinear systems. SSC
have also proved to be useful for showing important properties of optimal control
problems such as local uniqueness of optimal controls and their stability with respect
to certain perturbations. Moreover, they may serve as an assumption to guarantee
the convergence of numerical methods in optimal control. In this respect, we refer to
the general expositions by Maurer and Zowe [15] and Maurer [14] for different aspects
of SSC. The approximation of programming problems in Banach spaces is discussed
in Alt [2]. Moreover, Alt [3], [4] has established a general convergence analysis for
Lagrange—Newton methods in Banach spaces.

Meanwhile, an extensive number of publications have been devoted to different
aspects of SSC for control problems governed by ordinary differential equations. The
well known two-norm discrepancy has in particular received a good deal of attention.
We refer for instance to Ioffe [13] and Maurer [14].

First investigations of SSC for control problems governed by partial differential
equations have been published by Goldberg and Troltzsch [11], [12] for the boundary
control of parabolic equations with nonlinear boundary conditions. In [9], Casas,
Troltzsch, and Unger have extended these ideas to elliptic boundary control problems
with pointwise constraints on the control. Moreover, they tightened the gap between
second order necessary and sufficient optimality conditions. This was done by the
consideration of sets of strongly active constraints according to Dontchev, Hager,
Poore and Yang [10]. This technique is also related to first order sufficient optimality
conditions introduced by Maurer and Zowe [15]. Tt should be mentioned that as many
as four norms have to be used in this case (L°°-norm for differentiation, L?-norm to
formulate SSC, L'-norm for the first order sufficient optimality condition, and certain
LP—norms to obtain optimal regularity results).
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F. Bonnans [5] has shown that a very weak form of second order sufficient condi-
tions can be used to verify local optimality for a particular class of semilinear elliptic
control problems with constraints on the control: If the second order derivative of
the Lagrange function is a Legendre form, then it suffices to have its positivity in all
critical directions.

In our paper, the results of [9] will be extended to additional constraints on the
state. In this way, we are continuing the investigations by Casas and Troltzsch [8] on
second order necessary conditions. We also rely on general ideas of Maurer and Zowe
[15] combining their approach with a detailed splitting technique.

At the beginning, we aimed to establish second order sufficient optimality condi-
tions for boundary control problems governed by semilinear elliptic equations in do-
mains of arbitrary dimension with general pointwise constraints on the control and the
state. However, we soon recognized that pointwise state—constraints lead to essential
and somewhat surprising difficulties. To establish second order sufficient optimality
conditions for problems with pointwise state—constraints given on the whole domain,
we had to restrict ourselves to two—dimensional domains with controls appearing lin-
early in the boundary condition. These obstacles might indicate some limits for the
”traditional” type of SSC for control problems governed by PDEs.

If pointwise state—constraints are imposed on compact subsets of the domain,
while the other quantities are sufficiently smooth, then arbitrary dimensions can be
treated without restrictions on the nonlinearities. In this case the adjoint state belongs
to L (T'). Moreover, we are able to avoid the assumption of linearity of the boundary
condition with respect to the control by introducing some extended form of second
order optimality conditions.

2. The optimal control problem. We consider the problem: Minimize the
functional

(2.1 Fo(y, u) I/f(l‘,y(l‘)) dl‘-l—/g(w,y(w),u(l‘)) dS(x)

subject to the equation of state

(2.2) { —Ay(z) + y(?g = 2 in Q

to the constraints on the state y

(2.3) Fily) =0, i=1,...,m,
E(y) € K,

and to the constraints on the control u

(2.5) uq(z) <wu(z) <up(z) a. e onT.

In this setting, & C R™ is a bounded domain with a Lipschitz boundary I' according to
the definition by Necas [17]. Moreover, sufficiently smooth functions f: Q@ x R - R
and g,b : ' x B2 — R are given. The symbol 8, is used for the derivative in the
direction of the unit outward normal v on I'. The functionals F; : C(Q) — R,
i=1,...,m, are supposed to be twice continuously Fréchet differentiable, that is to
be of class C%. By E we denote a mapping of class C? from C(fQ) into a real Banach
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space Z. K C 7 is a non-empty convex closed set, and u,, uy : T — R are functions
of L (T') satisfying u,(2) < up(z) on T.

The control u 1s looked for in the control space U = L°°(F_), while the state y is
defined as a weak solution of (2.2) in the state space C'(Q) N H'(Q) = Y, that is

(2.6) (VyVv+yv) de = [ b(-,y,u)vdS VYo € H'(Q).
/ /

We endow Y with the norm ||y|ly = ||y||C + |||z (). The following assumptions
are imposed on the given quantities:

(A1) For each fixed ¢ € Q or T, respectively, the functions f = f(z,y), g =
g(z,y,u), and b = b(z,y, u) are of class C? with respect to (y,u). For fixed
(y,u), they are Lebesgue measurable with respect to 2 € Q or z € T', respec-
tively.
Throughout the paper, partial derivatives are indicated by associated subscripts. For
instance, by, stands for 82b/dydu . By b/(z,y, u) and b"'(z, y, u) we denote the gradient
and the Hessian matrix of b with respect to (y, u):

e _ by(:r,y,u) " _ byy(ma1:u) byu(a:,y,u)
b(‘rjlju_) - <bu(l‘,1,u) ) b (I)y)u) - buy(a?;y;u) buu(l‘;l;u) )

|b'| and |b"| are defined by adding the absolute values of all entries.

In the next assumption, fixed parameters p > n — 1 and s, r are used, which
depend on n. For the possible (minimal) choice of s and r we refer to the discussion
of regularity in (3.13). Roughly speaking, we have y|p € L*(T) and y € L (Q) in the
linearized system (2.2), if u € L?(T'). As usual, s’ and r’ denote conjugate numbers.
For instance, s’ is defined by 1/s" +1/s = 1.

(A2) For all M > 0 there are constants Cps > 0, functions \II}VI € L(’“/Q)I(Q),
\Iléw’l € L(S/Q)I(F), \112472 € LQ(S/Q)I(F), \119473 € L*(I'), and a continuous,
monotone increasing function n € C(R* U {0}) with 5(0) = 0 such that:

(1)
(2.7) by (2, y,u) <0 a.e. €, VY(y,u) € R

b(-,0,0) € LP(T), forap >n—1,

|bl($: Y u)l + |b”(;13,y,u)| < CM;

6" (2, y1,u1) = 0" (@, ya, us)| < Car n(lyr — yal + |ur — us)
for almost all z € T' and all |y|, |ul, |y, Ju;)| < M, i=1,2.

(i) f(-,0) € LY(Q), fy(-0) € L7(Q), fyy(-,0) € LI/D'(Q)
| fyy (2, 91) = Fyy (2, y2)| < OY (@) nlyn — y2))
forallz € Q, |lyi| < M,i=1,2.

