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Abstract. We survey the results of SPP 1253 project ”Numerical Analysis of
State-Constrained Optimal Control Problems for PDEs ”. In the first part,
we consider Lavrentiev-type regularization of both distributed and boundary
control. In the second part, we present a priori error estimates for elliptic
control problems with finite dimensional control space and state-constraints
both in finitely many points and in all points of a subdomain with nonempty
interior.
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1. Introduction

Pointwise state constraints play an important role in many real world applications
of PDE optimization. For instance, in optimizing the process of hot steel profiles
by spraying water on their surface, the temperature differences in the steel must be
bounded in order to avoid cracks. Details may be found for example in [12]. Similar
restrictions apply in the production process of bulk single crystals, where the
temperature in the growth apparatus must be kept between given bounds, see e.g.
[27]. Even in medical applications, pointwise state constraints can be important,
as for example in local hyperthermia in cancer treatment. There, the generated
temperature in the patient’s body must not exceed a certain limit, cf. [11].

All these problems share the mathematical difficulties associated with the
presence of pointwise state constraints. One of the related challenges lies in the
question of existence and regularity of Lagrange multipliers. For these reasons,
we are interested in regularization methods for state constrained problems, where
we focus here on time dependent parabolic problems. In particular, we address a
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Lavrentiev type regularization method. The low regularity of Lagrange multipliers
also presents a challenge in the numerical analysis when e.g. trying to derive a
priori discretization error estimates. We discuss this for two classes of elliptic state-
constrained optimal control problems with finitely many real numbers as control
variables that we discuss without regularization.

Let us survey some difficulties and questions we have been interested in with
the help of two model problems. We will consider optimal control problems, re-
spectively their regularization, of parabolic type with control u and state y, in the
spatial domain Ω ⊂ R

n and a time interval (0, T ). For simplicity, we introduce
the time-space cylinder Q := (0, T ) × Ω and its boundary Σ = (0, T ) × ∂Ω. We
consider the distributed control problem

(PD) min J(y, u) :=
1

2

∫∫

Q

(y − yd)
2 dxdt +

ν

2

∫∫

Q

u2 dxdt

subject to the semilinear heat equation

∂ty − ∆y + d(x, t, y) = u in Q
y(·, 0) = y0 in Ω

∂ny + αy = g on Σ,

the pointwise state constraints

ya ≤ y ≤ yb in Q,

and optional control constraints

ua ≤ u ≤ ub in Q.

Note that d(x, t, y) ≡ 0 can be considered to analyze a linear quadratic case.
Moreover, it is possible to consider a more general elliptic differential operator A,
as well as a more general objective function under certain conditions.

In addition, we are interested in boundary control problems of the form

(PB) min J(y, u) :=
1

2

∫∫

Q

(y − yd)
2 dxdt +

ν

2

∫∫

Σ

u2 dsdt

subject to
∂ty − ∆y = f in Q

y(·, 0) = y0 in Ω
∂ny + αy = u on Σ,

and the pointwise state constraints

ya ≤ y ≤ yb in Q,

without control constraints. All appearing data is supposed to fulfill typical regu-
larity assumption, and the boundary ∂Ω is as smooth as desired. The nonlinearity
d appearing in the state equation governing (PD) is assumed to fulfill standard
Carathéodory type conditions as well as monotonicity and smoothness, so that for
given control u in either L∞(Q) or L∞(Σ) the existence of a unique corresponding
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state y(u) ∈ W (0, T ) is guaranteed. For a precise formulation of the given setting,
we refer to [32], where linear-quadratic problems without control constraints of
distributed and boundary control type have been considered, as well as to [31],
which is concerned with semilinear distributed control problems with state- and
control-constraints.

