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1. Introduction

The Lagrange—Newton method is obtained by applying Newton’s method or a
generalized version of it to find a stationary point of the Lagrangian function
associated to a nonlinear optimization problem. If a constraint qualification and
a strong second order sufficiency condition are satisfied, the Lagrange-Newton
method defines a sequential quadratic programming (SQP) algorithm. This is
known for finite-dimensional spaces since several years (see e.g. FLETCHER [4]
and STOER [16]).

The Lagrange-Newton method can be easily extended to infinite-dimensional
optimization problems such as optimal control problems. We mention, for in-
stance, the numerical work by MACHIELSEN [11] for systems of ordinary dif-
ferential equations including state constraints. In the context of parameter
identification problems we refer to KELLEY and WRIGHT [7], who consider pro-
blems with equality constraints, where the SQP method reduces to the ordinary
Newton method. Kuprer and SacHs [9] discuss a reduced SQP method for a
parabolic control problem with equality constraints. LeviTIN and PoLyak [10]
investigated the behaviour of SQP methods for optimization problems in Hilbert
spaces with convex implicit constraints.
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In Alt [1, 2] the theory of local convergence of the Lagrange-Newton method
has been extended to infinite-dimensional optimization problems with more ge-
neral constraints including nonlinear equality and inequality constraints. Due
to specific difficulties connected with the so-called two-norm discrepancy, an
extension to Banach spaces endowed with different norms was necessary. This
problem was investigated recently by Arr and Maranowski [3]. Their re-
sults were focused on the application to optimal control problems governed by
nonlinear ODE’s.

In this paper, we establish a convergence theorem for a class of optimal
control problems governed by a (nonlinear) Hammerstein integral equation with
weak singularity. This type of singularity is characteristic for the handling of
parabolic boundary control problems by integral equations methods (cf., for
instance Sacus [14], TROLTZSCH [17] or V. WOLFERSDORF [19]). Therefore,
problems governed by weakly singular integral equations can serve a model case
for PDE. The investigation of the SQP method for parabolic boundary control
problems in a spatial domain of dimension one can be performed in a similar
way. Details and numerical results will be published in a separate paper.

The convergence theory for the problems considered here requires a four-
norm technique making use of the Li-, Ly-, L,- and Ly-norm (2 < p < o0).
The proof of convergence can be performed extending and adapting the theory
of [2] or [3]. Due to the special structure of the control problems we found it
more convenient to proceed within the framework of [2].

2. The Optimal Control Problem

We shall consider the following somewhat simplified optimal control problem
for a weakly singular Hammerstein integral equation:

(P) Minimize f(z,u) = [ o(t,z(t), u(t))dt

subject to 2 € C[0,T], u € L (0,7,
t

T~

z(t) = /k(t,s)b(s,m(s),u(s)) ds, (2.1)
() < 1.

In this setting, ¢, b, and k are given realvalued functions satisfying the
following assumptions:

(A1) The functions ¢ = (¢, z,u), b = b(t, 2, u) have the form
=it x) + et 2)u+ Au?, b =bi(tz)+by(t,2)u,

where A > 0, and ¢1,¢ds,b1,b5 : [0,7] x R — R are twice continuously
differentiable with respect to z.



(A2) The functions ¢1, 2 and their first and second derivatives with respect
to « are locally Lipschitz on [0,7] x R. The functions b1, b5 and their
first and second derivatives with respect to « are uniformly bounded and
Lipschitz on [0,7] x R with respect to x.

For some results of our paper we shall even suppose 3, ba to be affine-linear
with respect to . Concerning the kernel k we assume

(A3) k(t,s) is continuous on
D={(t,s),0<5<t<T}

and satisfies

|k(t,s)| < clt—s|™* V(t,s)e D (2.2)
with a certain o € (0, 1).

Thus k is a weakly singular kernel being typical for the treatment of parabolic
initial-boundary value problems by Green’s functions.

Problem (P), although simplified, contains the main difficulties arising from
the investigation of nonlinear parabolic boundary control problems. The discus-
sion of nonlinear problems of the type (P) is quite involved, if any kind of diffe-
rentiation is necessary. A two—norm technique is indispensible, ¢f. TROLTZSCH
[18] for first order necessary optimality conditions and MAURER [12], GoLD-
BERG and TrROLTZSCH [5, 6] for second order conditions. All what is "local”
in a certain sense must be defined in the L. -topology. Statements invoking
sufficient second order conditions must be formulated in the weaker norm of Ls.
Moreover, we shall need also the spaces L,(0,7) and L1(0,T). Altogether these
facts give rise to introduce the following quantities:

We shall write Lg := Lg(0,7), 1 < 8 < 00, and C := C[0, T]. These spaces

are equipped with their natural norm || - [|[35. By || - |lcc We shall denote also
the norm of C[0,7T]. Moreover, we shall work with L, , := C x L, endowed
with the norms (2, )lep = 2]c + [y and |G, )5 = [ally + [all5.

In the case p = oo we have [|(z,4)]|c,p = [|(%,u)]|co. L£(X,Y) stands for the

Banach space of all continuous linear operators between Banach spaces X and

Y, L(X) :== L(X,X). In the case X = Lg, Y = L, the norm of L(X,Y) is

|- ||g=~- The elements of Lo, , will be written as v = (2, u). This notation will

not cause confusion with the inner product of Ly, which is denoted by (-, -), too.
Next, we introduce a linear operator K formally by

t

(Kz)(t) = /k(t,s)m(s) ds.

0

It is a known conclusion of (2.2), that K transforms continuously Ls(0,7T) into
Lgi(0,7T), if
. > ! + 1 (2.3)
—>—-ta-— .
g B



L,(0, ) — C0, T] (continuously) provided that

and 1 < B < 1/(1 — a), cf. KRASNOSELSKII a. o. [8]. Moreover, we have

1

> R
p 1l -«

(2.4)

Now we keep once and for all one p fixed satisfying (2.4). Moreover, we define
p by
_ [ p, if @3 and by are affine-linear w. r. to x
| oo, otherwise.

(2.5)

The role of p will be explained later.

Although K may be regarded in different spaces we shall in any case use the
same notation K. The adjoint operator K* to K € £(Lg(0,7)), 1 < 8 < oo,
has the form

(K*z) /k (s, 1)z (2.6)

We take (2.6) as formal definition of K*. This integral operator is acting con-
tinuously between the same spaces as K.
Finally, we need the nonlinear operator B : Loo p — Lp,

B(z,u)(t) = b(t, z(t), u(t))

and the set U3 = {u € Lo, : |u(t)| < 1 a.e. on [0,7]}.
By means of these quantities our Problem (P) admits the abstract form

(P) f(z,u) = min,
¢ — KB(z,u)=0, ueU,

where (z,u) is taken from L, .