(iii) g(-,0,0) € L'(I), g (,0,0) € L*(I), gu(-,0,0) € L*(T),
9yy (-,0,0) € LEDT), gyu(-,0,0) € L2/D'(T), guu(-,0,0) € L=(T)
(here, - stands for z)
lgyy (2, y1,u1) — gyy (2, y2, u2)| < W (@)n(|y1 — | + Jur — ual)
lgyu (2, y1,u1) = gyu(z, y2,ua)| <O (@) (|ly1 — ya| + |u1 — ual)
(

|guu (2, y1, u1) = guu (2, ya, ua)| < W3 (@) n(|yr — yo| + w1 — ual)
for almost all z € T and all |y;| < M |u;| < M.
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RemARK 2.1. Notice that the estimates in (1)-(iii) imply boundedness and Lip-
schitz properties of b, f, g,V f', g’ in several L—spaces. We omit them, because they
follow from the mean value theorem.

(A3) (i) Let us define the norm

yll2 = [[yllecay + [luller @) + lyllz=r)

for y € C'(Q), where A C Q is a certain measurable compact subset. Here
A stands for a set, where we know y € C(A) for Neumann boundary
data given in L%(T). In the case n = 2 we may take A = Q, while A C Q
is needed for n > 2. For A = ) we put [|y[|c(a) = 0.
We assume at a fixed reference state ¥ € C'(Q) that

|F{(@)yl < Crllyll2 Yy € C(Q)
|E (@) y1, vall < Crllyillzllyall2 Yyi,92 € C(Q)

holds with some Cr > 0. Moreover, we require with a Cay > 0

|F{(y1)y — Fi (y2)y| < Curllyn — y22]y]]2
|(F{"(y1) = Fi'(y2) Iy, vl < Cur nlllyr — welle ) llvllzllvll2

f.or all y; with ||y]-||c(5) < M,j=1,2, al y, v from C(Q), and all

i=1,...,m.
(ii) Analogous assumptions are imposed on E : C(Q) — Z, where || - || is
to be substituted for | - |. For instance,

I @)yllz < Crllyll. Yy € C(Q)

is supposed.

We shall explain the main constructions of our paper by the following canonical ex-
ample (P) that fits in the general setting:

1 «
5/(3/— ya) dx + §/u2d5

Example (P) Minimize

Q r
subject to
-Ay+y=0 in Q
dyy=u—y> onT
and

lul <1 y(0) <o

in the open unit ball @ C RB? around zero, where o > 0, yo € R, and yg €
L () are given. Here, we have 7 =R, K = R™, A = {0}, F(y) = y(0) — yo,
and we need y € C(Q) to make F well defined.
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3. The state equation, first order necessary optimality conditions. It
can be shown that the equation (2.2) admits for each u € U a unique weak solu-
tion y = y(u) € Y, where Y9 = {u € L®°(T) |uy(z) < u(z) < up(z) a. e. on T'}.
Moreover, there is a constant M such that

(3.1) ly(u)lly <M Yueu™.

In particular, it holds HyHc(ﬁ) < M. Casas and Troltzsch [8] have proved that the
mapping u ~ y(u) from L°°(T) into Y is of class C?. Furthermore, the Lipschitz

property
ly(ur) — y(u2)ll2 < Collur — us||rz(r)

holds for all uy, us € U, where Cy is a positive constant and || - ||z is defined in
(A3). For fixed u € U we have b(-,y,u) € LP(T), hence the weak solution y € Y of
(2.2) belongs to the space

Yop={ye H'(Q)| —Ay+y e LYQ),d,y € LF(I)},

which is known to be continuously embedded into Y = C(Q)NH' () for each ¢ > n/2
and each p >n — 1.

In all what follows we assume that a reference pair (7,7) € Y x U is given,
satisfying together with an associated adjoint state p € W17 (Q), Vo < n/(n — 1),
and with Lagrange multipliers

A=, )T erm 7 e 77

the associated standard first order necessary optimality conditions. We will just as-
sume them. They can be proved following Casas [7], Bonnans and Casas [6], or Zowe
and Kurcyusz [23]. The first order optimality system to be satisfied by (¥, @) consists
of the state equations (2.2), the constraint @ € U, the adjoint equation

(32) —AP+7= /(D +D_NF@la+(FPZFla inQ

(3.3) 0% =by(\ 7T+ gy (T + Y_NF (@I + (F7*F|r onT

for the adjoint state B, the complementary slackness condition
(3.4) (Z5,k—E@) <0 VkeK,

and the variational inequality

(3-3) /(gu(r,ﬂ(l’);ﬂ(l‘)) + P(@)bu(z,¥(2), u(2))) (u(z) —u(z)) dS(z) 2 0

for all u € U?4. We have F/(7) € C(ﬁ)*, i=1,...,m,and E'(y)*z" € C(ﬁ)*, hence
these quantities can be identified with real Borel measures on Q. Let a nonnegative
function g € L*°(T') and real Borel measures pq and pr concentrated on Q and T,
respectively, be given. Then the problem

{—A<p+so=/m in Q

(3:6) Ovp+Bp=pr onT
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admits a unique solution ¢ € WH7(Q) for all o < n/(n — 1) (see Casas [7]). In view
of this, we may write

¢:¢0+Z)\i%+s@E,

i=1

where g, ¢;, and ¢g solve (3.6) for uq = fy, F/(¥)la, F'(7)*Z"|a and ur = gy,
F!(@)|r, E'(9)*z*|r, respectively. We have at least ¢q, ¢; and @g in W7 (Q). More-
over, P satisfies the formula of integration by parts

(3.7) /(—Ay-l-y)sodr-l-/(@uy-l-ﬂy)sods(w) = /ydun-l-/ydur

Q I8 Q N

for all y € Y, ,, where ¢ > n/2, p > n— 1. It is easy to verify that the optimality
conditions can be expressed by the Lagrange function

L(y,u,¢,X,2%) = Fo(y, u) —/(—Ay+ y) pdx — /(8uy— by, u))pdS
I

(3.8) O
+Z/\ij(y) +(z", E(y)),

L:Yp xU x WHo(Q) x R™ x Z* — R. The regularity of y and ¢ fits together, as
© € WHo(Q) for all o < n/(n — 1) ensures ¢ € L*(Q) for all s < n/(n — 2) ( Necas
[17], Thm. 3.4, p. 69) and ¢|r € L"(T') holds for all » < 1 4+ 1/(n — 2) ([17], Thm.
4.2, p.84). Therefore, this definition makes sense. In (3.8), (:,-) denotes the duality
pairing between Z and its dual space Z*. The Lagrange function £ is of class C? with
respect to (y, u) for fixed ¢, A, and z*.

Thanks to (3.7), the optimality system can be rewritten in terms of £. Then it
is expressed by (2.6), the constraints on the state (2.3), (2.4), the constraints on the
control u € U”d, and

(3.9) Ly(7,7,2,17)y=0 VyeY
(3.10) Lo@ 0,7 N7T ) (u—17) >0 YueclU™
(3.11) (T, k—E[@) <0 VkeK.

This form is more convenient for our later evaluations.

Example: In (P), adjoint equation and variational inequality are given by

—AP+P=Y-—ya+7060), 9,7+37F=0
/(aﬁ+¢)(u —u)dS >0 Viu| <1,
T

where §(0) is the Dirac measure.