As mentioned above, the presence of pointwise state constraints leads to dif-
ficulties in the analysis and the numerical solution of the problems. One issue is
the existence of Lagrange multipliers in order to formulate first-order necessary
optimality conditions of Karush-Kuhn-Tucker type. The most common approach
is to assume Slater-type conditions. To apply them to pointwise state constraints,
the cone of nonnegative functions must have a nonempty interior. This requires
continuity of the state functions, because in Lp-spaces with 1 ≤ p < ∞ the cone
of nonnegative functions has empty interior, while for p = ∞ the dual space is
not useful. Depending on the type of problem, however, continuity is not always
guaranteed. If, for example, no bounds on the control are given and the control
u belongs only to L2(Q), then the continuity of the associated state y in (PD)
is only granted for spatially one-dimensional domains, cf. for example [4] or the
exposition in [39] for associated regularity results. For u in L2(Σ), the parabolic
equation in the boundary control problem (PB) does not generally admit a con-
tinuous state y, not even if Ω ⊂ R. Therefore, these problems are not well-posed a
priorily in the sense that first order necessary optimality conditions of KKT type
can be formulated in useful spaces. Of course, a problem may admit a bounded
control in L∞ and an associated continuous state, but this is not clear in advance.
Even if Lagrange multipliers do exist, due to the Slater point arguments they are
generally only obtained in the space of regular Borel measures. It turns out that
regularization concepts are useful to obtain an optimal control problem with more
regular Lagrange multipliers in Lp-spaces.

Another difficulty is hidden in the formulation of second-order-sufficient con-
ditions (SSC), which are of interest for nonlinear optimal control problems. While
they can be expected for regularized problem formulations, the purely state-
constrained parabolic case remains challenging even in cases where Lagrange mul-
tipliers exist due to L∞- bounds as control constraints. For spatio-temporal control
functions and pointwise state constraints given in the whole domain Q, a satisfac-
tory theory of SSC is so far only available for one-dimensional distributed control
problems, cf. [35], [7]. As part of the research in the SPP, SSC for unregularized
problems have been established for higher dimensions in the special setting with
finitely many time-dependent controls that are found in practice more often than
controls that can vary freely in space and time, cf. [8].

For all these reasons, regularization techniques have been a wide field of active
research in the recent past and remain to be of interest. We mention for example
a Moreau-Yosida regularization approach by Ito and Kunisch, [20], a Lavrentiev-
regularization technique by Meyer, Rösch, and Tröltzsch, [28], or the virtual control
concept by Krumbiegel and Rösch, [22], originally developed for elliptic boundary
control problems during the first funding period of SPP 1253. Moreover, barrier
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methods, cf. [38], can be interpreted as regularization methods. We also point out
comparisons between different approaches as in e.g. [1], the analysis of solution
algorithms as in e.g. [15], [17], [18], or discretization error estimates from [14]
or [16]. In addition, a combination of Lavrentiev regularization and interior point
methods as for example in [33] has been considered. Here, Lavrentiev regularization
is used to prove that the barrier method is indeed an interior point method. We
lay out in Section 2 how Lavrentiev regularization techniques can be transferred
to parabolic control problems, and describe an extension to parabolic boundary
control problems. In addition, we comment on additional helpful properties of
regularized problems that for example allow to prove a local uniqueness result
of local solutions of nonlinear optimal control problems, which is an important
property in the context of solving optimal control problems numerically.

