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Abstract

An optimal shape design problem arising in linear thermoelasticity is
considered. The objective is to determine which initial shape a workpiece
undergoing a prescribed (known) thermal treatment must have in order
that its final shape after the treatment has a desired form. The problem is
studied for a simplified two—-dimensional situation. Upon proving the well-
posedness of the associated state equations, the directional differentiability
of the solution operator with respect to the control variable is shown, and
the first—order necessary conditions of optimality are derived.

AMS(MOS) Subject Classifications: 49 B 22, 73 U 05, 93 C 20.

1 Introduction

During the past decade the field of optimal shape design has attracted much
interest. In particular, many papers have been devoted to the optimal shaping
of objects having properties that can be described by elliptic partial differential
equations or variational inequalities. We refer, for instance, to the monographs by
Pironneau [6] and by Haslinger-Neittaanméki [2], and to the references therein.
In contrast to this, merely a few investigations have been devoted to instation-
ary problems. In this connection, we mention the contributions by Cannarsa—da
Prato—Zolesio [1], Sokolowski [7], Hoffmann—-Sokolowski [3], Sokolowski—Sprekels
[8] and Okhezin [5].

In this paper, we consider a problem which is, in a sense, intermediate between
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stationary and dynamical shape design problems: the shape control itself does
not depend on time, while the equations describing the state of the system do.
More specifically, we shall study the following problem (which is of considerable
interest in the applications): Suppose that an isotropic and homogeneous solid
body is subjected to a prescribed (known) thermal treatment. Due to the tem-
perature change, the body body undergoes a thermoelastic deformation, that is,
the induced thermal stresses force the body to change its shape in time. The
following question arises: Which initial shape must the body be given in order
that its final shape after the thermal treatment resembles a desired prescribed
form as closely as possible?
A very simplified problem of this type will be discussed here: let s € C1¥[0,d]
be given, and suppose that initially, at ¢ = 0, the body occupies the domain (see
Fig. 1)

Q(s) ={(z1,29) ER*:0< 21 <d, 0 < 29 < 5(71)} . (1)

The set I's(s) = {x2 = s(z1)} denotes the part of the boundary I'(s) of Q(s)
which is to be shaped.

A .’Ez
/_F\_/
To = 8(1;1)/
Fg FZ
Iy .
0 d '

Figure 1: Shape of the domain (s).

The function s plays the role of the control variable. Let s,5,5 ,c denote fixed
positive constants, and let v € (0,1) and s,, s, € IR be given. We assume that
s satisfies the conditions

0<s<s(r)<s, [§(n)|[<s, Vrelod, (2)
‘51(7—1) - SI(Tl)‘ S c |T1 - 7—2|Va V1 e [Oad] ) (3)



s(0) =84, s(d) =sp, (4)
8<85,<5, s<5<35. (5)
Thus, s € U, where U = {s € C'[0,d] : s satisfies (1.2)-(1.5)} is the set
of admissible controls. Note that U%? forms a nonempty, convex and compact
subset of C*[0,d].

Next, let 8 = 0(¢t,z),t € [0,T], x = (z1,72) € Q(s), denote the temperature.
We assume that 6 satisfies the parabolic problem

pepBi(t,x) = KA, z), in (0,T) x Q(s), (6)
0(0,z) = 6p(z), in Q(s), (7)

—K %(t, z) = 0, on(0,T)x(I';uUly), (8)
—K S—Z(t, z) = a(f(t,z) — g(t,x1)), on (0,7)xTs(s), (9)

where 6, and g are the (given) initial temperature and the temperature of the
surrounding medium at I's(s), respectively; the (positive) constants p,c,, &
stand for mass density, specific heat and heat conductivity, in that order, while
a > 0 is a constant. Moreover, we denote by o;; = o0y;(u(t,z)) and e;; =
gij(u(t,z)) the components of the stress and (linearized) strain tensors, respec-
tively, where u = (u'(t,z),u?(¢,z)) is the displacement vector. Assuming a linear
thermoelastic behaviour, we obtain for the quasistatic regime