The use of first and second order derivativesof f : Lo, , = Rand B : L, , —
L, requires some care, although f and B are twice continuously differentiable in
the sense of Fréchet. Thisisa (‘on(‘lu@ion of Assumptions (A1), (A2). Derivatives
will be denoted by f’, f”, B', B" etc., partial derivatives by fz, fu, foz, fou
ete.

Owing to the very special form of f and B their derivatives can be identified
with certain real functions: At ¥ = (#,4) € C x U@ in the direction h = (z, u),

D = [ (oelt, 10)a(0) + it 70)u(t)

By z € C and |a] < 1 we have ¢, ¢, € Lo. Therefore we can identify f, = ¢,
fu = ¢y and write the derivative of f using the inner product of L,

F'@h=(f'(2),h) = (fo(7), 2) + (fu(?), u), (2.7)



where fr, fu € Leo. Analogously,

(B'(®)h)(t) = bz (¢, 8(1)) 2(1) + bu (1, B(t)) u(?), (2.8)

where b, b, belong to Lo,. Owing to this, B’(¥) can also be regarded as
continuous operator from Lg x Lg to Ly (more precisely: B’ can be continuously
extended in this way). We shall do so, thus

B'(v)h = By (0)x + By (?)u,

where By (0) € L(L2), Bu(?) € L(L2). Note that in this sense By (7), By(7) are
self-adjoint. We shall see — and this is very essential — that all ¥ occuring in
our analysis belong to a bounded set S of V = C x L. Therefore ¢z, ©u, bz,
b, are uniformly bounded and Lipschitz on S, and

max ([ fo(v)leo, 1 fu(v)lloc) S cp Vv €S (2.9)

(1) = £ (), DI < eqlon = vl (2.10)

1B (v)hll, < epllhlls (2.11)

I(B'(v1) = B'(v2)) |, < epllvr — valloo 5l 2]l (2.12)

Vo,v; € S, h € Lo with certain positive constants c¢, cp. In (2.11), (2.12)

we need not restrict to .S, as B and its derivatives are supposed to be globally
Lipschitz.
For the second derivatives we have

£"(9)[h1, ha] = / {wat, 501 ()ea(2)

Foou(t, v(t)) 1 (D)ua(t) + z2(t)ur(t)) +2Au1()ua(t) (2113)
B"(0)[h1, ha](t) = bua(t, 0(t))z1(t)22(t)
b, 501 (Bia(1) + ()10 (1) (214
where @rr, Pru, oz, bru are Le—functions. Moreover, for 1/8 4+ 1/8" = 1,
1< 3,8 < oo,
f”(l})[hl,hQ] S cthlllﬁHhQHﬁ' V’U c S, th c Loo (215)
|B”(v)[h1, ho]l; < enlhalls]|halls (2.16)

(we can use w. . 0. g the same constants as in (2.9-2.12)), and

1ot = 3ol o i
"(o1) — f"(vs))[h1, b <{(f||1)1 V2|00, (| 11]|c0 8 B 92.17
() = FHoa Dl B2l o = wallos gl sl 17

- co,8||h HOO ||h2|| !
B// v _ B// v h )h < {CBHvl U2|| 7/6” 1 B B 218
H( ( 1) ( 2))[ ' 2]”1_ CBHvl_U2||00717||h1||ﬁ||h2”ﬁ' ( )



Yv; € S, h; € Loo. We shall discuss the non-trivial estimates among (2.9)—(2.18)
in Lemma 6.1. As a consequence of Assumption (Al) on the form of ¢ and b
the Problem (P) admits at least one optimal solution vo = (2o, up). This can
be shown by standard methods.

Introducing the Lagrange function £ = L(v,y*) = L(z, u, y¥),

L(z,u,y") = f(z,u) — (v, z — KB(z,u)),

y* € L, the following first order necessary optimality condition can be establis-

hed:

Lemma 2.1 Let vg = (20,ug) be optimal for (P). Then a unique Lagrange
multiplier y§ € Lo exists such that

Eﬂ(mOJUOJyg):O (219)
(Lu(zo, w0, Y5), u —uo) >0 Yue U (2.20)

The proof ist standard (with exception of y§ € L) and relies on the exi-
stence of (I — K By(vg))~" (cf. Appendix) in all Lg—spaces, see GOLDBERG and
TrOLTZSCH [5]. The multiplier ¥ is the solution of the adjoint equation

Yy = fo(vo) + Bo(vo) K™y (2.21)
(being nothing else than (2.19)). Written more explicitely,

UB(0) = 1, 0(0)) + b v0(0)) [ (s, 0055 (s) ds. (2.22)

t

Now y¢ € L is obvious.
The most important assumption for our theory is the assumption of the
following second order sufficient optimality condition:

(SSC)  There is a § > 0 such that at vg = (20, ug)
L"(vo, y5)[h, h] > 8||h[]3
for all h = (2,u) € Lo p such that 2 = K (B;(vo)z + By(vo)u).

For a discussion of (SSC) we refer to GoLpDBERG and TroOLTzZSCH [5], [6].

3. Stability of quadratic control problems

The SQP method can be described roughly as follows: Let v = (z,u) be a
certain starting element with an associated Lagrange multiplier y*. Adopting
the notation introduced in [2] we denote the triplet (z,u, y*) by w and indicate



the correspondence to w with a subscript, w = (2,4, ¥*) = (Tw, Uw,¥S) =
(vw, y%). The optimal solution corresponds to wg = (zo, uo, ¥)-

Starting from w = (2w, Uw, ¥) the next element is obtained as solution of
the quadratic programming problem

(QP),  F(v,w) = (f'(vw),v = vw) + 3Lou(vu, ¥5)[v = vu,v — v,,] = min!
subject to
g(vw) + g/(Uw)(U - vw) = 0; vE Ca

where

g(v)=g(x,u) =z — KB(z,u),
C={v=(z,u)|ueU}.

By Assumption (SSC) the functional F is strictly convex. In view of the As-
sumptions (A1)-(A3), Lemma 6.2 shows that the convexity retains under small
perturbations, i.e., if w belongs to a sufficiently small L, 5 x L,—neighbourhood
of wg The role of p is connected with this. p is the smallest value among p, oo
guaranteeing this property. The feasible set of (QP)w,

Y(w) ={vel|g(vw)+ ¢ (vw)(v —vy) =0},

is always non-empty, convex, closed and bounded in C' x L,. The same holds
true for (w) regarded as subset of Ly X Ls. Hence Y(w) is weakly compact
in Ly x Ly and (QP), admits a unique solution (Z, %) = ¥, with associated
Lagrange multiplier g . This follows from Assumption (SSC) and Lemma 2.1.
Note that (Zy, #w) € C X Lo follows automatically from the special form of the
constraints of (QP)y.