A further leading question in the SPP 1253 were error estimates for the nu-
merical approximation of state constrained control problems. Only few results on
elliptic problems were known for pointwise state constraints in the whole domain.
In [5], [6] convergence of finite element approximations to optimal control problems
for semilinear elliptic equations with finitely many state constraints was shown for
piecewise constant approximations of the control. Error estimates for elliptic state
constrained distributed control functions have been derived in [9] and, with ad-
ditional control constraints, in [26], [10]. Since in many applications the controls
are given by finitely many real parameters, another goal of our SPP project was
to investigate the error for associated state-constrained elliptic control problems.
Unlike in problems with control functions, the treatment of the finitely many con-
trol parameters does not require special attention, and an error estimate without
a contribution to the error due to control discretization is automatically obtained.
For control functions, the same property is exploited by the so called variational
discretization, cf., e.g., [19]. Moreover, in problems with only finite-dimensional
controls, it is not exceptional that a state constraint is only active in finitely many
points. If the location of these points is known approximately, it is reasonable to
prescribe the constraints in these approximate points. As part of the project and
a first step towards discussing state constraints in the whole domain, such prob-
lems with finitely many state constraints have therefore been considered in [25].
The resulting optimal control problems are equivalent to finite dimensional math-
ematical programming problems. Yet, the associated error analysis is not trivial.
Maximum norm estimates for the finite element approximation of the semilinear
state equation had to be derived. Then results of the stability analysis of nonlinear
optimization were applicable to obtain also estimates for the Lagrange multipli-
ers, which are a linear combination of Dirac measures. We survey the results in
Section 3.1. If it is necessary to consider the constraints in a subset of Ω with
nonempty interior, then the elliptic control problem with finite-dimensional con-
trols is of semi-infinite type. We completed the discussion by considering such
elliptic problems and report on this in Section 3.2.
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2. Regularization of parabolic state-constrained problems

Let us mention here first that Lavrentiev regularized problems with additional
control constraints require a more involved analysis than problems with pure
regularized state constraints, and additional assumptions have to be imposed.
Therefore, we consider these situations separately, beginning with the purely state-
constrained case.

2.1. Problems without control constraints

2.1.1. Distributed control problems. We consider here a linear-quadratic distributed
control problem, i.e. consider (PD) with d(x, t, y) ≡ 0. The idea of Lavrentiev reg-
ularization for distributed control problems is to replace the pure state constraints
by mixed control-state constraints of the form

ya ≤ λu + y ≤ yb a.e. in Q,

where λ ∈ R is a small regularization parameter. Following [29], the existence of
regular Lagrange multipliers in L2(Q) for arbitrary dimension of Ω is easily shown
using a simple substitution technique. The idea is to introduce the new control
w := λu + y, which yields a purely control-constrained optimal control problem.
More precisely, from w = λu+y we obtain u = (w−y)/λ so that the state equation
can be rewritten as

yt − ∆y + d(x, t, y) + λ−1y = λ−1w in Q,

and the objective function can be transformed into

J̃(y, w) :=
1

2
‖y − yd‖

2
L2(Q) +

ν

2λ2
‖w − y − λud‖

2
L2(Q).

Then, to prove the existence of regular multipliers of the transformed control
constrained problem with

ya ≤ w ≤ yb in Q

and hence of the Lavrentiev regularized problem is standard technique. They are
also multipliers for the original state constraints, and are obtained without any
Slater condition.

Theorem 2.1. For each λ > 0, the linear-quadratic Lavrentiev regularized version
of (PD) admits a unique optimal control ūλ with associated state ȳλ. For arbi-
trary spatial dimension n, there exist Lagrange multipliers µλ

a , µλ
b ∈ L2(Q) and an

adjoint state pλ ∈ W (0, T ) such that:

∂tȳλ − ∆ȳλ = ūλ ∂tpλ − ∆pλ = ȳλ − yd + µλ
b − µλ

a

ȳλ(·, 0) = y0 pλ(·, T ) = 0
∂nȳλ + αȳλ = g ∂npλ + αpλ = 0,

νūλ + pλ + λ(µλ
b − µλ

a) = 0 a.e. in Q,
ya ≤ λūλ + ȳλ ≤ yb a.e. in Q,
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(µλ
a , ya − λūλ − ȳλ)L2(Q) = 0 µλ

a ≥ 0 a.e. in Q

(µλ
b , λūλ + ȳλ − yb)L2(Q) = 0 µλ

b ≥ 0 a.e. in Q.