Au~+ A+ p)V(dive) + pF — V=0, in (0,7) x Q(s), , (10)

where p > 0, A > 0 are Lamé’s constants, 3 > 0 is a constant and F' is vector of
the (distributed) body forces. In addition, we prescribe the boundary conditions

u=0, on(0,7)xTy, njo;; =0, on (0,T) x I's(s), (11)
as well as
either
(a) u=0, on (0,7)x7Ts, (12)
or

(b) ul =0, g12=0, on (0,7)xT,.

Here, n = (n1,ns) is the outward unit normal vector at I'3(s). We have also
used the summation convention.

Remark: Note that the system (6)—(12) is not the full system of linear ther-
moelasticity. Indeed, besides assuming the quasistatic form for the balance of
linear momentum, the energy balance (6) is assumed in the form of the linear
heat equation, so that the source term accounting for the elastic energy is miss-
ing. However, in solids this term is usually small in comparison with the other
terms appearing in the energy balance, and it is a common practice to neglect it.



The optimal shape design problem is to minimize the cost functional
J(s) = Ji(s) + Jo(s) = /Q( )ql(x) \u(T, x) — g2 ()| dx
d
+ /0 a5(21) (5(21) + 12(T, 21, 5(21)) — 8(21))2d (13)

over U subject to (6)—(12). Here, ¢ and g, are given functions satisfying
q1 € L®(Q(s)), ¢ >0 and g, € L2(2(s)) x L2(2(s)) , for all s € U%; ¢ serves
as a weight function. Moreover, g3 € L*(0,d) and a desired final shape function
§ € L*(0,d) are given.

In the sequel, we shall always work with the weak formulation of the initial-
boundary value problems (6)—(9) and (10)—(12), respectively. To facilitate the
exposition, we shall always assume that the physical constants p,c,,a,3,k are
normalized to unity. This has no bearing on the mathematical analysis. We also
introduce the abbreviating notations

(wv)o= [ @) v@)dz, (wv)r= [ (@) v(@)dS,,  (14)

H=I1*Q), H=HxH, W=HYQ). (15)

Moreover, || -|lo,q and ||-|l1,o will always denote the norm of the spaces L?(Q)
and H'(Q), respectively.

We shall write for convenience 0;; = 7;; — d;; 360. With these notations, the weak
formulation of (6)—(9) and (10)—(12), respectively, is given by

(0:(t), w)a) + (VO(T), Vw)ae) + (0(t) , w)rys) = (9(t) , w)ras)
for all w € H*(Q(s)) and a.e. t € (0,T), (16)

0(0) = 6, , (17)

o o0 €)= (F(0) = V0(0), D)oy + (00) ., V)
for all v € V(s) and a.e. t € (0,7, (18)
where V(s) = {v € (H'(2(s)))? : v =0 on ['; UT,}, if the boundary conditions

(11,12(a)) are given, and V(s) = {v € (H*(2(s)))?> : v =0on I';, v* = 0 on
[y}, in the case (11,12(b)). The quantities w, 7 and e are connected through

the relations Ny o
1 u’ u’
e 1
€ 2 (830] + 833,) ( 9)

T11 2/,6 + A A 0 €11
T22 = A 2,[/, + A0 €929 . (20)
T12 0 0 2/L €12

We assume once and for all that 6, € H?(0,d), g € C*([0,T]; L*(0,d)) and
F € (C([0,T); L*(0,d)))?, for all admissible s € U .
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The remainder of the paper is organized as follows. In Section 2, we transform
the optimal shape design problem into a control problem for the coefficients of an
associated system of partial differential equations on a fixed domain. In Section
3, the unique solvability of the corresponding state equations is proved, and the
stability of the solution with respect to variations of s is shown. Section 4 brings
a derivation of the first order necessary conditions of optimality.