The next iteration is started at w = (Zy, tw, ).

Following AT [2] we introduce

G(v,w) = g(vw) + ¢'(v)(v = vu).

The Lagrange function for (QP),, is

L(v,w,y*) = F(v,w) — (v*,G(v,w)).

Thus the multiplier 7, being the solution to L,(v,,w, %) = 0, is obtained
from

where hy = Zy — Xy, hy = Uy — Uy, . More explicitely,

+ (Bez (vw)[he, 1) + (Beu(vw ) [hu, - ])*) Ky = 0. (3.2)



Note that the adjoint operators are defined formally in the Lo—sense. (3.2) reads
in explicite form

Y (t) — bz(t,vw(t))/k(s,t)ﬂf‘u(S) ds = @ (t, vu (1)) +

el v () (Fu (1) — 0(0) + peully 10 (1)) 0 (1) — wa (1)) +
F(ba (t, vu (1)) (2w (1) = 2w (1)) + bou(l, v () (0w (1) — v (1))
/ k(s, t)ys (s)ds. (3.3)

t

Lemma 3.1 Under the Assumption (SSC)
F(v,wo) > 8|v — wol3 = F(vo, wo) + §[|v — vol[3 (34)

for all v € X(wq). Thus vo is the (unique) global solution of (QP)y,. Moreover,
y§ is the Lagrange multiplier to vy regarded as solution of (QP)y,.

The proof is standard (see e.g. Lemma 3.4 in ALt [2]).

We shall discuss the question of stability of the problems (QP), along the
lines of ALT [2]. Thereby we shall concentrate on the main points different
to the presentation in [2]. In what follows, in W = C X Lo X Lo the norms
il = [l -+ sl + 55l 1 < 8 < 00, 0l = oo+l o+ 15 s
and ||w|lw = ||Twl|oe + ||tw|lp + U5 ||p will be used.

Lemma 3.2 There is a C x Lz x L,-neighourhood Ni(wg) such that for all
W = (T, Uy, Yy) € Ni(wo) with u, € U the Problem (QP), has a unique
solution By, = (Zy, Uy ) with (unique) Lagrange multiplier §f € Lo, and

1/2

15w = woll2 < eslw — wol|, (3:3)
1% lleo < cr,

where cg and cy, are independent of w.

Proof.  Existence and uniqueness of 9, € X(w) have already been discussed
after defining (QP)y. Tt remains to show (3.5-3.6). In particular, we have for
sufficiently small N(wg) in C'x Ly x L,

6

for all A with ¢’(vy)h = 0 (Lemma 6.2). By Lemma 6.4, (6.7), there is { =
(1‘5, 11,5) € Y(wp) such that

0w = &ll2 < ellvw = vollo, (3.8)



where ¢ is independent of w. In what follows, ¢ will denote a generic constant.
From Lemma 3.1, (3.4)

811é = woll3 < F(& wo) < F(iy, w) + |F(€, wo) — F (i, w)|. (3.9)
Again by Lemma 6.4, (6.6), we find &, € X(w) such that
6w — voll2 < cl|vw — vol|2. (3.10)

This implies (note, that ,, solves (QP),)

F(Ew;w) < F(Ew,w) = (fl(vw)a&:w - vw) + %ﬁvv(vway:;)[gw — Uy, — vw]-
(3.11)
On N(wg) the norms ||zy||co, ||twllco, [|¥5]|cc are uniformly bounded. The
same refers to ||€,]|co, as &w € E(w) (apply Lemma 6.3). Thus ||f/(vy)]|2,
[|Loo (v, ¥5)[Ew — Vuw, -]||2 are bounded independently of w by (2.10), (2.15-2.16).
We can proceed identically to [2]

F(vw, 0) < efléw = vull2 < ell€w — voll2 + ¢llvo — vull2
< cfjow — vol2 (3.12)

by (3.10). From Lemma 6.5 we obtain the Lipschitz continuity of F' with respect
to the Ly—norm. After inserting (3.12) into (3.9),

B11E — voll3 < ellv — vollz + e (I = ull2 + lw — woll2) < eflw — woll:

by (3.8). Since
10w — voll2 < [|vw — €l]2 + [I€ — voll2

the inequalities (3.10), (3.8) and |[|vy — vo]|2 < ||w — wol|2 imply (3.5).

Concerning (3.6), we regard the adjoint equation (3.1) in the form (3.3). All
terms on the right hand side of (3.3) are uniformly bounded in Leo. (|8 —uw| <
2, (vw,yk) is bounded as element of N(wgp), Z, is bounded by Lemma 6.3 as
a solution of (Zy — 2w) — K By(vy )(Zw — 2w) = KBy (Ve )(tUw — uw). K*y is
bounded in Lo, since K* : L, — L is continuous.)

According to our assumptions, the derivatives of ¢ and b are uniformly
bounded. Hence

19 — (Bo (v )" K* 5 [l < c.

Again Lemma 6.3 yields ||75 || < c. a
Remark: In all what follows let Ni(wq) be so small, such that |jw — wo|| < 1
holds for all other norms || - || used in this paper. &

Corollary 3.3 There is a c, independent of w € Ny(wq), such that

150 = volloo p < slw — woll L (3.13)

00,p*



Proof. We obtain from (3.5)
T 1/p

i = ol = | [ 1) = wot) Pl 0) = wo(o) =2
0

1 _
< (@) i, — wol3'" < ellw — woll3” < elfw — wol 12,
as |ty — ug| <2 by u € U, From z,, € Y(w),

(Zyw — 2y) — KBy (v )(Z — o)
= KBy(vy)(ty — Uy ) — (2 — 20) + K(B(vy) — B(vg))
= K Bu(u) (i — 10) + (w0 — 1)) — (0 — 20) + K(B(vu)) — B(oo))
hence
(Zw — 2w) — K Be(vw)(Fo — 2w)||eo
< || K|lp=oo{lltw — uollp + [luo — tuw|lp} + [|2w — olleo + ¢|lvw — vol[oo,p
< cllw — wol |7, + clluo — | + cf|w — wol[oo

< e (llw = woll 1%, + llw = wol o p)

< cljw = wol|LF,

as ||w — wol|eo,p < 1. Again Lemma 6.3 yields
180 — 2w lloo < ¢l|w — wol| L5,
thus (3.13) is true. O
Corollary 3.4 For a certain ¢, independent of w € Ni(wy),
175 = vsllp < ellw —woll 2%, (3.14)

Proof. The adjoint equations defining yo and g, are (2.22) and (3.3), respecti-
vely. Thus

Yo (1) = [¢1 (o) + wa(zo)uo + (b1 (z0) + by(20)uo) K y5] (1)
o (1) = [ (2w) + @5 (2w )t + (01 (2w) + 05 (2w ) ) (KT, ))(2)

H() (zw) + @5 (2w ) tw ) (Zw — Tw)
F(K Yo ) (0 (20) + 05 (20 )t )(Fro — )] (1)
H(po(w ) (e — ww) + (KXY )bo (2w ) (e — ww)](t).