For details, we refer to [32]. This simple substitution technique cannot be
adapted to the case of additional control constraints. It is, however, possible to
show a multiplier rule with L2-Lagrange multipliers for such problems under a
certain separability assumption, cf. [36]. We will consider this type of problem
later in Section 2.2. Let us also state a convergence result for the regularized
solutions, again for the linear-quadratic version of (PD).

Theorem 2.2. Let {λn} be a sequence of positive real numbers converging to zero
and denote by {un} the sequence of associated optimal solutions of the regularized
control problem. For N = 1, the sequence {un} converges strongly in L2(Q) towards
ū, where ū is the unique optimal solution of the unregularized problem. If the
optimal control of the unregularized problem is a function in L∞(Q) this holds
also for dimension N > 1.

The proof has been carried out in detail [32]. From a practical point of view,
the boundedness assumption seems reasonable. Indeed, knowing that ū is essen-
tially bounded, artifical inactive bounds on the control u can be introduced in
advance, such that the convergence result from [31] holds. If in a practical appli-
cation the optimal control is unbounded, then most likely additional bounds on u
must be posed.

2.1.2. Boundary control problems. While the distributed control problem (PD)
without control constraints is at least well-formulated in one-dimensional cases,
the boundary control problem (PB) may lack the existence of Lagrange multipliers
in a suitable space as long as the optimal control is possibly unbounded. It is also
quite obvious that the Lavrentiev regularization approach explained above cannot
directly be applied to boundary control problems, since the control u and the state
y are defined on different sets. In [32], we developed a Lavrentiev-type method for
parabolic boundary control problems. Our motivation to extend the Lavrentiev
regularization from the distributed case to treat such problems came from [2],
where a well-known benchmark problem was introduced.

To treat the state equation in a concise way, we consider the control-to-state
mapping S : u 7→ y, S : L2(Σ) → L2(Q). The adjoint operator S∗ maps L2(Q) into
L2(Σ). We consider only controls u in the range of S∗, i.e. we introduce an auxiliary
control v ∈ L2(Q) and set u = S∗v. Clearly, this is some smoothing of u, which is
motivated by the optimality conditions for the unregularized problems, where we
expect ū = G∗µ with some measure µ, if it exists. Then the state y = y(v) is given
by y = SS∗v and the state constraints can be written as ya ≤ SS∗v ≤ yb. Now,
we can apply our Lavrentiev regularization to these constraints, i.e. we consider

ya ≤ λv + y(v) ≤ yb.

The regularizing effect comes from the restriction of (C(Q̄))∗ to L2(Q) by the
ansatz u = S∗v. This idea also turned out useful in the elliptic case, cf. [40].
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Considering a reduced formulation of the optimal control problem in the
control v, it is possible to prove first order optimality conditions with regular
Lagrange multipliers, cf. [32].

Theorem 2.3. Let v̄λ ∈ L2(Q) be the optimal control for the Lavrentiev-regularized
version of (PB) with associated boundary control ūλ. Then there exist Lagrange
multipliers µλ

a , µλ
b ∈ L2(Q) and adjoint states pλ, qλ ∈ W (0, T ) such that:

∂tȳλ − ∆ȳλ = f

ȳλ(·, 0) = y0

∂nȳλ + αȳλ = u

−∂tpλ − ∆pλ = ȳλ − yd + µλ
b − µλ

a

pλ(·, T ) = 0

∂npλ + αpλ = 0

−∂tzλ − ∆zλ = v̄λ

zλ(·, T ) = 0

∂nzλ + αzλ = 0

∂tqλ − ∆qλ = 0

qλ(·, 0) = 0

∂nqλ + αqλ = νzλ + pλ

(µλ
a , ya − λv̄λ − ȳλ)L2(Q) = 0, µλ

a ≥ 0

(µλ
b , λv̄λ + ȳλ − yb)L2(Q) = 0, µλ

b ≥ 0

εv̄λ + qλ + λ(µλ
b − µλ

a) = 0.