2 Transformation onto Fixed Domain

To cope with the variation of the domain, we transform the optimal shape design
problem into an optimal control problem for the coefficients of an associated
coupled system of partial differential equations acting on a fixed domain. To this
end, we put & = x1,& = xs/s(z1). Then, with

i=00=( b)) =00 ) W

the domain Q is transformed under the application of ® ! into the rectangle
@ = (0,d) x (0,1). The Jacobian of ® satisfies, for all £ € @,

1 0

YO = e s(sl)>’ det (6) = 5(62) 2 2> 0. @

N

Let 0(x) = 0(®(€)) =: 0(¢). Then V,0(z) = (¥'(£)~1)" VA(¢), whence

V.0 = ( (1) —& «;I/(szél/)s@l) ) Vgé, (3)
as well as
(Va0, Vo0) = (Veh, D(s) Veh), (4)
where
_ 2 (s(£1))? —&35(61) '(61)
DO =660 (¢ vey 15 Erer ) @

In the sequel, we shall simplify the notation and omit the tilde, that is, we denote
0(¢) == 6() .-

Using the relation dz = det ®'(§) d§ = s(&;) d€, and introducing w(§) := s(&) w(§)
as new test function (otherwise, s would appear coupled with 6,(t) ), we find after
a routine calculation that (1.18)—(1.19) is transformed into

(6:(t) , w)q + a(s;0(t),w) =v(s;9(t),w), Ywe H(Q), (6)
0(0) = 6, . (7)

Here, a = a; + a5, with
a(si6,w) = (V6, Ds) Vwlo + [ 0w (s€)"VI+(@)rda,  @®)
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and with the nonsymmetric expression

as(s;0,w) = —(VO, wd(s))g, (9)
where
d(s)(€) = (s(&1)) T D(s)(€) (s'(€2),0)T = (5'(&1)/5(&1), —&2 (8'(51)/8(51))2)T(i0)
Moreover,
Yswnwg) = [ (5(6) Y1+ (€))7 wywades (11)

Here, and throughout, the pieces of the boundary of ) are numbered in the same
way as the pieces of I'(s).
The transformation of (1.20) requires a little more effort. Let, for convenience,

q(&) := — & 8'(&)/s(&) . Introducing u(z) = u(®(§)) =: @(§), we find

out  out out

€11(U) = (‘)xl = 851 +qa§2 =: 611(11,),
ou?  10u? L
ganu) = 0—372 = ;a—& =: €9(1)
1 [our Ou? 1 (10a' ou? 0u?
= (= L 77 V== (Z =:ép(u). (12
f) = 5 (axz axl) 2 (s AT ae) fiz() . (12)

The stresses are obtained by the linear transformation (1.23) from e, hence

7~'11 2/1, + A A 0 511
7~'22 = A 2/,6 + A 0 522 . (13)
’7’:12 0 0 2,LL 512

/Q(s) 735 (u) €55(v) dx = /Q%ij(ﬂ) & (0) s(&)) de . (14)

Since s(&) appears also in the transformation of the expression (ux(t),v)as)
we introduce 9(§) := s(&1) 9(€) as new test function. After a routine calculation,
we obtain

/Q(S)Tij(u)sij(v)dac = /QNZ-J- i) &;(v) d¢

Moreover,

=: bi(s;0,0) + bo(s;0,0) =: b(s;u,7). (15)

In the sequel, we shall omit the tilde on # and the bar on .
As can easily be seen, the boundary conditions (1.14) are transformed into com-
pletely analogous conditions for 7 and @, respectively; that is, we have @ = 0
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on Fl, ’l’&j’l~'ij =0 on Fg,andeither u =0 on Fg or ’l~Ll =0 and ’7'12:0 on Fg.
These boundary conditions define a subspace V of ((H!'(Q))? in the obvious
way.