To shorten our notation, derivatives taken at (7, %, %, A, z*) will be indicated by
a bar. For instance, Lyy, Lyu(u — %) stand for the derivatives in (3.9) and (3.10),
respectively. Lyy[y1,y2] denotes the second order derivative of £ in the directions

y1, Y2 taken at (§,%, %, X, Z*). Moreover, Loy [w1, wa] is the second order derivative of
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L in the directions wy = (y1,u1), wa = (Y2, u2). If w1 = wy = w, then we write for
short Loy [w, w] = Loy [w]?

Next we provide some useful results on linearized versions of the state equation.
Regard first the linear system

—Ay+y=f inQ
A2
(3 ) {8yy+ﬁy=g on I,

where # € L*(T') is nonnegative. For each pair (f,g) € L}(Q) x L(I'), this system
admits a unique solution y € W17(Q), where o < n/(n — 1), see Casas [7]. (Notice
that a function of L' can be considered as a Borel measure.) On the other hand,
the solution y of (3.12) belongs to H*(Q) N C(Q), if (f,9) € L4(Q) x LP(T). This
regularity result is well known for domains with C'-boundary. Moreover, it remains
true for domains with Lipschitz boundary in the sense of Necas [17] (see Stampacchia
[19] and Murthy and Stampacchia [16]). On account of this, the mapping D : (f, g) —
(y,y|r) is continuous from L'(Q) x LY(T) into L*(Q) x L*(T) for s < n/(n — 2) and
t < (n—1)/(n—=2). Dis continuous also from L?(Q) x L?(T') into L= (Q) x L>(T'). We
obtain these spaces by embedding results for W7 (Q) (Neéas [17]). In both cases, this
mapping is linear and continuous. Interpolation theory applies to show the following
results for D considered as a mapping defined on L?(Q) x L*(T):

(5)’ n=2, ( ); n=2,
(3.13)y e { L) Vf‘<002, n=3 el L()Vs<oo, 1 n=3,
L@V < T n >, rovs< 020 s

4. Regularity condition and linearization theorem. Let us recall that we
consider a fixed reference pair (¥, %) satisfying together with (@, X, %) the first order
necessary conditions (3.9) — (3.11).

The linearized cone of U at % is the set C(W) = {v € L°°( ) | olu—1), o>
0, u €U}, Let F = F(y) denote the mapping y — (F1(y) ( )T from Y to
R™. For convenience, we introduce the set of all feasible palrs

M={w=(y,u) €Y x Uy = G(u) and y satisfies the state—constraints}

(notice that G is the nonlinear control-state-mapping). Following Maurer and Zowe

[15], the linearized cone L(M,w) at W = (¥, u) is defined by

LM, w) = {w|w = (y,u), u € C(u) and (y, u) satisfies (4.1) —(4.3)},

where

—Ay+y =0 in Q
(4.1) { Oy = by(-, 7,7y +bu(-,7,@u on T
(4.2) F'(g)y = 0
(4.3) E'G)y € K(E()).

Here, K(E(y)) = {z € Z | z = o(k — E(Y)), ¢ > 0, K € K} is the conical hull of
K — E(y).

REMARK 4.1. The choice 7 = R¥, E(y) = (Fi(y),..., Ex(y))T, K = (R*)~ for
E Y — Z is of particular interest. Then (4.3) reduces to

Ei(y)y <0
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for all active i € {1,... k}, that is for all i, where E;(y) = 0 holds.

Example: The linearized cone for (P) is the set of the following pairs (y, u):
They satisfy u € C(u) and

(4.4) —-Ay+y=0, Oy + 3§2y = u,

(4.5) y(0) <0,

if ¥(0) = yo (active state constraint). If the state constraint is not active, then (4.5)
disappears.

The following regularity assumption (R) is basic for our further analysis: To
formulate (R) we combine the two state constraints to one general constraint. We
therefore take Z = R x Z, K = {0} x K, define T : Y — Z by T'(y) = (F(y), E(y))
and put K(7T'(y)) = {0} x K(E(y)). The regularity condition was introduced by Zowe
and Kurcyusz [23] and requires

(R) T (y)G'(mc) - K(T(y) = Z.

This condition is sufficient for the existence of a (non—degenerate) Lagrange mul-
tiplier associated to the state—constraint F(y) € K, see [23]. We should underline
that (R) does not rely on the condition int K # §. In Appendix 7.1 we shall present
some sufficient conditions for (R) which, however, require int K # (. (R) is discussed
for the canonical example (P) there. For Z = R* K = (R*)~ the condition (R) is
equivalent to the well-known Mangasarian-Fromowitz condition.

THEOREM 4.2. Suppose that (R) is satisfied. Then for all pairs (§, %) € M there
is a pair (y,u) € L(M, W) such that the difference r = (v¥,7%) = (y,4) — (¥, 7) — (y, u)
can be estimated by

(4.6) I7lly xzoery < Crpllt =l ooy |l = llLory VP >n—1

4.7) lI7ll < Cr ol — | poo (ryllte = Wl 221,

where ||7|| = ||7¥[[2 + [|7"||r2(r)- In the particular case b(x,y,u) = bi(x,y) + ba(z)u
we have

(4.8) [llyxpeer) < Crpllt —allzsry Vp>n—1.

This theorem is proved in Appendix 7.2. Let us conclude this section by considering
some useful estimates for £ and for certain remainder terms. First, we evaluate

—11

L [(yla U'l)a (yQa “’2)] = 'C”(y; ﬁ) @a X; 7*)[(yla ul)a (y2; "2)]a
where £" denotes the second order derivative of £ with respect to (y,u). We have

—11

z KyLUQ,@m,Uﬂ]:m/f@&u?hnyzd$+l/kw,uﬂg”0JLﬁﬂyzﬂmiTdS
Q r
(4.9) +/¢ (Y, un)b (9, 1) (g2, ua) " dS

T
+ SN F @ vl + (7 B @), ve)).
i=1
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Example: In the case of (P), £ admits the form

Z”[(yla ul); (yQa UQ)] - /yly?dm ‘I‘ /(6¢yy1y2 + O[U1UQ)dS.
Q T

The term connected with @ causes troubles, more precisely,

(4.10) I = /a(byy(';yﬂ)lh!b +byu (-, 7, 7) (y1u2 + y2ur) + buu(-, 7, W) uruz) dS.
r

An estimate of I is needed with respect to the norm [ly[[a + ||u||L>r) (cf. (4.19)).
We therefore have to require at least € LZ(F) in the second item and ¥ € L*°(T)
in the third one. On the other hand, only ¥ € L"(T') follows from % € W17‘7(Q) for
r < (n—1)/(n —2), see Necas [17], p. 84. For n = 2 we obtain g € L"(T) for all
r < 00, while n = 3 yields the regularity 7 € L"(T) for all » < 2. On account of this,
the following additional assumption is crucial for our analysis:

(A4) Let one of the following statements be true:
(i) 7 e L=(I).
(i1) byu(z,y,u) = 0 on I' x R? and, if n > 3, then 3 € L7 (T') for some
r>n—1.
(iii) byu(z,y,u) = byu(z,y,u) =0 on T x R? and, if n > 4, then 7 € L™ (T)
for some r > (n —1)/2.
(iv) b"(y,u) = 0.