Subtracting the two equations we arrive at

(7 — v5) — (%1 (=0) + by (wo)uo) K*(5 — vl

10



< lPi(zo) = ¢i(@w)llp + [|£5(z0)uo — 5 (2w )uwlp

(0] (2w) + b5z )uw) — (b5 (za) + b5 (z0)uo)|lp [ K75 [ o

@Y (zw) + 5 (2w )uw lloo (|20 = zollp + |20 = zwllp)

HIE* Y oo [16Y (2w) + b5 (2w )tw [0 (12w — Zollp + (|20 — 2wllp)

@5 (2w )[loo (1w = vollp + [luo = uw|lp)

I E* Y oo 105 (2w)|oo (1w — uollp + (1o — ww|lp) -
The quantities ., uw, ¥} belong to a C'x Ly x Ly—neighbourhood of (zo, uo, ¥f),
[|7% || can be estimated by (3.6). Taking advantage of the Lipschitz continuity
of ¢;, b; and of the continuitiy of K* : L, — C,

(T = ¥5) = b (vo) K* (T = ¥5)llp < e (19w — vollp + [[vo = vulp)

< e ([[9w = volloo,p + [|w — wollp)

< (1w = wollif5, + llw = wolleo p)

P
< c|lw — wol)L* (3.15)
as [|w — wolleo,p < 1. The proof of the corollary is finished by Lemma 6.3. O
Corollary 3.5 There is a constant ¢ > 0 such that
e e L e [ (3.16)

—_ 00, p
for all w € Ny(wo).

Proof. This result follows from the first order necessary optimality conditions
for ug and @,,. Writing down (2.20) for ug and

(Lo(Vw, w,§),u— ty) >0 Yu € U

for u,, we find after some calculations

T
/{gpg(:ﬁo) + bo(zo) K*y5 + 2AugHu —ug)dt > 0 Vu € y2d (3.17)
0

T
/{302(3311)) + Sofz(mw)(fw - Iw) + 2Aﬂw + bIQ(Iw)(iw - Iw)l{*yz +
0

by (20 ) K*T5 } (1 — @) dt >0 Yu € U, (3.18)
In a standard way a discussion of (3.17), (3.18) yields

uolt) = Pron =g la(o) + ba(z) K*w5)(1))
(1) = P[—m]{—%[m(rw) +ba(20 ) Koy + ¢5(20)(Fuw — 2w)
+b5(20 ) (Zw — 2w ) Ky ](1)}

11



for almost all ¢ € [0,77], where P_y 1) : R — [—1,1] is the projection operator
onto [—1,1]. Py 1y is Lipschitz with constant 1, hence

_ 1 .
[[uo = twlleo < o3 Allp2(z0) = 2(w)llec + [Ib2(z0) K* (55 — F)lloo

+[(b2(20) = ba(2u)) K™y lloo + ll¢05(20 ) (Fw — 2|0
Hb5 (20 ) (Fw = 20) Ky [0 }

<eil|zo — 2wl + callys — T llp
Feallzo — zwlloo 17 lp + calllZw — zolloa + (|20 — 2w ||oo)

+es([|Bw — Zolloo + (|20 — 2w |09 Ilp

<e(||lwo — wl|oo,p + ||wo — w||(1)£{’p) (3.19)
by Lipschitz continuitiy of ¢;, b;, (3.14), (3.13), (3.6) and the continuity of
K*: L, — C. (3.16) follows from (3.19), as ||w — wo||ep < 1. O

Remarks:

1. Repeating the proof of Corollary 3.4 with the knowledge of Corollary 3.5
we can even show

175 — v lleo < cllw — wol| X2, (3.20)
VYw € N1(wg). This is not necessary for our further investigations. &

2. The estimates (3.13), (3.14), (3.16) and (3.20) remain true if [Jw — w0||‘1,[4p

is substituted for ||w — ’U)g”ié{)p, since

[l = wolleo p = 12w = @olleo + [|tw — wollp + 193 — ¥3lp
< l#w = 2olloo + elltw — wollp + Iy — w5 llp

= cljw — wollw.

4. Right hand side perturbations

Following ALr [2] we consider now the close relationship between the stability

of (QP),, and certain right hand side perturbations. Let mp = (0,0,0) € Lo, x

L x C be the reference parameter and # = (v*, y) = (v}, v%,y) € Lo X Lo x C

a perturbation. We consider the perturbed quadratic programming problem

(QS)x F(v, ) = (f'(vo),v—vg) + %,Cm)(vo, Y [v —vo,v—vo] — (v*, v —wg) =
min!

(4.1)

subject to

G(v,7) = g(vo) + ¢'(vo)(v —vo) —y =0, v € C. (4.2)

12



Under our assumptions, vo = (2o, uo) is a global solution of (QS)r, with
Lagrange multiplier .

(QS)r has a quadratic objective and linear constraints. As a simple conse-
quence, the second derivative of the corresponding Lagrange function and the
first derivative of the linear constraint operator do not depend on 7. In view of
this, the quadratic objective is coercive in the Ly—sense, uniformly with respect
to m. Moreover, the feasible set is non—-empty for all #. We may check this
taking the admissible control ug. Then (4.2) reads

t

z(t) — zo(t) = /k(s,t)bz(s)(a:(s) —zg(s))ds + y(t).

0

This Volterra equation possesses a unique solution x belonging to the same L,—
space as y. Therefore, it can be shown along the lines of the preceding section
that there is a Lo, >-neighbourhood N(0) and a constant ¢ > 0 such that problem
(QS)x admits for all # € N(0) a unique solution vy = (2, ur), and

1o = vollz < |1y (4.3)
We shall improve this result without making use of (4.3) in Theorem 4.2.