Here, zλ is the solution of the adjoint equation for the ansatz u = S∗v, i.e. u =
z|Σ . The optimality system also shows the drawback of this approach, since there
are twice as many PDEs to be solved as in the unregularized case. Nevertheless,
the numerical results are quite satisfying, as we will see in the example of the
Betts and Campbell heat transfer problem. Under the reasonable assumption that
the optimal control ū of the unregularized problem is bounded, or at least regular
enough to guarantee continuity of the state, we obtain a convergence result for the
regularized solution:

Theorem 2.4 ([32]). Let ū belong to Ls(Σ), s > N + 1, and let there exist a Slater
point v0 ∈ C(Q̄), such that

ya + δ ≤ G(ū + S∗v0) ≤ yb − δ,

with a given δ > 0, and select the regularization parameter ε by

ε = c0λ
1+c1 , c0 > 0, 0 ≤ c1 < 1.

Moreover, let λn → 0 and {vn}
∞
n=1 be the sequence of optimal controls of the

regularized version of (PB). Then the sequence {S∗vn} converges strongly in L2(Σ)
towards the solution ū of the unregularized problem.

Using a primal dual active set strategy, we tested this regularization technique
numerically in Matlab for the following Robin-boundary control problem that is
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motivated by the Betts and Campbell heat transfer problem:

min
1

2

5
∫

0

π
∫

0

y2dxdt +
10−3

2

T
∫

0

(u2
1 + u2

π)dt

subject to

∂yt − ∆y = 0 in (0, π) × (0, 5)
y(x, 0) = 0 in (0, π)

−∂xy(0, t) + αy(0, t) = αu1(t) in (0, 5)
∂xy(π, t) + αy(π, t) = αuπ(t) in (0, 5)

as well as y(x, t) ≥ sin(x) sin(
πt

5
) − 0.7 in (0, π) × (0, 5),

We obtained the optimal control shown in Figure 1(a), compared to the reference
solution obtained by Matlab’s optimization routine quadprog, indicating that the
regularization method works quite satisfying. The associated state is shown in
Figure 1(b). Notice that the numerical results indicate that the optimal control
is indeed bounded, and therefor this model problem is an example for problems
that admit Lagrange multipliers in the unregularized case, even though this is
not a priorily clear. We have also conducted experiments for the penalization
technique by Ito and Kunisch, cf. [20], which yields similar results while solving
only two PDEs in each iteration. We also point out the experiments in [30], were a
modelling and simulation environment specialized for solving PDEs has been used.
In contrast to unregularized state constraints, Lavrentiev regularization permits
to make use of projection formulas for the Lagrange multipliers that are equivalent
to the complementary slackness conditions and the non-negativity condition of the
Lagrange multiplier, e.g.

µλ
a = max

(

0,
ε

λ2
(ya − ȳλ) +

1

λ
qλ

)

.

Then, the optimality system associated with the regularized version of (PB), and
in a similar way of (PD), can be supplied in a symbolic way as a coupled system of
PDEs to specialized PDE software. If all appearing functions can be handled by
the software and a converged solution is returned, this is a time-efficient way to
solve optimal control problems without specialized optimization routines and with-
out much implementational effort. For the above example problem, we obtained
satisfying results.

2.2. Lavrentiev regularized distributed control problems with additional control
constraints

Let us now consider the semilinear version of (PD) with additional control con-
straints. We have already mentioned that then Lagrange multipliers exist as regu-
lar Borel measures for the unregularized problem. However, the same dimensional
limits as before are needed for a second-order analysis. After Lavrentiev regular-
ization, a generalization of SSC to arbitrary dimensions should be possible in the