In summary, the transformed equations for the elastic deformations are given by

(un(t), v)g + b(s;u(t),v) = (F(t),v)g + (G(s)VO(t),v)g, VYveV(16)
u(0) = wg, (17)
w(0) = wuy, (18)

where

1 s(6) 0 )
G(s = ——— . 19
@O =567 (%) | 19
To obtain useful a priori estimates for 8 and w, we derive coercivity estimates
for a and b.

Lemma 2.1 There are constants ag > 0, a1 > 0, independent of s € U, such
that

a(s;0,0) > a1 1613 o — awllfll5 o, VO HY(Q) and Vs € U, (20)

Proof: Wehave a = a1 + ay. It is not difficult to see that the matrix function
D(s) is uniformly positive and uniformly bounded with respect to s € U%; that
is, there exist suitable constants ¢; > 0,c, > 0, independent of s € U% , which
satisfy

(2, D(s)(€)7) > 122, [D(s)(€)a < alo], Vo eR?andVeée Q.
(21)
Indeed, choosing « € (0,1) in a suitable way, we obtain

(z, D(s)(§)z) = s(&)? (32(51)95% — 207 &8 (&) as(&)rize + (1+ (& 5'(51))2)903)

\Y

> (1-a)) (&) a] + (1+(1—a?) (65(6))) 23
> (x% +x§)

with some ¢; > 0 which is independent of s. Consequently,
a(s:0,6) = (V0, D(s) Vg + [ 6 (s(62)) Y1+ (+(60)? des

> (;1/Q|v9|2dg. (23)

Moreover, owing to (2.10) and Young’s inequality, there are constants c3 >
0,c4 > 0, independent of s, such that

. < < 2 2
las(s; 6, 0)| _c3/Q\ve|\9|d§_a/Q|ve| i + c4/Qe de (24)

(22)



where, independently of s, € > 0 can be chosen arbitrarily small. Hence
a(s:0,0) > (c1 —e) [ [VOPde — e [ 64, (25)
Q Q

from which the assertion follows. O
The estimation for b(s;u,u) requires a little more effort.

Lemma 2.2 There are constants By > 0,31 > 0 such that
b(s;u,u) > ﬁ1||u||iQ - 60||u||§’Q, Yu€eV andVs e U™, (26)

Proof: At first, we have 7;;(u) €;5(u) = (¢, Fe), where € = (e11,€22,€12) and
where FE is given by

2+ A A 0
E=1 ) 2u+ A 0 ) (27)
0 0 4p
This matrix is positive definite. Hence, with a certain 0 > 0,
2
Tij €ij Z 26 ‘6‘2 Z 6(6%1 + 632 + 26%2) =9 Z 6%- . (28)
3,7=1

Since 7;; and €;; are related in the same way, it follows

i,j=1

Next, using (1.2) and (2.21), we have for all y € H*(2(s))
2 2 2
Ylliae = Vy|"+y°) dx
lola = [, (V9P +9)
_ ~ ~ ~2
= (V0. D(s) Vi) s(e) de + | 57 s(60) de
c18 Vyl?dé +s [ 77d
1 /Q| g|* d¢ /Qy

> 0 |dllie (30)

where &; > 0 is independent of s € U%?. Clearly, the analogous relation

v

lulliq > o2 lldllig, YueVi(s), (31)

holds as well. After these preparations, we can estimate b = b; + by . We obtain

bi(s:%,7) = / iy () 45 (7) 5(61) (5(60)) e

> (5)! /Q g ) s(6) dé
= 1/9(5 75 (u) €55 (u) dz | (32)
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by (2.14). Korn’s inequality (note that meas (I'1) > 0) yields
b(s:4, @) > 0 [|ull o) - (33)
Using (2.31), we find that
bi(s; %, 1) > 04 ||a||iQ (34)
Finally, in view of Young’s inequality, it is not difficult to see that

b2 (55 @, @) | < &5 [|all3 (35)

where € > 0 can be chosen arbitrarily small. Since all the constants in this proof
are independent of s € U% | the assertion follows. O

3 Well-Posedness of the State Equations

Let W' denote the dual space of W = H(Q) . For almost every t € (0,7), the
right-hand sides of (2.6) and (2.16) define linear continuous functionals fi(s;t) €
W' and fa(s;t) € H = H, respectively, through the relations

fils;t)(w) == A(s;9(t),w), YweW,
fa(s;t)(v) == (F(t) + G(s)VO(t), v)g, VveH. (1)

We have the following result.