Lemma 4.1 Let y& be the Lagrange multiplier corresponding to vr and
1< < o0. Then

I = 68115 < elllve — volls + 17, (44)
where ¢ is independent of w.
Proof: We have the two adjoint equations
Yo = fa(vo) + Ba(vo) K*yg

Yr = fa(vo) = 05 + (Law(v0, ¥5)[wx — @0, T+ Lou(vo, 45)[ur — uo, 1)) +
+Ba(vo) Ky

Identifying the functionals with corresponding measurable functions we arrive
after subtraction at

(o = ¥r — Bo(vo) K*(y5 —y2))(t) = v3(t) — (Poa(t)(@r — 20)(t)
+@ou(t)(ur — uo)(t) — (K*y5) () (boo (t)(zr — 0)(t) + bou(t)(ur — u0)(1)),
where Yo, Pzu, oz, by are taken at (2o, ug). Thus
%5 — ¥z — Be(vo) K*(y5 — ¥2)llg < llvzlls + c(llzr — 2olls + [|ur — uolls)
<l + ellox — volls-

Again Lemma 6.3 yields the assertion. a
Now we are able to improve the estimate (4.3) to the order 1.
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Theorem 4.2 There is a constant ¢ not depending on w, such that
llox — woll2 < cf|mll2, (4.5)
for all m € (LQ)S.
Proof:  Let m = (vX, yx) be given. By definition, g'(vo)(vr — vo) = Yr, 1. €.
(xr — o) — KBg(vo)(xr — o) = KBy (vo)(ur — ug) + Yr-

Let £ = vgr — vo = (#x — o, ur — ug). We define & = (1‘6 — &g, Uy — ug) by
(zg —x9) — [X'Bx(vg)(z'é — x0) = K By (vo)(ur — ug),
i.e. (Jfé—l‘()) = (I—KBm(vO))_] K By (vo)(ur—ug). By Lemma 6.3, ||.1:,r—1:é||2 =
I( = KBz (vo)) ™ 'yxll2 < cllyx|l2 thus
1€ = €ll2 = lI(zr — 2, 0)[]2 < ¢llyxl2 < ell7]|2, (4.6)
and

l1€]]5 < IIEiIIE +11€ = €115 + 21IEI11€ — €]l
< €l + ellmllz + 2¢llwlz(]l€]l2 + ellw]l2). (4.7)

Let Q(E,{f) = £M(v0,y’5)[5,£]. By (SSC),
811€]13 < Q(E,€)
=Q(EH-2Q - - QE-EE-9)
< Q&) + clléllallé = &ll2 + ellyx 3. (4.8)

Now we can proceed completely analogous to the further proof in [2] using the
Ly-norm: By means of the first order optimality conditions for v, as a solution
to (QS)» and for vy as a solution to (P) we are able to conclude

Q& €) < (v7, ) + (Ur — ¥, ' (v0)6)- (4.9)

Tnserting this in (4.8) and the obtained estimate for ||€||3 in (4.7) we arrive after
a couple of formal manipulations at

€115 < 67 (lvxll2lléllz + (17 = v ll2llg" (vo)l|2—2l €] ]2
+ellEllzllyzllz) + ellly=ll2 + cllmll2li€]l2),
provided that [|£|]2 > [|7||2 (cf. ALT[2]). From this, (4.4), ||é||2 < ||l + ¢l|=||2
(by (4.6)) and ol < [lwllElls (use Ilnllz < [E]l) the result (4.3) follows

immediately with a certain constant ¢. In the case [|€||2 < [|7||2 (4.5) is trivially
satisfied. Thus (4.5) is true with ¢ := max(1, ¢). O
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It is very essential for our theory to have a counterpart of (4.5) at disposal
in the Ly—norm. To this aim, we shall work with the norm

7700 = llozllp + llo% 1l + [1¥l]oo-

We recall that p = oo in the general case and p = p, if 9, by are affine-linear
with respect to z. Now take A € (0, 1) (sufficiently close to 1) and define p; by

1 1
=g, (4.10)

By (2.3), K maps continuously Ls into L,,. Exploiting (4.5) with respect to u,
llur = uolla < el < ellllpy 00 (4.11)
The equation for z; — zq is
Zr — 0+ KBg(xr —x0) = KBu(ur —ug) + y,
thus, invoking Lemma 6.3,

27 = 2ollp, < c1[|K Bu(ur = uo)llpy + c2(|yllp,
< e([lur = woll2 + [yl )
< e(ellllpy,o0 4 [I7llps,00)
< elllps,o0- (4.12)

Next we insert (4.11 — 4.12) in (4.4), thus

llyz = wglla < e(llox = voll2 + [|7]l2)
<cl|7]|a. (4.13)
The estimate (4.11) can be improved to
lltr = wollp, < ellllp,c0 - (4.14)

As in the proof of Corollary 3.5 we have
1
ug = P11 - oy 1#2(z0) + (K*yg)ba(20)} ]

ur = Pog[ - %{4/’2(1’0) + (K*y5 )ba(x0)
+(5(x0) + (K y5)by(20)) (2r — 20) — v }],

which implies in turn

o = uxllp, < c(llzr = 2ollp + 1K7(W5 — ¥2)llps + 1% lp)
< c(lImllpy + llvg — yxll2) < elimllp, +[I17ll2)

<ellllp, < ellllp,co-
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In this way, we have performed one step of a bootstrapping argument. Next,

we define py by
1 1 1
—=—=-XMl-a)==-=2)1-10a).
P2 P 2
By the same procedure as before, (4.14) can be obtained with ps substituted
for p1. After finitely many steps we arrive at the case, where

1 1 1
1 Al—a)=—kX1—a)<1—a,
Pk Pr—1 ( ) 2 ( )

while pr_1 < 1/(1 — @). Then we obtain immediately (4.14) in the form
llur — wolleo < €||7|7,00 -
We have just proved

Theorem 4.3 There s a constant ¢ not depending on w, such that
l[ox = volleo < ell7|p,c0, (4.15)

for all m € (Loo)3,

There is a close connection between solutions of (QP),, and (QS),. In order
to link these two programs we assign to fixed w € C'x Log X Lo, v € Lo p and
y* € Ly, the elements

v (v, y*, w) = f'(vo) + Low(vo, ¥5)[v — vo, ] — ¢’ (vo)*y*
—F(vw) = Lo (v, Y )0 = v, 1+ 9" (v )y (4.16)
Y(v,w) = g(vo) + ¢'(vo)(v — vo) — g(vw) — 9" (v )(v — vu).  (4.17)

If w 1s sufficiently close to wg, then it can be shown, that v,,, the unique solution
of (QP)w, also solves (QS)z, where T = (v (0w, U5, w), Y(V)). The next lemma
is the main prerequisite to prove that.