We briefly comment on the consequences of these assumptions:

(1) is true, if ?y € L1(Q), g, € LP(T), and if the restrictions of F, i = 1,...,m, and
E'(9)*z* to Q and T, respectively, belong to L!(2), LP(T), as well. Moreover, (i)
holds for functionals F!, i = 1,...,m, and E'(y)*z* of C(Q)*, where the associated
real Borel measures are concentrated on the set A C Q.

In addition to some assumptions on the regularity of @ for n > 3,4,

(ii) requires linearity of b with respect to u, that is b(z,y, u) = bo(2,y) + b1 (2, y)u,
(ii1) means that b(z, y, u) = b1 (2, y) + ba(x)u, while

(iv) is only true for an affine-linear boundary condition (but yet for a nonlinear
functional Fj).

(A4) is obviously satisfied in the example (P).

As a consequence of (A3) and (A4), pointwise state—constraints on the whole
set Q can only be handled by the standard part of our theory, if u appears linearly
in the boundary condition and n = 2. Tn the considerations below, we denote by 7
the remainder terms associated with the i-th order Taylor expansion of a mapping 7T'.
For instance, the following first and second order expansions of b(z, y, u) are used at
triplets (x,y,u) and (z,9,7) € RPTZ;

(4.11) b(z,y,u) — b(z,y,u) = b (2,9,0)(y —y,u—1u) + )
where

(4.12) ri = (by = by)(y =) + (b = bu)(u — ),
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and b7 b% b, b, denote b,,b, taken at (2,5 + J(y —y),u + J(u—1u)) and (2,7,7),

Yo rud
respectively, with some ¢ € (0,1). Expanding the same expression up to the order

two, we have

b(;‘L‘,y, u) - b(xayaﬂ) = bI(I,y,ﬂ)(y —y,u—ﬂ)

4.1 1 5
(4.13) g - ) (y €> b,

2
with the second order remainder term
1 _ _ <1 _ _
(4.14) = i(y—y,u—u)[b”’ﬂ—b ](y—y,u—u)T.

Here, b7 " denote the Hessian matrix of b with respect to (y,u) taken at the same
triplets as above. Due to our assumptions on &’ and b, the estimates

(4.15) r1l < Cu(ly =7 + |u—7?)

(4.16) |75l < Carnlly =31+ |u—T) (ly — 71" + |u —T*)

are valid for all |y|, |9, |u|, [u] < M. We continue with the discussion of the remainders
r¥ and r%. A Taylor expansion of £ gives

(Zyy[y - y]z + 2Zyu [y —Y,u— H] + Zuu [u - H]2) + r2£a
where £ indicates that £ and its derivatives are taken at (7,7, %, \,Z*). We have

rf = (L) = Ly)(y =) + (L4 — Lu)(u— 1)
1, 6 = . . - _ _ ¥ - —
ry =5((Lyy = Lop)ly = 0+ 2Ly = L)y = Fu =] + (Lo = Lun)[u — 7]°).
L? indicates that (§+ 9(y — ¥), @+ 9(u — 1), B, A\, Z*) is substituted for (y,u, 7, A, Z*)
in £ and £"” with some 4 € (0,1). On account of the assumptions (A1)—-(A4), we
are able to verify

(4.17) 1rE1 < Cellly = T + llu = Tl
(4.18)  1£] < Cen(lly = Tl + e = Tlzoeqry)-(ly = T + = 7 22gr)

and

(4.19) |2 [(y1, 1), (w2, w2)]l < Celllmnlla + [[urllz2) (ly2ll2 + [Juzllzary).

The constant Cz > 0 depends in particular on @. For the definition of n we refer to
the assumption (A2). The analysis of (4.17)—(4.19) is performed in Appendix 7.3.

5. Standard second order sufficient optimality condition. Qur main aim
is to establish sufficient optimality conditions close to the necessary ones derived in
Casas and Troltzsch [8]. Therefore, we consider also certain first order sufficient op-
timality conditions. We shall combine an approach going back to Zowe and Maurer
[15] with a splitting technique introduced by Dontchev, Hager, Poore, and Yang [10].
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The method of [10] was focussed on the optimal control of ordinary differential equa-
tions. Tt has been extended later by the authors in [9] to the case of elliptic equations
without state—constraints.

In [15], Maurer and Zowe introduced first order sufficient optimality conditions
for differentiable optimization problems subject to a general constraint g(w) < 0. For
our problem, the application of their approach in its full generality is rather technical.
Therefore, we introduce in an initial step the first order sufficient optimality condition
only for the constraints on the control. Later, we shall deal in the same way with
additional state—constraints.

The role of first order sufficient conditions can be explained most easily by the
minimization problem { min f(z) |z, < z < z3}, where f : R" — R is of class C%.
Let Z satisfy the first order necessary conditions (variational inequality). If n = 1,
then f'(z) # 0 implies that z is a local minimizer (even for concave f). Therefore,
the second oder sufficient optimality condition f”(z) > 0 is only needed in the case
f'(z) = 0, where the first order necessary condition is not sufficient. The situation is
similar for n > 1: The positive definiteness of f”(Z) has to be required only on the
subspace {z € R” |2 = 0 if D'f(z) # 0}.

Define for fixed 7 > 0 (arbitrarily small) the set

Ir = {z € I'[|gu(z, Y(2), u(z)) + P(2)bu(z, y(2), u(z))| = 7}.

I'; is a subset of ”strongly active” control constraints (cf. (3.5)). In other words, T'; =
{z €T |Lu(, 4, @ A 2%)(x)] > 7} is the set, where the gradient of the objective
(expressed as a function of the control) is sufficiently steep. In the example above, 7
can be chosen as the minimal value of all nonvanishing | D f(7)].

We mention at this point the relation
(5.1) (", E'(my) <0

for all (y,u) € L(M,w), which follows from (Z*, E'(y)y) = o(Z",x — E(7)) < 0 in
view of (3.4).

Let Pr : L (I') = L*°(I') denote the projection operator u +— xpr\r,u = Pru. In
other words, (Pru)(z) = u(z) holds on I'\ Ty, while (Pru)(z) = 0 holds on I'z. We
begin with our first and at the same time simplest second order sufficient optimality
condition.