SPP 1253 9

0
1

2
3

4
5

0

1

2

3

−0.1

0

0.1

0.2

0.3

0.4

0.5

tx

y re
g

(a) Optimal state

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

u re
g, u

di
re

ct

 

 
u

direct

u
reg

(b) Optimal controls

spirit of [37]. Interestingly, there are some problems associated with the existence
of regular Lagrange multipliers. It has been shown in [36] that regular multipliers
exist under the assumption that the active sets associated with the different con-
straints are well-separated. If this assumption does not hold, Lagrange multipliers
are only known to exist in the space L∞(Q)∗, which is even less regular than the
space of regular Borel measures. Convergence of local solutions of the Lavrentiev
regularized problem has been addressed in detail in [31], along with a global anal-
ysis of Moreau-Yosida regularized problems. There we also showed the following
helpful result:

Theorem 2.5. If a locally optimal control ūλ of the Lavrentiev regularized version of
the distributed semilinear control problem (PD) satisfies additionally a second order
sufficient condition and if, for fixed λ, the active sets of the different constraints
are strictly separated, then it is locally unique.

Strict separation means that at most one constraint can be active or almost
active in a given pair (x, t) ∈ Q. Local uniqueness of local solutions is important,
since it excludes situations where a local minimum is an accumulation point of a
sequence of other local optima. The proof is based on the verification of strong
regularity. This property is also helpful for the analysis of SQP methods. We refer
to [13] for an associated analysis of elliptic problems. Strong regularity implies
local uniqueness of local optima. If one is only interested in local uniqueness, this
can be directly deduced from a second-order sufficient condition, if the state con-
straints are regularized. We refer to [21], where regularization by virtual controls
is considered.

3. Finite-element error analysis for state constrained elliptic
control problems with finite-dimensional control space

In this section we derive error estimates for control problems with control vector
u ∈ R

m in a two-dimensional polygonal convex spatial (open) domain Ω. We
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consider first the fully finite-dimensional optimal control problem

(PF ) min
u∈Uad

J(y, u) :=

∫

Ω

L(x, y, u) dx

subject to the nonlinear state equation

−∆ y(x) + d(x, y(x), u) = 0 in Ω
y(x) = 0 on Γ = ∂Ω,

as well as the finitely many state constraints

gi(y(xi)) = 0, for all i = 1, . . . , k,
gi(y(xi)) ≤ 0, for all i = k + 1, . . . , ℓ

given in points xi ∈ Ω, and bounds on the control,

u ∈ Uad = {u ∈ R
m : ua ≤ u ≤ ub}

with given vectors ua ≤ ub of R
m that has been analysed in [25]. We assume

l ≥ 1 and set k = 0, if only inequality constraints are given and k = l, if only
equality constraints are given. The precise assumptions on the appearing functions
L, d, and gi are layed out in [25]. In particular, L and d are supposed to be Hölder
continuous with respect to x and d is assumed to be monotone non-decreasing with
respect to y. A typical tracking type functional would fit into the given setting.
The possibly nonlinear appearance of u does not cause problems with existence of
an optimal solution, since u has finite dimension.

Moreover, we consider a model problem of semi-infinite type, given by

(PS) min
u∈Uad

J(y, u) :=
1

2

∫

Ω

(y − yd)
2 dx +

ν

2
|u|2

subject to a linear state equation

−∆y(x) =
M
∑

i=1

uiei(x) in Ω

y(x) = 0 on Γ,

as well as a pointwise bound b ∈ R on the state in a compact interior subdomain
of Ω denoted by K,

y(x) ≤ b, ∀x ∈ K.

For the precise assumptions on the given data, we refer to [24], let us just mention
that the basis functions ei, i = 1, . . . , M , are given in C0,β(Ω̄), for some 0 < β < 1.
The set Uad is defined as in (PF ) with given bounds ua ∈ R ∪ {−∞} and ub ∈
R ∪ {∞}, where ua < ub.
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3.1. The finite dimensional control problem

We now consider the finite dimensional problem (PF ) in the equivalent reduced
formulation

min
u∈Uad

f(u) := J(y(u), u)

subject to the constraints

Gi(u) = 0, i = 1, . . . k, Gi(u) ≤ 0, i = k + 1, . . . ℓ, .

where G is defined as G(u) = (g1(yu(x1)), . . . , gℓ(yu(xℓ))) . Using the finite element
discretization of the state equation and denoting a corresponding discrete state by
yh(u), let us define

fh(u) = J(yh(u), u), Gh(u) = (g1(yh(u)(x1)), . . . , gℓ(yh(u)(xℓ))).