Lemma 4.4 There are a Lo, z—neighbourhood Ny(vq) of vg and a C'x Ly X Ly~
neighbourhood N3(wq) of wg such that

l9(v, w)lleo < e1lvw — vol|% 5 + c2llvw — vollo5llv = volloo, (4.18)
and

[l (v, 57, )]l < eallvw — voll%, 5 + eallvw — volloo pllv — volloo 5
+esly*llpllvw = vollZ 5+ esllvw = volleo 711y = w5l

+erllvw = volleo pll¥ — ¥llp + esllv — volloo pllve — w5 llp (4.19)

for all v € N3(vg), w € No(wy).
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Proof: For y we obtain

l9(v, w)lloo = llg(vo) = g(ve) = g' (v )(vo = vu)loo

+I(¢'(vo) = ¢' (vw))(vo — v)leo
S K lp—ool|B(vo) = B(vw) = B'(vw )(vo = vu)llp
H Kllp—col|(B'(v0) = B'(vw))(vo — )l

<etllvo = vullZs p + €2llvo = vulloo pllvo = vlcop
<cillvo = vull%, p + callvo = vulloo sllvo = vlloo 7,
as B is twice continuously differentiable from L, , to L, (here Assumption (A2)

of linearity with respect to u is essential) and B’ is globally Lipschitz on C'x /24,
The estimation of ||v*|; is more delicate. We have

U*(Ua v, w) = fl(vo) - fl(vw) - f”(vw)[vo — Uy, ]
+(f" (vw) = F"(v0))[vo — v, ]
—y* o K(B'(vg) — B'(vy) — B"(vy)[vo — vu, ])
+y* o K(B"(vo) — B"(vw)[vo — vu, ]
+(y* = v5) o KB"(vo)[vw — vo, ]
+y5 o K(B"(vo) — B"(vw))[vo — v, ]
—{—(y‘g — y;;) o [X’B”(vw)[vw — vo, *]
+Hyh —ys)o I(Bll(vw)[vo —v,]
=I141I+...4+ VIII

Now we handle I — VIII separately.

I Set of = (1) — /(1) — 1" (va)lo0 — v, ]
We take z € Loo X Lo with ||2]|q < 1, 1/p+ 1/q = 1, arbitrarily but fixed

and apply o to z. Differentiating the real function
U(s) = (f'(vw + s(vo — vu)), 2)
with respect to s we find in a standard way

1

mmm=/wwwmm—%»—ﬂm»m—%wws
0
< cllvo — v loo 5110 — v loo pll#lla

by (2.17). Thus (roughly speaking) v} € L; x Lz and
[[t]l7 < esllvo — v 1% -
IT: In a simpler way,

(v, 2)] < 1" (vw) = [ (v0))[vo — v, 2]

< eflvw = volloo,pllvo = vlloo 5121l
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by (2.17) implying [|vfyll5 < callvw — volloo pllvo = vlleo 5
I1I:

(v, 2)| = [(K*y*, (B (vo) — B'(vw))z = B"(vy)[vo = vw, 2])l

K*y* (B"(vy + s(vg — vy )) — B (vy))[v0 — v, 2]) ds

KXy Joo[|(B" (vw + 5(v0 = vw)) = B"(vw))[vo = vw, 2]([1 ds

|fe
|

by (2.18). Hence ||vfy|l5 < eslly*Ilpllvo — vu% 5

[lvo = val 26 ll21l5

In the same way, the estimations for TV — VIIT can be performed. Here,
as in III, the smoothing property K* € £(L,, C) is essential, so that ||K*(y} —
Yo)lloo < cllys, — 45 lp- =

Completely analogous to [2] Lemma 4.5 we can derive

Lemma 4.5 Let w = (Zy, Uy, Y)) € C X Log X Lo, be given. Suppose that
Uy = (Zy, Uy) 15 the corresponding solution of (QP), with Lagrange multiplier
ys . Define

7= U*(ﬁwag:))w)a g = y(l_}waw)a T = (1_}*; g)

Then ¥y is a global solution of (QS)z, and ¥, is the Lagrange multiplier for Z,,
as solution of (QS)z.

Now we are able to state the main result of our paper.

Theorem 4.6 Suppose that Assumptions (A1)-(A3) and (SSC) are satisfied.
Choose p and p according to (2.4), (2.6). Then there is a C' x Lz X Lz~
neighbourhood Ny(wg) of wo = (xg,uo, y) such that for all w = (vy,y5) €
Ny(wq) the Problem (QP),, has a unique solution . Let §¥ be the correspon-
ding Lagrange multiplier. Then

1P ) = (0, 88l < w0 = w2 5 (4.20)
holds with some v € R .

Proof: We take N(wq) C Ni(wo)N\Na(wq). Let w € N(wp) be given. According
to Lemma 3.2, (QP),, admits a unique solution v, satisfying (3.5) with multiplier
yx satisfying (3.6). Define the perturbations #*, §, T according to Lemma 4.5.
Due to the Corollaries 3.3 and 3.4, |9y — v0]|co,p Temains bounded on N (wyp).
By (3.6), the same refers to || — ¥§|lp < ¢l — ¥§||co- Inserting these bounds
into (4.18), (4.19),

[19lleo < €llvw = volloop < cfjw = wolloo (4.21)

17715 < ellvw = volloo 5 < ellw = wolfoo 5 (4.22)
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Now, Lemma 4.5 ensures that o, is a solution of (QS)z with Lagrange multiplier
y% . Thus Theorem 4.3 applies

1P = volloo,p < €l|7]p,c0- (4.23)
By means of (4.21), (4.22) we are able to continue
7w = olleo,p < ellw = wolloo 5, (4.24)

and from Lemma 4.1, (4.4)

197 — ¥5llp < elltw — volloo,5 + (7|7
< clllp e (4.25)
<e||lw — wol|oo 5 (4.26)

The last inequality follows from (4.21) — (4.22). Inserting (4.24), (4.26) in (4.18),
(4.19),
[1Fllce < exllw —wol 3, 5 + eaellw — wol|oo p|w — wol oo 5

< cllw - woll%, 5. (4.27)
Similarly

1715 < eallw — wol|% 5 + cacllw — wo|eo,pllw — wolloo 5
+esea||w — woll2 5 + cscllw — wollo gl — wolloo 5
+e7||w — wolloo,pl|w — wo|oo 5 + e8| — wol|oo,pl|w — wol|oo,p
<cljlw— ’(U(]”Zo’p. (4.28)

The last two inequalities yield in particular the optimal estimate
17ll7,00 < ellw = woll%, 5. (4.29)
Ve > 0, where ¢. depends only on ¢.
Inserting (4.29) into (4.23) and (4.25) leads to the estimate (4.20). O

5. Convergence of the SQP method

In this section we introduce the SQP method and state a result on local con-
vergence of the method.