(SSC) There exist positive numbers 7 and § such that

(‘52) 'Cll(ya Ha Ga X’ E*)[U)Q,U)Q] 2 6||u2||%2(F)

holds for all pairs ws = (y2, u2) constructed in the following way: For every
w = (y,u) € L(M,w) we split up the control part u in uy = (v — Pru) and
us = Pru. The solutions of the linearized state equation

—Ay; +yi = in Q
(5.3) { yi+y =0 in

6Vyi = by(';y, H)yl + bU('aya H)ui onT

associated to u; are denoted by y;, i = 1,2. By this construction, we get the
representation w = wy + wy = (y1, u1) + (y2, us2).
REMARK 5.1. The coercitivity condition (5.2) of (SSC) is required on the whole
set LM, W), if T'x is empty. This rather strong second order condition is obtained by
the formal setting T = co.
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THEOREM 5.2. Let the feasible pair W = (¥, u) satisfy the regularity condition
(R), the first order necessary optimality conditions (3.9)~(3.11), and the second order
sufficient optimality condition (SSC). Suppose further that the general assumptions
(A1)-(A4) are satisfied. Then there are constants ¢ > 0 and ¢’ > 0 such that

(5.4) Fo(g, @) > Fo(y,m) + &'[|a — |72y
holds for all feasible pairs w = (y,u) such that

(5.5) [l — 2| oo (ry < o

Proof. We denote by [ = (%, X, Z*) the triplet of Lagrange multipliers appearing
in the first order necessary optimality conditions. Let an arbitrary feasible pair w =

(9, @) be given. Then

(5.6) Foli) — Fo(m) = L(i, 1) = £(.1) — (=", E() - (7))
follows from F(w) = F(w) = 0. The complementary slackness condition implies
(=", E(G) - B()) > 0.

Hence we can neglect this term, and a second order Taylor expansion yields

Foli) — Fo(w) > £ D) — £(m,)
> /lu (a —u)dS + %ﬁ”(m, O[w — @) + ’i"é:(m, W— W),
T

where 1, (2) = gu(z,7(2), %(x)) + @(x)bu (2, y(x),w(x)). Using the variational inequal-
ity, we find

6.1) Fa@) = F@) 2 7 [ la-uds+ £/ @ e - ol +rf @, 0 - ).
T,

Let us introduce for convenience the bilinear form B = L£”(w,l). Next we ap-
proximate @ — W by w = (y,u) € L(M,w), according to Theorem 4.2. In this way
we get a remainder r = (¥, ") = @ — W — w satisfying the estimate

(5-8) Il < Crlle = ullpoe ry l|o =l 2(r)-

Tt follows that B[w — w]? = B[w]? + 2B[r,w] + B[r]>. We have w € L(M,w), hence
(SSC) applies to B[w]?. Now we substitute in B[w]? the representation w = w; + wy
described in (SSC) and deduce
Blw]? = Blws]? + 2B[w1, ws] + Blw1]?
> dllusllzaey — 2Cc (v llz + lluallnzy) (ly2lla + usllzamy)
~Ce(llyrllz + llwrllzar))®

from (SSC) and (4.19). In the following, ¢ will denote a generic constant. Suppose
that ¢ < 1 is given and assume ||t — %||po @y < 0. Then [Jyill2 < ef|uil|L2(r) and
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Young’s inequality together yield

Blw]? > 8[|uz||7(r — g”U2”%2r) cllut|lFa
Z%IUQdS—cfu ds
T,
(5.9) >i f |u—u|2dS—c / |u—u||r“|dS—cf|u—u|2dS
I, I,

—c [ i —a||r|dS —c [ |r"|*dS.
T, T,

The expression under the third integral is estimated by |4 — %[z )|t — u|. In the
other integrals (except the first) we insert (5.8) and derive

Y - - -
(5.10) Blw]* > ) / |a —a|*dS — cg/ |t —u|dS — col||t — u||%z(p)
T\T., T,
The treatment of B[r, w] and B[r]? is simpler. We find
|Blr, w]| < elrll[[ullzawy = ellr(llld =+ r||2r)
< colld — |72y
The same type of estimate applies to B[r]?. Altogether,
(5.11)  Blw—w]*> - / |t — | dS — cg/ |t —u|dS — col|u — u||L2
r\r,
is obtained. By substituting (5.11) in (5.7), we get
Fy(w) — Fo(w) > (7 — co) / |t —w|dS+ = / | —a|? dS — col|t — u||Lz

r\r

—|r5 (@, i — )]

/|u—u|d5-|— / |t — | dS—chu—uH[z

\T,

IV

_|T2 (ma w— E)l
Since || —||p(ry < 1 was assumed, [a—7| > |i—u|? holds almost everywhere. Using
this in the first integral, setting §’ = min{r/2,d/2}, and substituting the estimate
(4.18) for r&, we complete our estimation by

Fo(w) — Fo(w) > || —al|72r) (6" — co = nlelli — @l (ry))
/
2 7l — |2

for sufficiently small ¢ > 0. O

Our condition (SSC) does not have the form expected from a comparison with
second order conditions in finite dimensional spaces. In particular, the pair (y2, us)
constructed in (SSC) does not in general belong to L(M,w). To overcome this
difficulty, we introduce another regularity condition (R)+ being stronger than (R.).
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This new constraint qualification is similar to that one used in Casas and Troltzsch
[8] to derive second order necessary conditions.

Let C. (@) denote the set of controls u € C(u) having the property u(z) = 0 if
z € I';. We strengthen (R) to

(R)r T (§)G (W)C- (1) - K(T(7)) = 2.

On using (R)7, we are able to show that the following second order sufficient
optimality condition implies (5.4) as well:
(SSC)+ There exist positive numbers 7 and § such that

(512) ﬁ”(?;mﬁx?ﬁ)[waw] 2 (5”””%2(1“)

holds for all pairs w = (y,u) of L(M,®w) with the property u(z) = 0 for
almost every z € T';.

THEOREM 5.3. Let the assumptions of Theorem 5.2 be fulfilled, where (R) and
(SSC) are replaced by (R)+ and (SSC)+. Then the assertion of Theorem 5.2 re-
mains true.

Proof. The proof is almost identical to that of Theorem 5.2. The only difference
consists in a more detailed splitting. In the first part of the proof we repeat the steps
up to the splitting w = wy + wy after (5.8). Define &® = T'o G. Then we have

&' (u)(u1 + u2) € K(®(7)),
as wy + wy € L(M,W). Therefore,
&' (u)uy € K(®(u)) — &' (u)ug

holds so that ws = (y2, u2) does not in general belong to the linearized cone. Thanks
to the regularity condition (R)+, the linear version of the Robinson—Ursescu theorem
(see Robinson [18]) implies the existence of ug in Cr(u) with the following properties:
The inclusion

' (W) uy € K(®(u))
holds, and
(513) ||U2—UH||L2 <C||U1||L2

is satisfied (see the proof of Theorem 4.2 in the appendix). In other words, we find
a pair wy = (yg,uy) in L(M,w) with ug = 0 on I';. Hence, (SSC) applies to
Blwg]?. Moreover, the control uy is sufficiently close to us.