Theorem 3.1 Under the general assumptions on the data of the problem, there
exists to any s € U a unique solution pair (0, u) to the system (2.6)—(2.7),(2.16)(2.18),
satisfying the conditions

0 € C([0,T); H) N L2(0, T; W) N HY(0,T; W') , (2)

u € C([0,T);V)nCH[0,T); H) N H*(0,T;V'). (3)

Moreover, there exists some constant C > 0 which does not depend on s € U
and satisfies

T ~
ImxwwﬁQ+/nwm@ﬁsc(wa

0<t<T
%%mmmm+wWom@<OQme+wmw+/|WSHMﬂQ
s 0 . ©

/nwuwm<onmQ+wmQ+/nﬁswmt)

o+ [ W0l ) . (0

[ 100l ar < & (1ol




Proof: In view of the Lemmas 2.1 and 2.2, it follows from the standard theory
of linear parabolic problems (cf. Lions—Magenes [4]) that (2.6)—(2.7) admits a
unique solution @ satisfying (3.2). Then V6 € L?*(0,T;H), and thus F +
G(s) VO € L?(0,T;H). Hence, from the standard theory of linear hyperbolic
problems (cf. Lions-Magenes [4]) we can infer that (2.16)—(2.18) has a unique
solution w satisfying (3.3). The estimates (3.4)—(3.7) follow immediately. O
In the sequel, C, > 0, k € IN, will always denote constants that may depend
on T and the data of the system, but not on s € U%. We have the following
stability result.

Theorem 3.2 The mapping S, which assigns to each s € U the solution pair
(0, u), is Lipschitz continuous from C*0,d] into (C([0,T]; H) N L*(0,T;W)nN
HY(0,T;W"))

x (C([0,T; V)n CY[0,T); H) " H2(0,T; V")) .

Proof: Let S; € Uad’ (Hz,uz) = S(Si), 1= 1,2,and (9_, ’E) = (91—02,U1—U2) .

Then (6,u) is a solution to the system

(0:(), w)g + a(s1;0(t),w) = a(se;0(t), w) — a(sy;0a(t), w)
+7(31;g(t)7w) (82, (t)aw) ) Vw e W7(8)
(@u(t), v)g + blsy;u(t),v) = b(s2;ua(t),v) — b(s1;ua(t),v)
+(G(s1)VO(t), v)g
— G(s2))Vba(t),v)g, YveV, (9)
0 (10)

For almost every ¢ € (0,7), the right-hand side of (3.8) defines a linear contin-
uous functional Fi(t) on W,

F(t)(w) = /Q<V9z(t,€)7 (D(s2)(&) — D(s1)(§)) Vw(§)) d€

b [ (26T &) — e 1+ (@)
-0(t, &, 1) w(éy, 1) dy
_ /Q(Vﬁg(t, §), d(s2)(€) — d(s1)(€)) w(§) dé

d
£ [N (sa&)™VI+ (56 = sa(6) 71+ (5(60))7)

~g(t &1, 1) w(éy, 1) déy. (11)

The set U is bounded in C'[0,d]. Moreover, the entries of D(s) and d(s)

1

and the mapping s — s™14/1 + (s')? are Lipschitz continuous from C*[0,d] into
C10,d]. Therefore, it is easy to check that

[Fx(t)w]| < Cr[|62(8) g l[s1 = saller llwlive; (12)
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whence, using (3.4),

T
| IRl gdt < Calsy = sl

Consquently, by Theorem 3.1,

max [|0(t)[2o + /OT(HH(t)I

0<t<T

Equation (3.9) can be handled in a similar way. We have
T 7] 2 Az 2
| 1(G)VaE) vl dt < Cx [ 18I gt llvli
< Gsllsi = sallén lvlloe -

Then, as above,

max ()i q + llun()

With this, the assertion is proved.