The following sequential quadratic programming method is a straightforward
extension of Wilson’s method (see [15], [13]) to the infinite-dimensional Problem

(P).
(SQP): Choose a starting point wy = (vq,y5). Having wy, = (vg,y5), compute

W1 = (vk+1,y}§+1) to be the solution and the associated Lagrange multiplier
of the quadratic optimization problem (QP),,. . <&
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Using Theorem 4.6 it follows now by standard proof techniques that the
SQP method converges quadratically to wyq if the starting point wy is choosen
sufficiently close to wqg (see [2], Theorem 5.1). Let v be defined by Theorem 4.6.
Let Bys(wo) denote the ball of L 5 around wg with radius 6.

Theorem 5.1 Suppose that Assumptions (A1)-(A3) and (SSC) are satisfied.
Choose p and p according to (2.4), (2.5). Let v > 0 be such that 6 == vy < 1,
and Bys(wg) C Na(wo). Then for any starting point wy € Bys(wo) the SQP
method computes a unique sequence wy with

s = wolloo,p < 76771,
and wy, € Bys(wq) for k> 2. &

Thus we have shown local quadratic convergence of the SQP method.

6. Appendix

Lemma 6.1 Let a = a(z) : R — R be a C?—function, such that a, a', a’ are
globally bounded and Lipschitz on R. Then the nonlinear Nemytskii-operator A,

(A(z, w))(t) = a(2(t)) - u(?)
is twice continuously Fréchet differentiable from C x Lg into Lg for all1 < 8 <
0o. Moreover, let S be a bounded set of C X Loo. Then for all v, v; € S and all
hi € CX Loo,1=1,2,
47 (v)[ha, ha]ll1 < ellha[|hallp
(A" (1) = A" (v2))[h1, ha]lly < cllvr = valloo pllR1lloo IRzl

(1/841/p" = 1), where ¢ does not depend on v, v;.

Proof. Tt is easy to show that the mapping D : (x,u) — x - u is Fréchet-
differentiable from C'x Lg to Lg. Moreover, the mapping (¢, u) — D'(z, u) from
C x Lg to L(C x Lg, Lg) is linear and continuous, hence Fréchet—differentiable,
too. This is equivalent to the existence of the second order derivative of D.
Consequently, the composition A(z,u) = D(a(z), u) has this property, too. Let
v = (x,u), v; = (x5, ui), hy = (&, M), 1 = 1,2, and [ be the uniform bound and
Lipschitz constant for a, a’, a”. Tt holds

A" (v)[h1, ha](t) = a”(x(t))u(®)€1 (£)E2(t) + a'(x(1)) (&1 (E)n2(t) + E2(t)m (1)).
Therefore

|A" (v)[h1, Ra]l[+ < Ululleollénllgll€2llar + Ul llgllmallsr 4 UlEalls il
<c(|l&lls + Nlmllg)([1€=llgr + [Imallgr)
=c[|h1||g||R2]]p-
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The Lipschitz—property of A’ is seen as follows
((A"(v1) = A"(va))[h1, ha] = (a" (1) — a"(22))ur&1€a + " (22) (w1 — u2)€1&2
+(a'(z1) — a'(22)) (€12 + Eam)- (6.1)
Thus
(A" (v1) — A" (v2))[h1, ha]ll1
< Hllzr = waflool[uallgll€nllo[I2llsr + [[ur — wallgll€1loo[|€2]] 51
Flz1 = 22|oo ([|€1 o Imall + [1€2llp: [1mls)}

< elller = zalloo + [lur = uallg) (I lloo + llmll)([1€2]l57 + lIn2lls)
= cllor = valleo,plI1loo, gl 2l -

Remark: Completely analogous we deduce from (6.1)

[1(A"(v1) = A"(v2))[h1, hal|l1 < el|vr = valloo |21 ]g P2 5 -

<& If a is in addition to the assumptions affine-linear, then a”(2) = 0. Then
the Li—norm in (6.1) can be estimated by

cller = zalloo ([|€allsllmllpr + [1€2lls [lmlls) < cllor = valloo pllhrlls|lAzllsr-

Recalling that p = p, if a is affine-linear and p = co in the other cases, both
estimates can be joined together:

I(A"(v1) = A" (v2))[h1, hall; < ellvr — valloo pllPalls]| 2l 5

In this way, it is now easy to derive the estimates (2.13 — 2.18).

Lemma 6.2 There is a sufficiently small Lo, x Ly x L, neighbourhood N (wg)
of wog = (29, ug, y§) such that for all w = (vy,ys) € N(wp)

6
Lo, )l B > 5 1A

for all h such that ¢'(vy)h = 0, h = (¥ — Ty, u — uy,), u € U,

Proof. Note that p = p iff @2, by are affine-linear, otherwise p = co.

| Low (vu, Yo ) ] = Low (vo, )[R, ]I < 1(f7 (vw) = £ (vo))[1, R+
Ky, B (vw)[h, h]) — (K*y5, B (vo)[h, h])
< erllow = volleo pllAII3 + (K %y, (B" (vw) — B"(v0)) [k, A])] +
+HI(K* (g, = v5), B" (vo)[h, h])
< crllvw — volleo pllAIIS + (K745 lleol| B (v) — B" (vo)[h, A1 +
HIE* (W = ¥5)lloo| 1B (vo) (A, Al[1
< ellvw = volloo 7|13,
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by the L,~boundedness of 4%, the L, — Lo —continuity of K* and (2.16 - 2.18).
Moreover

llg"(vw)h = g'(vo)hl|2 = | K(B'(va) — B'(v0))hl|
SIEl2—2lI(B' (va) = B'(vo))h|2

= ¢ crflvw — volloo pl|Rll2

by (2.12). Now the statement follows from Arr [2], Lemma 3.5 after setting

B = Lyy(vw,y), B=Low(vo,¥§), A=¢"(vw), A= g'(vw). m|

Lemma 6.3 For all € [1,00] there is a constant cg being independent from
v =(z,u) € C x U* such that

. -1
— KB, < cg. .
H(z K Ba(v)) H,Ha <cp (6.2)
Proof. Let y € Lg and v(t) = (z(¢), u(t)) with |u(t)| < 1 be given. We consider
the equation (I — KBg(v))x =y, 1. e.

t

z(t) = y(t) + /k(t, s)by(s,v(s))z(s) ds. (6.3)

0

The uniform boundedness of b, (v) implies [b,(¢,v(t))| < ¢, independently from

v. Hence
t

2015 (0] + ¢ [ (¢ = 5)le0)] ds (6.4

0

All solutions of this weakly singular integral inequality are majorized by the
(nonnegative) solution z(¢) of the corresponding integral equation, hence

[2(t)] < =(t): (6.5)

Now ||z||g < ||2]lsg < ¢||ly||p follows from standard results on Volterra integral
equations. O

In the next statement d[a, S]g denotes the distance of the point a to the set
S in the norm || - ||g.