Now we define @iy = upy and @y = uy + (ug — ugy). Further, let §; = G'(¥)7,
denote the corresponding solution of the linearized state equation. Then @w; = (¥, ;)
is substituted for w; = (y;,u;), ¢ = 1,2. The only difference between the proofs of
Theorem 5.2 and 5.3 appears between the formulas and (5.8) and (5.9): We use the
splitting w = 11 + Wy instead of w = w1 + ws. Moreover, the first line of the estimate

(5.9) is changed as follows:

Blw] >5||“2||1:2 (™) — g7 2(r )_CHﬂlH%ﬂ(r)
T llus + (umr — u2)||L2(F) = cllur + (us = um)l7ar

IV IVI

ol — ey
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where we have used the estimate (5.13). Then we proceed word for word as in the
proof of Theorem 5.2. O

Example: Let us briefly comment on (SSC) in the case of (P) for an active
state constraint F(0) = yo. Then L(M,) is expressed through (4.4), (4.5), and a
quite strong second order condition is formulated by

(5.14) C'(@,,% 7w, w] 2 8llullzam)

for all w = (y,u) € L(M,w). In this way, we would not take advantage of strongly
active control constraints. These constraints appear on T'; = {z € T'| |au(z)+5(z)| >
7|}. We split (y,u) = (y1,u1) + (y2, us), where us = 0on I'; and u3 = 0 on I'\ ;.
(SSC) requires the coercitivity condition (5.14) only for (y»,us), while (y1,u1) is
handled by first order sufficient optimality conditions. Notice that y, might violate
the state—constraint y(zg) < 0. We avoid this by (SSC)+: It requires the coercitivity
condition for the following u € C(@): They vanish on I'; and satisfy together with the
associated solution y of the linearized partial differential equation the state—constraint
y(zo) <0.

The paper [15] shows that also ”strongly active” state-constraints may contribute
terms to the first order sufficient optimality conditions. However, this leads to a
rather technical construction and more restrictive assumptions. We have to suppose
that the function b is linear with respect to the control v and n = 2. The corresponding
theorem is stated below. Define for fixed 8 > 0 and 7 > 0 the following subset of
L(M,w):

Lg (M, W) ={w|w=(y,u) € L(M, W) and w satisfies (5.15) below}.

The decisive inequality characterising Lg ; is
(5.15) E Bz [ e dst)

Lg (M, W) is the subset of L(M, @), where the term (z*, E(y)) does not much con-
tribute to the first order sufficient optimality condition. It is only this set, where we
have to require second order conditions, namely

(SSC’) There exist positive numbers 3, 7, and ¢ such that

(5.16) (7%, X, 7 fws, ws) > Slus [y

holds for all ws = (y2, us) obtained in the same way introduced in (SSC) by

elements w taken from the smaller set Ly . (M, w).
Using this condition, we formulate the

THEOREM 5.4. Let the feasible pair W = (¥, u) satisfy the regularity condition

(R), the first order necessary optimality conditions (3.9)~(3.11), and the second order
sufficient optimality condition (SSC’). Suppose further that the general assumptions
(A1)-(A4) are satisfied. Moreover, assume that n = 2 and b(x,y,u) = by (z,y) +
bo(x)u. Then there are constants ¢ > 0 and ' > 0 such that

(5.17) Fo(y, i) > Fo(g, ) + &'[|i — || 5
holds for all feasible pairs w = (y,4) satisfying
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Proof. We begin in the way we have shown Theorem 5.2 by
(5.19) Fo(i) — Fo(w) = L(i, 1) - L(w,1) - (2%, E(§) — E(7))-

Once again, the representation @ — W = w + r is obtained. Now we distinct between
two cases.

Case I: w = (y,u) € L(M,®w) \ Lg,»(M,wW)
This is the case, where we deduce (5.17) from first order sufficiency. Here, the in-

equality

(5.20) —(Z E'@)y) > B / |u(z)| dS(z),

\I',

is fulfilled. We transform (5.19)
Fo) — Fo() = £, 1) (0 — ) + v (0,10 — ) — (=, F(g) — B )

~—

as follows,

(5.21) +rf (W, & — W) — (Z°, E'm)r? + r{ (3,5 — 1)),
y(z

where [, (z) stands for g, (z,y(x), u(x)) + B(x)by (z, y(x), u(z)).
Owing to n = 2 and b(z, y, u) = by (2, y) + b2(z)u, we are able to apply the strong
estimate (4.8) with p = 2. This yields

(5.22) I7llyx o= (r) < Cr,all@ —ul|7a¢r
By Theorem 4.2, (5.22), (4.17), and (A3), (i1) we have
max{[r¥[|z, [r], [Irfllz} < e(llg = B3 + i — Tl 7ary)-

Now the Lipschitz property of the mapping u + y(u) = G(u) from L?(T) into C(Q)
(note that n = 2) permits to estimate the last three items of (5.21) by ¢||i4 — ﬂ||%2(r)

(5.20) is applied to the second one, while the first one is treated by T';:
We know that

lu(z)(a(z) —w(x)) >0 a.e onT,

/zu (ﬂ—ﬂ)dsz/lu(ﬂ—ﬂ)dS:/|lu||ﬂ—ﬂ|d52r/|ﬂ—ﬂ|d5.
r T, T,

r

hence

Inserting this in (5.21) we continue by
Fy(w) — Fo(w >T/|u—u|d5+[3’/|u|dS—c||u—u||Lz
T,

> T/|a,_n|ds+ﬁ/ it —u| dS — el — || 2y

T, T\T,
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in view of [|r*||pee(ry < cf| — HHiQ(F). Proceeding with the estimation, we deduce
Fo(w) — Fo(w) 2 min{, T}||a — @l|£2(r) — cellt — ullLy(r)
> f'||a —al| Ly

with some ' > 0, provided that [|4 — %[z~ () < @ < o1 holds and g is sufficiently
small.  Assume additionally that g1 < 1. Then |4 — u|?> < |4 — @] holds almost
everywhere, hence

(5.23) Fo(w) — Fo(w) > f'||ia —al|72r
follows for [|4 —||pes ) < 01-

Case II: w € Lg , (M, w) (Partial use of first order sufficient optimality conditions)

—x

Here, we neglect the term (z*, E(g) — E(¥)) and proceed word for word as in the proof
of Theorem 5.2, using Lg ; instead of L. O

REMARK 5.5. Unfortunately, the definition of Lg (M, @) is not constructive.
It is difficult to describe in an explicit way, which (y,u) € L(M, W) belong to the
different cases I or I1. Therefore, this type of first order sufficient condition is only of
limited value (see, for instance, the next example).

Example: To illustrate (SSC’) for (P) in comparison with (SSC), let us as-
sume for simplicity @ € int#/*?, hence T, = @. Then (SSC) requires the coerci-
tivity condition (5.14) on the whole set L(M,w). If §(0) = yo and z* > 0 (strong
complementarity), then (SSC’) is weaker than (SSC): (5.14) is not needed for all
(y,u) € L(M, W) satisfying

(5.24) 2 y(0) > 8 [ lu(2)|ds.
/

Assume that y can be represented by a positive Green’s function G = G(z, §),

mm:/Gm@w&ﬁ@,

such that G(0,£) > v > 0 on I'. Then (5.24) is fulfilled with g = z*y for all u < 0.
Moreover, all u > 0, u # 0 do not contribute to L(M,w). Therefore, the coercitivity
condition (5.14) is only needed for all 4 having ”sufficiently negative parts”. However,
this information does not essentially improve (SSC).

REMARK 5.6. Theorem 5.2 follows from Theorem 5.4 by setting § = 0, where we
can avoid the restrictions n = 2 and b(x, y, u) = b1 (x,y) + ba(z)u.