By these terms, we obtain an approximate problem formulation

(PF,h) min
u∈Uad

fh(u)

subject to Gh,i(u) = 0, i = 1, . . . k, Gh,i(u) ≤ 0, i = k + 1, . . . ℓ.

Based on [6] and [34], in [25] the following result has been derived for the semilinear
state equation: For all u ∈ Uad, the discretized state equation has a unique discrete
solution yh(u). There exists a constant c independent of h and u ∈ Uad such that,
for all u ∈ Uad, there holds

‖y(u) − yh(u)‖L2(Ω) + ‖y(u) − yh(u)‖C(K) ≤ c h2| logh|.

Due to the finite-dimensional character of this problem, techniques from the per-
turbation analysis of parametric nonlinear programming problems can be applied.
Therefore, also an error of the Lagrange multipliers can be quantified.

Theorem 3.1 ([25]). Let, under our assumptions, ū be a locally optimal control of
Problem (PF ) satisfying the condition of linear independence of active constraints
and the standard strong second-order condition. Then ū is locally unique and there
exists a sequence ūh of locally optimal controls of the corresponding finite element
approximated problem (PF,h) and a constant C > 0 independent of h such that the
following estimate is satisfied for all sufficiently small h:

|ū − ūh| ≤ C h2| log h|.

3.2. A problem of semi-infinite type

Let us finally consider the problem (PS), which we have discussed in detail in
[24]. This problem combines the advantages of a finite dimensional control space
with the difficulties of pointwise state constraints in a domain rather than finitely
many points. In contrast to Problem (PF ), the Lagrange multipliers associated
with the state constraints will be regular Borel measures rather than vectors of
real numbers. In view of this, an estimate not better than h

√

| log h| would not
surprise.
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However, in several computations we observed a much better order of con-
vergence. The associated analytical confirmation turned out to be interesting and
surprisingly difficult. Let us briefly outline the main steps.

Due to linearity of the underlying state equation, we can apply the superpo-
sition principle to obtain a semi-infinite formulation of Problem (PS),

(PS) min
u∈Uad

f(u) :=
1

2
‖

M
∑

i=1

uiyi − yd‖
2 +

ν

2
|u|2

subject to

M
∑

i=1

uiyi(x) ≤ b, ∀x ∈ K,

where yi denotes the solution of the state equation associated with ui = 1 and all
other components of u taken as zero.

Our results on error estimates are based on a standard Slater condition:

Assumption 3.2. There exist a uγ ∈ Uad and a real number γ > 0 such that

yγ(x) = yuγ (x) ≤ b − γ ∀ x ∈ K.

Then there exists a non-negative Lagrange multiplier µ̄ in the space of reg-
ular Borel measures such that the standard Karush-Kuhn-Tucker conditions are
satisfied by ū. However, collecting the state constraints in a feasible set Ufeas given
by

Ufeas := {u ∈ Uad : y(u) ≤ b ∀x ∈ K} ,

the optimality conditions can be formulated with the help of a standard variational
inequality due to linearity of the state equation. Let now yh

i , i = 1, . . . , M, be the
discrete states associated with yi. We obtain the discretized problem formulation

(PS,h) min
u∈Uad

fh(u) :=
1

2
‖

M
∑

i=1

uiy
h
i − yd‖

2 +
ν

2
|u|2

subject to

M
∑

i=1

uiy
h
i (x) ≤ b, ∀x ∈ K,

where the pointwise state constraints are still prescribed in the whole subdomain
K rather than in finitely many discrete points. Under our assumptions, we have