Next, we construct the directional derivative of & with respect to s.

end, let s, € U% be fixed. We introduce the derivatives
@/(50,0:0,w) = UmA~(a(s, + A5 6,w) = a(s,:6,w)),

V(s0,07u,v) = lim A7H(b(so + Aoy u,v) — B850, v)),

2o F 10B)13) dt < Csllsy — sal|2s -

T
|3,Q) + /(; ||Utt(t)||%/, dt < Cs||s1 — 82“%1 .

(13)

(14)

and, analogously, v'(s,, 0; g,v), where o € C1¥[0,d] is arbitrary but fixed. One

needs only some formal calculations to confirm that

0 (50,030, w) = /Q (VO (D'(s,)0) Vi) dé — /Q (VO, d'(s,)0) wde

+ | Owl'(s,)odE,
T's

where
0 §a 8,
D'(s,)o0 = s;° o
s, =25, (14 (&5,))
0 - 62 So
+ 80_2 0_/ ’
- 62 So 2 52 5:;
s! S0
d(s,)o = s,° o+ 5,2 a,
265, (s,)? —2& 5,

1y
U'(so)o = —s;24/14(s))2 0 + SR N
Y1+ (s5)?

11
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Moreover,
V(00390 w) = [ g(t)wl(s)o d. (23)
3
and, with the matrix E defined in (2.27),

b'(so,05u,v) = /Q(e'(so,u)o, Ee(v))dé + /Q(s(u), E €' (so,u)o) d€

- /Q (=5, 25,0 +5,0) (01,0, 503)7, Be(u))de,  (24)

where ¢(u) = (€11(u), Ea2(u), E12(u))T, and

-2 o Qul -1 out
605775, B T
—9 du?
(s, u)o = — s, Sh o+ 0 a. (25)
1.-2 (out _ 1 8u —1 9u?
2 80 (3{2 80 3&2) 62 852

Finally,

0 0 0 0
G'(s,) 0 = o+ o (26)
— & 5,78 8.2 &syt 0

We have the following differentiability result.

Theorem 3.3 Let s, € U* and o € CY¥[0,d]. Then the operator S is weakly
differentiable in the direction o as mapping from CV[0,d] into the Banach space

B = (L*(0,T; H)NL*(0, T; W) N H'(0, T; W"))
x (L*(0,7;V) N H'(0,T;H) N H*(0,T; V")) . (27)

The (weak) directional derivative (60,0u) of S in the direction o is given as
the (unique) solution to the initial-boundary value problem

((00):(2), w)q + alsoe; (66)(t), w) = 7'(s0, 05 (1), w)
—d (80,030, (t),w), VweW anda.e te(0,T), (28)

(((wu(t), v)e + blse; (6u)(t),v) = ((G'(s0)a) VOo(t), v)q
+ (G(s,) V(00)(t), w)g — V' (S0, 05 u0(t),v),
VvoeV and a.e. t € (0,T), (29)

(06)(0) =0, (3u)(0) =0, (du):(0) =0. (30)
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Proof: At first, note that the right—hand sides of (3.28) and (3.29) belong
to L?(0,T;H) and L?*(0,7;H), respectively. By the standard theory of linear
parabolic and hyperbolic equations (cf. Lions—Magenes [4]), the solution pair
(00, 0u) satisfies (3.2) and (3.3). Next, let (6y,uy) = S(s\), where sy = s,+ Ao,
for 0 < A < A. By Theorem 3.2,

sup H)\*l (O — 0, , uy — u,)
0<A<A

L, <C<+oo. (31)