The cone C(u) is defined by C(W) = {p(u — ) |u € U p > 0}. Its closure in
L2() s

AC(@) = {ve L*(T)|v(zx) <0, if a(x)=up(z), v(z) >0, if @(zx) = us(z)}.

Let us re-define L(M,w) by substituting c1C(u) for C(u), and require (SSC) in this
form. Then (SSC) appears to be stronger, and Theorem 5.2 holds as well, since
clC(u) D C(u). However, it can be proved by (R) and the generalized open mapping
theorem that (SSC) based on clC(u) is in fact equivalent to (SSC) established with
C(u). This follows by continuity arguments.
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6. Extended second order conditions. A study of the preceding sections
reveals that (SSC) is sufficient for local optimality in any dimension of  without
restrictions on the form of the nonlinear function b, whenever (A3) is satisfied and
¥ € L*°(T'). gis bounded and measurable, if pointwise state-constraints are given only
in compact subsets of Q with the other quantities being sufficiently smooth. In two-
dimensional domains, pointwise state-constraints can be imposed on Q, if b(z, y, u) is
linear with respect to u. An extension to @ € L”(T") requires stronger assumptions on
b. However, we shall briefly sketch in this section that some extended form of (SSC)
may partially improve the results for n < 3.

Let us assume @ ¢ L°(T'). Then it seems to be natural to introduce in L (T)
another norm

1/2

o= | [0+ p2)hu’(@) as()

r

This definition is justified, as u € L>(T") and y € C(Q) holds in all parts of our paper.
For @ € L°(I'), the new norm is equivalent to [|u[|z2(r). To get rid of the restrictions
imposed on b in (A4) we redefine the set of strongly active control constraints T'; by

(6.1) Trp ={z €T |lgulz, y(x),u(z)) +@(x)bu(z,y(x), u(z))| = (1 + [&(2)[)}.

Moreover, we substitute the condition
(6.2) L"(7,78,8, X, 7%) [wa, wa] > 5||uQ||i

for (5.2). If g ¢ L°°(T), then (6.2) is stronger than (5.2). On the other hand, the

term [ @by, uidS contributes to £”. (SSC) implies (at least) the non-negativity of
r
Pbyy, hence

[ Phuiids = [ gl buluds = [ plugas
IN IN

r

holds, provided that |byu| > &. In view of this, (6.2) appears quite natural.

Now Theorem 5.2 remains true for n < 3 without assumption (A4).
This statement is easy to verify. Apart from the estimates (4.17)—(4.19), our theory
is not influenced by introducing ||ul|,. The discussion of (4.17)—(4.19) is the decisive
point. We are able to replace || - ||z2r) by || - ||, there, as the basic inequalities
(7.14)—(7.16) (Appendix 7.3.) can be slightly reformulated: (7.14) is nothing more
than

(6.3) / Blu?dS < [Jull?,
IN

while (7.16) remains unchanged (n = 2,3). Only (7.15) has to be substituted by
1/2

/ 12l o] ful dS = / 021y [ S < [lull, / ly2ds
N N N

1/2

(6-4) S P s oo oy 9l e oy -




SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 19

Here we have invoked (7.15) for sufficiently large s (n = 2,3). Now a careful study of
the proof of Theorem 5.2 shows that (A4) can be removed on using (6.3) and (6.4).
Assuming (6.2), we arrive at the estimate (5.4) with ||u —ﬂ||i instead of || —ﬂ||i2(r).
Then (5.4) follows from |[|ul|, > ||u||r>(r). The same arguments apply to the first
order sufficient conditions in Theorem 5.4 for n = 2, if we redefine Lg (M, @) by
substituting for (5.15) the inequality

(6.5) & B @) > —F / (1+ [])Ju] ds.
\T,

7. Appendix.

7.1. On the regularity condition. Regard the state equation (4.1) linearized
at (y,7). Let Y C H'(Q) be the set of all solutions of this equation associated to
u € L®(T). In other words, we have Y = G'(7) L (T'). (R) is satisfied in the follow-

ing particular cases:

a) K = Z (no inequality constraints)

Then (R) means F/(y)G'(u)C(u) = R™. This condition is satisfied, if in addi-
tion to the surjectivity property F'(7)Y = R™ the following holds: There is a
u € inth(p)U“d with F/(y)y = 0. Here, § denotes the solution of the linearized
state equation (4.1) associated to @ — w, that is § = G'(u)(@ — @). The proof follows
from [22], Lemma 1.2.2.

b) F = 0 (no equality constraints)

In this case, (R) reads E'(7)G’(@)C(u) — K(E(u)) = Z. Once again, (R) is implied
by two separate conditions: We assume E'(§)Y — K(FE(7)) = Z and require the ex-
istence of an @ € intLoo(p)U"d with the property that E'(y)y € K(E(y)) holds at

= G'(u)(t —u) ([22], Lemma 1.2.2). It should be mentioned that case a) follows
from b).

Example: (P) is worth discussing in this context. If the state constraint y(0) <

Yo is not active at g, then (R) is obviously satisfied. Therefore, we assume 3(0) = yq
and get K(E(7)) = {z € R|z < 0} = R™. Then E'(§)Y — K(E(7)) = Z reduces
to the following requirement: For every z € R™ there exists a function u € L*(T)
such that the equation y(0) = z is satisfied by the corresponding solution y of the
linearized equation (4.4). This property is fulfilled, since we may find at least one
u € L*(T') such that y(0) # 0. Hence, (R) is implied by the following conditions:
There are & € L*°(T') and ¢ > 0 such that |g| < 1 — ¢ holds and that the solution §
of (4.4) corresponding to 4 — U satisfies §(0) < 0.

¢) General case
Let us assume inty K # () and Ntz () U £ (. We require the surjectivity property

(7.1) F'(g)Y = R™.

Moreover, assume the existence of an 4 € inth(p)U"d such that
(7.2) E()+ E'(y)y € intz K,

(7.3) F'(g)j =0

holds for § = G'(%) (@ — u). Then (R) is fulfilled. To show this, we first mention the
simple fact that Z € intz K implies z+ z/g € K for arbitrary z € 7, if g is sufficiently
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large. We have to verify that the system

(7.4) Fl(g)y ==
(7.5) E'(9)y — ok — E(7)) = 22

is solvable for all z; € R™, z9 € Z by some y € G'(@)C(u), k € K, and ¢ > 0: From
(7.1) we find uy € L®(T) such that y; = G’'(%)u; solves the equation

F'(Y)y = z1.
Now we add to y; a multiple of §. Then
F'@)(y +e9) = '@y = =

is obtained from (7.3). Consequently, (7.4) holds for y = y; + p§. Moreover, we
deduce from (7.2) for sufficiently large ¢ that

E@) + E'@)j— —(20— E'(G)y) =k € K.

| =

This relation is equivalent to

E' (@) (y1 + 0§) — o(k — E(7)) = 2.

Therefore, (7.5) is satisfied by y = y1+0g. Furthermore, ui+o(a—u) = o(u+(1/0)u1—
u) € C(u) holds for sufficiently large ¢. This is true, since @ + (1/¢)us € U for o
large enough (notice that @ € intze ) U*). Thus we have also shown y € G'(@)C(7).