‖yh
i − yi‖L2(Ω) + ‖yh

i − yi‖L∞(K) ≤ ch2| log h|.

thanks to an L∞-error estimate from [34]. Clearly, this error estimate extends to

any linear combinations yu =
M
∑

i=1

uiyi and yh
u =

M
∑

i=1

uiy
h
i for any fixed u ∈ R

M . As a

consequence of the Slater assumption and the error estimate for the state equation,
the feasible set of (P h) is not empty for all sufficiently small h > 0. Therefore, there
exists a unique optimal control ūh of Problem (P h), with associated optimal state
ȳh. Associated with ȳh, there exists a non-negative Lagrange multiplier µh ∈ M(Ω̄)
such that the standard KKT-conditions are satisfied. Again, by introducing a
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feasible set Uh
feas analogously to Ufeas, the first order optimality conditions can

expressed as a variational inequality. Then, invoking only the Slater condition, the
error estimate

|ū − ūh| ≤ ch
√

| logh| (3.1)

can be shown in a standard way. While this seems rather obvious, it is to the
authors’ knowledge the first time that an a priori error estimate for this problem
class has been shown. As a consequence we obtain that ȳh converges uniformly to
ȳ in K as h tends to zero.

We are able to improve (3.1) under additional assumptions on the structure
of the active set. First of all, one obtains under quite natural assumptions that the
active set of ȳ cannot contain any open subset of K. Still, the set of active points
might be fairly irregular, but it is reasonable to assume the following:

Assumption 3.3. The optimal state ȳ is active in exactly N points x̄1, . . . , x̄N ∈
int K, i.e. ȳ(x̄i) = b. Moreover, there exists σ > 0 such that

−〈ξ,∇2ȳ(x̄j)ξ〉 ≥ σ|ξ|2 ∀ξ ∈ R
n, ∀j = 1, . . . , N.

Notice that, in contrast to the fully finite-dimensional case, the location of
these active points is not known in advance. To guarantee the existence of se-
quences x̄h

j of active points of ȳh such that xh
j → x̄j as h → 0, we assume strong

activity:

Assumption 3.4. All active control and state constraints are strongly active, i.e.
the associated Lagrange multipliers are strictly positive.

For simplicity, we do not consider the case of additional weakly active state
constraints here. Under this assumption, we are able to show that to any active
x̄j there exists a sequence x̄h

j of active points for ȳh such that

|x̄j − x̄h
j | ≤ ch

√

| log h|. (3.2)

In view of the piecewise linear form of ȳh, we can even assume that all x̄h
j are

node points, and consider a problem formulation where the constraints are only
prescribed in the nodes. The proof of this inequality, which is the key estimate in
deriving the improved error estimate, is quite elaborate. We refer to [24] for the
key ideas.

Assumption 3.5. The number N of active state constraints is equal to the number
of inactive control constraints.

Define the N × N -matrix Y with entries Yik,jk
= yik

(x̄jk
), ik ∈ Iū, jk ∈

Aȳ, where Iū and Aȳ denote the index sets of inactive control and active state
constraints, respectively.

Theorem 3.6. Let ū be the optimal solution of Problem (PS), let ūh be optimal for
(PS,h), and let Assumptions 3.2- 3.5 be satisfied. Moreover, let the matrix Y be
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regular. Then, there exists h0 > 0 such that the following estimate is true for a
c > 0 independent of h:

|ū − ūh| ≤ ch2| log h| ∀h ≤ h0.

Assumption 3.5 seems quite restrictive at first glance, and the question is
interesting, whether it is indeed necessary for the optimal error estimate of the last
theorem. In [23], we constructed simple analytical and numerical examples with
more (inactive) controls than active constraints, where the lower order estimate
(3.1) is sharp. On the other hand, the theory of semi-infinite optimization problems
says that there can be at most as many strongly active constraints as there are
control parameters, cf. [3]. Therefore, the analysis of Problem (PS) is complete
and the estimates are sharp.
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