Hence, a subsequence, still denoted {A1(0y —6,, uy — u,)}, converges weakly
in B to some limit point (6, %) € B. Obviously, z, := A~! (6, —6,) is a solution
to

i(z,\(t) ,w)g + a(se; za(t),w) = — A7 (a(so + Aa; 0\(t), w) — a(s,; 0x(2), w))

dt
+ A7t (’y(so + Ao; g(t), w) — v(so; g(t), 'w)) , VweW anda.e. t€ (0,7T),32)

2(0) = 0. (33)

Letting A — 0+, we find that 6 solves (3.28), and 6(0) = 0. Analogous
reasoning shows that (6,%) solves (3.29), and also %(0) = @;(0) = 0. By the

unique solvability of the system (3.28)—(3.30), it follows that (0,4) = (6, du)
and, in addition, that the whole sequence {A~' (0 — 6,,u\ — uy)} converges
weakly in B to (06, 6u). The assertion is proved. O

4 Existence of an optimal solution and first or-
der necessary optimality conditions

The transformed optimal shape design problem is to minimize
T) = R+ hls) = [ Q.6 ~wE)Ps(e) de
+ [ @) s@) + e - s@)Pde ()
subject to s € U and to the system (2.6)—(2.7), (2.16)—(2.18) defining the state

(0,u), where (&) := ¢;(®(§)),i=1,2.

Theorem 4.1 There exists at least one optimal solution s, € U of the optimal
shape design problem.

Proof: U% is a compact subset of C[0,d]. The mapping S : s — (6,u) is
continuous from C*[0, d] into the state-space under consideration (theorem 3.2),
and J is continuous on this space. Thus the result follows from theorem 3.2 and
the Weierstrass theorem. a
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As before, let (0,,u,) denote the (transformed) optimal state corresponding to
So- The directional derivative of J at s, is

A~ (504 A0) = J(s0) = {eol€)o(En) +dof€)" (5u)(7,€)} de
+ /0 a1 (&) {o(&) + (0u?)(T, &, 1)} &, (2)

where du is defined by (3.28)—(3.30) and

(&) = @l®)|uo(T,8) — &(€)* (3)
do(§) = 2G1()(uo(T,€) — G2(£)) (4)
ca(6) = 205(61)(s0(&r) +ug(T,€1,1) = 5(&1)) ()

Lemma 4.2 (Linearization) Let s, be optimal for the shape design problem and
(05, uo) be the (transformed) optimal state. Then

| feo@(En) + do(E) u(r:€)} de
+[a@) o + a0} aa 2 0 ©)

for all 0 € U — s, and 0, u, satisfying the system

(0:(t), w)q + alse;0(t), w) = 7'(s0,059(t), w) — a'(50,0;0(t),w)  (7)
Vw € Wand a.e. t € (0,7T),

(un(t), v)g +blso;u(t),v) = ((G'(50)a)VOo(t), v)q
—b' (80, 05u,(t),v) + (G(s,)VO(t), v)g (8)
Yo € Vand a.e. t e (0,T),

and the homogeneous initial conditions
6(0) = 0,u(0) = 0, u,(0) = 0. (9)

Proof: U is convex, hence s, + (s —s,) =: s, belongs to U for all A € (0, 1).
Let 0 = s — 85, uy = S(sy). Then

lggl AT (s 4+ Aa) — J(s,)) > 0. (10)

Therefore, the right hand side of (4.2) must be nonnegative. Note that

5u(T) = lim A~ (un(T) = u, (1))

and its trace on I' are well defined, as this limit exists in C([0,7];V). The
statement of the lemma follows after setting 6 := 00, u := du. a
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Now we introduce the adjoint state (p, ¥) € C([0,T]; H)NL*(0,T; W)NH (0, T; W') x
C([0,T;V)nCY([0,T); H) N H2(0,T; V') as the solution of the adjoint system