7.2. Proof of the linearization theorem. To prove Theorem 4.2 we need the
following auxiliary result:

LEMMA 7.1. Let @, 4 € U be given with associated states 7,1 defined by (2.2).
Introduce y € Y as the solution of the linearized state equation

76) {—Ay+y:0 in Q

Ovy = by (-, g, uW)y + by(-, 7, u) (e —u) onT.
Then the estimates

(7.7) lly

19 —=7—ylly <Cpllt—al|pemlld —al|zory Vp>n-—1
(7.8) 1 —5—yl

Yll2 < Collt — || poo(ry || — Wl £2(r)

are satisfied with certain constants Cp, Ca. If by(x,y,u) does not depend on y and u,
then we have

(7.9) 15 =7 = vlly < Cyllii =730y ¥p>n—1.

Proof. We use the first order expansion of b at (z,y, %) and obtain from (2.2),
(7.6), and (4.11) the system

)
—y) = 11’ on T,

0 inQ
r
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where
Ir{(z)| < Car(|9(z) — 9(2)” + |a(z) — u(x)|?)

and M depends on #*¢ (notice that the boundedness of /% implies a uniform bound
on all admissible states). Therefore, the discussion of (3.12) yields for p >n —1

15 =7 = ylly < cllrillzrr)

4

%
<e /|g_y|2pds + /|a_n|2pds
T T

The mapping u ~— y = G(u) is Lipschitz from LP(T) to C(Q) for p > n — 1. If
p = 2, then the Lipschitz property holds in the norm ||y||2 for y. For p > n —1, we
continue by

15 =7 = vlly < e (i =Tl + [l =Tl oyl = Tl rory )
while p = 2 yields only
9 =7 —yll2 < cllt — | Lo (ry||& — T|L2(r).

We have shown (7.7) and (7.8). If b, does not depend on (y,u), then by (-, 7+ 9(y —
y),u+Y(¢ —u)) = bu(-, ¥, 1), hence

[P} = 1(b) —by) (9 —7)| < clg— 7"
This yields
732y < e (19 = Yllemllg = Tlleay) < ella— a7,

that is (7.9). O

Proof of Theorem 4.2. Define v = 4 —u and let § denote the solution of the linear
system (4.1) associated to u := v. We have § = G'(u¥)v, where G : L®(T) = Y is the
control-state mapping u — y = G(u) for the nonlinear system (2.2). By Lemma 7.1,

(7.10) -7 lly <)
where e(v) denotes the right—hand side of the estimates (7.7) and (7.9), respectively,
depending on the assumptions on b. Let us introduce the mapping ®(u) = T(G(u)).
Its derivative is & (7)v = T"(y)G' (u)v, and the regularity condition (R.) can be rewrit-
ten as

o' (u)C(u) — K (®(u)) = Z.
We know that ®(4) € K, hence a Taylor expansion yields
(7.11) (1) = ®(a) + @' (7)(a —u) + r},

where the norm of ¥ can be estimated by

(7.12) lrEllz < ce(w).
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Since ®(i) and k = ®(u) belong to K, (7.11) implies & (@) (i —u) + k +rf € K, thus
also

(7.13) @' (7)(i — 1) € —ry + K(®(1)).

In other words, we have 4 —u € C(u) and ®'(u) (i —%) <k (@) —r® where z > K (2())
0 is defined by z € K(®(u)). Owing to (R), this inequality is regular in the sense of
Robinson [18]. Therefore, we are able to apply the linear version of the Robinson—
Ursescu theorem (see [18]): Tt implies the existence of a constant Cr > 0 and a
u € C(u) satisfying ||[u — (@ — @)||poe(r) < CrlIr®||z together with

&' (u)u € K(®(u)).
Consequently, for y = G'(7)u, we have (y,u) € L(M,w) and
= (i = Wl ey < (o).

The estimates stated in (4.6) and (4.8) follow immediately.

(4.7) is proved completely analogous. Here, e(v) is defined by (7.8), || - ||y is to
be replaced by || - [|2, and || - [|r.2(r) is to be substituted for || - [|z.0c(r). We rely on the
continuity of ®(g) in the L?-norm. O

7.3. Estimates of the Lagrange function. In this subsection we derive the
estimates (4.17)—(4.19) for 7£, r&, and £". They depend mainly on the estimation of
I defined in (4.10), which is performed by the discussion of the following integrals:

(7.149) [ 1wluds < clulfag,
r
provided that assumption (A4), (i) is fulfilled, and

1/2

_ _ _ 1/2
/|§0| |y| |“| ds < C||§0y||L2(F)||“||L2(F) < C||¢2||L(s/2)’(p)||y2|
r

ey llullza )

(7.15) < cl[@ll zesse-2 oy 1yl 2o oyl ul | 22y

These estimates are justified by (A4), (ii): For n = 2 we know y € C(T) and
w € L'(T) Vr < co. If n > 3, then y € L*(T) holds for all s < 2(n — 1)/(n — 3)
(including s < oo for n = 3). The function 2s/(s — 2) = 2/(1 — 1/s) is monotone
decreasing. Therefore, s 1 2(n—1)/(n—3) implies 2s/(s—2) | n—1,so that g € L"(T)
for some r > n — 1 justifies (7.15) with a sufficiently large s. Finally,

(7.16) /|¢|y2 dS <[l coray v lara ey = (1@l psrce-a oy ol ey
IN

is estimated by (A4), (iii): In the case n = 2 we can take s = o0, as y € C(I)
and ¢ € L'(I') is true without any additional assumption. For n = 3 we know
y € L*(T) for all s < co. If s 1 00, then s/(s—2) | 1 <n/(n—1). Since p € L7(T)
holds for all » < n/(n — 1), (7.16) is true for sufficiently large s. In the case n > 4
we repeat the analysis of the case n > 3. This leads to the additional assumption
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® € L7(T) for some r > 251 Now it is easy to derive the estimates (4.17)-(4.19) for
L", rf, and r&: For instance, I in (4.10) is handled by (7.14)-(7.16) and

7] < /|¢|(|Eyy| [y1ya] + [byul(Jy1us] + [y2ui]) + [bual [uius| dS
r

< ellgnllz + llwallL2y) (ly2ll2 + lluallL2 ),

as byy, byu, and by, belong to L>(T'). The other parts of £ are discussed by means of
(A1)-(A3). This yields (4.19) after easy evaluations. In the same way, the remainder
terms are investigated. Here, the quantities in I are the most difficult ones again. For
instance, (7.14)—(7.16) applies to discuss

|r£|:/|¢| {167, — Byl ly — 712 + 2067 — Byul [y — 71 |u — ]
N

+62, = buu| ju— @} dS
< enllly = Fllem) + llu =8l Lo ) (ly — I3 + [Ju — H”%E(F))a

which contributes to 4. The other terms of r4 are handled by the estimates for
second order derivatives in (A1)-(A3) in a direct way. Simple evaluations of this
type verify (4.17)—(4.18). We leave the details to the reader.
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