Lemma 6.4 If uy, € U and w = (24, uw, y5), then X(w) # 0 and
d[(zo, uo), B(w)la < ¢([|2w — oll2 + ||t — uoll2) (6.6)
Moreover, for all (z,u) € X(w)

d[(z,u), E(wo)]z < e(||2w = 2oll2 + [Juw — uol|2) (6.7)
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Proof. (a) Let vy = (w, uw). Then (z,u) € L(w) iff
2y — KB(vy) + 2 — 2y — K(By(vy)(2 — 2) + By(vy)(u — uy)) = 0. (6.8)

Now we look for a special v = (z,u) € (w) such that [|vg — v||5 is less or equal
than the right hand side of (6.6). To this aim, we take u = ug. Then from (6.8),

(I = KBz(vw)) (@ — 2w) = =2y + KB(vy) + K By(vw)(to — ty)
= —2y + KBu(vw)(uo — uw) + K(B(vo) + B'(vo)(vw — vo) +
1
+§B”(v0 + 0(vy — v0))[Vw — Vo, Ve — Vo),
where = 0(t) € Loo(0,1). Now we use g = K B(vg) and write B’ in terms of
z and u, then

t

0) = ) = [ K500 (9)(2(6) — 2 (5)) ds =

= —2u(t) + 2o(?) +/k(t, $){ba(vo(5))(2w (s) — 2o(s)) +

H(bu(vw(5)) = bu(vo(s)))(uo(s) — uw(s)) +
+%b"(vo(8) +0(5)(vu (5) = v0(8))) (v (8) — vo(s))*} ds.

Rearranging,

(z — 20) = KBy(vy )(z — 20) = K{(Bz(vw) — Bz(v0))(z0 — 24) +
+(Bu(vw) = Bu(vo))(vo — vw) +
1
-|-§B”(vo + 0(vw — v0))[vw — Vo, Vw — vo]}. (6.9)
We know, that z,, belongs to a Lo, —neighbourhood of zg. Moreover, u,, = uy,(t)

and ug = ug(t) are uniformly bounded by 1. Denote in (6.9) the right hand side
term under K by I = I(¢). Then

()| = %I[bm(%(t) +0(1) (0w (1) = vo(1))) (20 () — 2w ())]][20(t) — 2w (?)]
Hlbau(o(t) + 00, (1) = v0(t))(o(®) = (Dl20(t) — 2 (1)
Hba (v (1)) = bz (vo(t))]||20(t) — 2w (2)]
Fl[bu(ve (1)) = bu(vo())]luo(t) — uw (t)] (6.10)
All terms in the brackets are uniformly bounded, hence
1Tl < 20 = 2 12 + [luo — 1tal2). (6.11)
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Thus from (6.9)

l(z — z0) + K By (vw)(z — 202 < || K|la=2(]|z0 — 2w |2 + [[uo — uwl]2)
implying by Lemma 6.3 that ||z — 2o||2 < ¢||vo — vw]|2.

(b) We have v = (2,u) € X(w) and look for a v = (&,u) € T(wq) close to v.
Thus

v = K(B(un) + B(0)(o - ) (6.12)
T=1z9+ KB (v)(? — vg) (6.13)

(note that 2o = K B(vg)). Re-arranging (6.13),
T =20+ K(B' (v0)(5—vw)+ B (vy)(vw —v0) +(B'(vo) — B' (vw))(8—v0)). (6.14)
Now we take @ := u. Subtracting (6.12) from (6.14),

T—r=29— KB(vy)+ K(By(vy)(Z — ) + B (vy ) (vy — v0))
+K((B'(v0) = B'(vu))(? = v0)).
Thus by KB(vy) = 0+ K(B(vw) — B(vg))
(2 —2) — KBy(vy)(Z — ) = K{B(vy) — B(vg) + B'(vy)

(
+(B'(v0) = B'(vu))(7 — vo)}
= KII.

Vy — UO)

Now we find

IK — vol2 (6.15)

by estimating IT. Here we need that # is uniformly bounded (independently from
the choice of u € C), thus ||o — vg||lec = [|Z — Zo|leoc < ¢. The last inequality
follows from (6.8) with & = u: 2 — 2o = K Bz(v0)(Z — ®0) + K By (vo)(u — ug).
Note that u — ug is Loo—bounded with 2.

This implies as above ||Z — z||2 < ¢||vw — vol|2. |

Lemma 6.5 F(v,w) is Lipschitz continuous on each Lo —bounded set of ()"
as a mapping from (L) into R.

Proof: Let v = (z,u), w = (2w, Uw, ¥s). Then
1
F(v,w)=f"(vw)(v — vw) + —L:M(vw,yZ)[v — VU, U — Uy
F(vlawl) :fl(vl )(vl - v )+ ‘CUU( wayw )[vl - Uinvl - Ui}]

|[F(v,w) = F(vi,wi)| = [T = L|+ ] = Ji],
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where I, I; denote the linear part and J,.J; the nonlinear part of F'.

17— B < [ (vu) (v = o1+ v = va) |+ (£ (v) = ' (vw)) (01 = v,)]

<er(llv—vill2 + vy, — vull2) + callvy — vwll2,

as || f'(vw)]|2 is uniformly bounded and ||vq — |oo is bounded. Moreover

’ll) |

2017 = J1| < |Luo (v, Y)Y = Vi, v = vu] = Lo vy, Y )or — vy, 01 — vy ]|
+|(£vv(v’wayz) - ‘CUU( w;yw ))[U — Uy, UV — Uw” (616)

Let h = v — v,. Then

|(Lou(vw, ) = Low(vy, ), h]| =
= I(yw,BB“(vw)[h, ]) (', KB (v,,)[h, h])|
< (s, K(B"(vw) = B"(vy,)[h, h] |+|(yw —ywlafxB”(U )h, h)
< ellyg llzllvw — vo ll2llBl% + elly — vt lla1Al1%

<cfjw —wils

(note that y%, h, vy, v,, are supposed to belong to a Lo,—bounded set). Similarly
the first part in (6.16) can be estimated by ||v — vi]|2 + [Jvw — vi)||2. Oz
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