—(pe(t), w)q + also; w,p(t)) = —(We(t), G(s,)Vw)q (11)
Vw € Wand ae. t € (0,T),

p(T) = 0 (12)

(Wu(t), v)q +b(so; v, ¥(t)) = (do, v)g + (1, v)r (13)
Vv € Vand ae. t € (0,7),

T) = 0 (14)

) = 0, (15)

v(
U, (T
where ¢; = (0,¢;)T. The existence of (p,
v, € ¢([0,T), H).

U) follows from theorem 3.1. Note that

Theorem 4.3 If s, is optimal for the optimal shape design problem, then for all
s ey

[ eo@)(s(6) = o)) de + [ er(6n)(5(61) — soler)) s
Q 0

b [ (5005 = 503 900),9(0) = 50,5 = 503 0a(0),p(0)
(6 (50)(5 = 50 V0u(8) Walt)) + ¥ (505 = 50000, Wilt)) it 2 0(16)

Proof: We insert w = 0(t),v = —u(t) in the system (4.11)— (4.15) and w =
—p(t),v = Uu(t) in (4.7)—(4.9). Next, we add the equations (4.7), (4.8), and
(4.11), subtract (4.13) and integrate the resulting expression over [0,7"]. Then

T

{=(0:(1), p(t))q — (P2 (1),0()) @ + (e, Ws(t))@ + (Vuu(t) , wi(t))} dt

0

+ {b(so, (), Wy(t)) + b(s; us(t), ¥(t))} dt

- [ { V(50,5 = 803 9(8), D) + (50,5 = 503 6o(0), B(1)

+((G'(50)(5 = 50)) VOo(1) , Wi(t))@ = V(50,5 = 503 Uo(1), We(1))
+(do, wi(t))q + (1, we(t))rs } dt. (17)

Integrating by parts the first, third, and fifth expression we arrive at

—(0(2), p(t)qlo + (ue(t), We(t))qlo + blso; u(t), ¥(t))lg
= /o {7 +d" + ((G'(5s = $0)Vby, Uy)g — V' + (do, us)g + (c1, us)r, } dE18)

Owing to the homogeneous initial and final time conditions the left hand side of
(4.18) is vanishing, hence

[ =+ = (G5 = 5) V0 W)} di = (doy T g + e, (T (19
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Inserting (4.19) in the inequality (4.6) yields the relation (4.16). O
Remark: In the case g3 = 0, where the boundary integral J> is missing, the
necessary conditions can be simplified.

We put y(t) := Uu(¢). Then the integral over [0,7] in (4.16) admits the form

Jo Yt = Jo {7/ (50,5 = 501 9(t), p(t)) — @/ (50,5 = 50, 06(t), (1))
—((G"(50)(5 = 0))VOo(2)) , y(£)) @ + V' (50, 5 = 805 uo(t), y()) } dt,

and y satisfies the adjoint equation

(ye(t), v)g + b(se;v,y(t)) = 0 (20)
Vo € Vand ae. t € (0,T),

y(T) = 0 (21)

w(T) = do. (22)

(Differentiation of (4.13) gives  (yu, v)o+b(so;v,y) =0 , (4.15) implies y(T') =
0. Moreover, (4.13) taken at ¢t = T, leads to

(Yu(T), v)g = (do, v)q YveEV (23)

(note that ¢; = 0). Now (4.22) is a simple consequence).
Analyzing the variational inequality (4.16) we see that it admits the form

/Od{¢1(§1)(3(§1) — 55(€1)) + 92(&1) (5 (&1) — s,(€1))} déL > 0 Vs € U™, (24)

where ¢, ¢o are certain functions depending on 6,,u,, ¥, and p. Thus s, must
solve a certain control problem for a linear ordinary differential equation with
constraints given by (1.1)-(1.4).
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