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Abstract. A class of nonlinear elliptic and parabolic optimal control problems with mixed
control-state constraints is considered. Extending a method known for the control of ordinary dif-
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assumptions, optimal controls are shown to be Lipschitz continuous in the elliptic case and Hölder
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Key words. Optimal control, semilinear elliptic equation, semilinear parabolic equation, mixed
control-state constraints, multiplier regularity, regularity of optimal controls, Yosida-Hewitt theorem

AMS subject classifications. 49K20, 49N10, 49N15, 90C45

1. Introduction. The solutions of optimal control problems with mixed control-
state constraints exhibit better regularity properties than those with pure pointwise
state constraints. This fact is known for the control of ordinary differential equations
since long time. We refer, for instance, to early contributions to linear programming
problems related to control problems with constraints of bottleneck type in [22] or
[11] and to the more recent exposition by Dmitruk [8]. A first extension to an optimal
control problem for the heat equation was presented in [19].

More recently, associated results were shown for more general parabolic equations
in Bergounioux and Tröltzsch [4], Arada and Raymond [3], and for elliptic problems
in Tröltzsch [21], and Rösch and Tröltzsch [17]. In all of these papers on the control
of PDEs, it was shown that Lagrange multipliers exist in certain Lp-spaces. Different
techniques were applied to prove these results. While [4], [17], and [21] used duality
theorems, in [3] it was shown that multipliers in (L∞)∗ are more regular by exploit-
ing the smoothing property of the state equation and using some compactification
approach for parabolic equations.

Here, assuming a natural regularity condition, we show the regularity of Lagrange
multipliers by the Yosida-Hewitt theorem [23], following an idea explained for ODEs
by Dmitruk [8]. This approach is close to the one suggested by Arada and Raymond
but still simplifies and unifies the proof, since compactification arguments are not
needed. We also deal with the elliptic case that needs slightly different techniques
than the parabolic problems discussed in [3].

Moreover, our paper differs from our former ones by deriving higher regularity of
multipliers and optimal controls up to Lipschitz continuity. We extend ideas presented
by Rösch and Wachsmuth [18] for a simplified class of elliptic problems. This is the
main contribution of this paper.
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2 A. RÖSCH, F. TRÖLTZSCH

2. Elliptic optimal control problem and main assumptions. We consider
first the following elliptic optimal control problem:

minJ(y, u) =
∫

Ω

ϕ(x, y, u) dx+
∫

Γ

ψ(x, y) ds (2.1)

subject to

Ay + d(x, y) = u in Ω
∂y

∂νA
+ b(x, y) = 0 on Γ

(2.2)

and to

gi(x, y(x), u(x)) ≤ 0 a.e. on Ω, i = 1, .., k. (2.3)

The inequalities (2.3) are our mixed control-state constraints, which are the main
issue of this paper.

Our theory is based upon the following assumptions:
(A1) Ω ⊂ IRN , N ∈ IN, is a bounded domain with Lipschitz boundary in the sense

of Nečas [13].
(A2) A is a uniformly elliptic differential operator of the form

Ay(x) = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
y(x)

)
+ c0(x)y(x)

with coefficients aij ∈ C0,1(Ω̄), i, j = 1, .., N , that satisfy the condition of
uniform ellipticity

N∑
i,j=1

aij(x)ξiξj ≥ m0|ξ|2 ∀x ∈ Ω̄, ∀ξ ∈ IRN

with some m0 > 0. Moreover, c0 belongs to L∞(Ω) and satisfies c0 ≥ 0 a.e.
on Ω and c0(x) > 0 on a set of positive measure.

(A3) ϕ = ϕ(x, y, u) : Ω × IR2 → IR and gi = gi(x, y, u) : Ω × IR2 → IR are given
functions enjoying the following properties:
For all fixed y, u, they are Lipschitz with respect to x ∈ Ω. They are partially
differentiable with respect to y and u for all fixed x ∈ Ω̄. The derivatives are
uniformly Lipschitz on bounded sets, i.e.:
For all M > 0 there exists L(M) > 0 such that

|ϕ(x, y1, u1)− ϕ(x, y2, u2)|+
∣∣∣∣∂ϕ∂y (x, y1, u1)−

∂ϕ

∂y
(x, y2, u2)

∣∣∣∣
+

∣∣∣∣∂ϕ∂u (x, y1, u1)−
∂ϕ

∂u
(x, y2, u2)

∣∣∣∣
≤ L(M)(|y1 − y2|+ |u1 − u2|),

(2.4)

|gi(x, y1, u1)− gi(x, y2, u2)|+
∣∣∣∣∂gi

∂y
(x, y1, u1)−

∂gi

∂y
(x, y2, u2)

∣∣∣∣
+

∣∣∣∣∂gi

∂u
(x, y1, u1)−

∂gi

∂u
(x, y2, u2)

∣∣∣∣
≤ L(M)(|y1 − y2|+ |u1 − u2|)

(2.5)
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hold for a.e. x ∈ Ω, for all real yj , uj with max(|yj |, |uj |) ≤M , j = 1, 2, and
for i = 1, .., k. Moreover, we require

|ϕ(x, 0, 0)|+
∣∣∣∣∂ϕ∂y (x, 0, 0)

∣∣∣∣ +
∣∣∣∣∂ϕ∂u (x, 0, 0)

∣∣∣∣ ≤ C a.e. on Ω,

|gi(x, 0, 0)|+
∣∣∣∣∂gi

∂y
(x, 0, 0)

∣∣∣∣ +
∣∣∣∣∂gi

∂u
(x, 0, 0)

∣∣∣∣ ≤ C a.e. on Ω.

(A4) The functions ψ = ψ(x, y) : Γ × IR → IR, d = d(x, y) : Ω × IR → IR, and
b = b(x, y) : Γ × IR → IR, are measurable with respect to x ∈ Γ or x ∈ Ω
respectively, for all fixed y ∈ IR, and differentiable with respect to y for all x.
For y = 0, they are bounded with respect to x, i.e.

‖ψ(·, 0)‖L∞(Ω) +
∥∥∥∥∂ψ∂y (·, 0)

∥∥∥∥
L∞(Ω)

+ ‖b(·, 0)‖L∞(Γ) +
∥∥∥∥ ∂b∂y (·, 0)

∥∥∥∥
L∞(Γ)

+‖d(·, 0)‖L∞(Ω) +
∥∥∥∥∂d∂y (·, 0)

∥∥∥∥
L∞(Ω)

≤ C.

Moreover, they are uniformly Lipschitz on bounded sets, i.e., ψ, b, d, and
their derivatives ∂ψ/∂y, ∂b/∂y, ∂d/∂y satisfy (2.4) or (2.5) with respect to y
for almost all x ∈ Ω or x ∈ Γ, respectively.

(A5) It holds that

∂d

∂y
(x, y) ≥ 0 ∀y ∈ IR, a.e. on Ω,

∂b

∂y
(x, y) ≥ 0 ∀y ∈ IR, a.e. on Γ.

We should mention that the Lipschitz continuity with respect to x of ϕ and gi, i =
1, .., k, is only needed for the results of the Sections 5 and 6. To have Lagrange
multipliers in Lp-spaces, measurability and boundedness with respect to x is sufficient.

3. L1-regularity of Lagrange multipliers. We consider the controls in the
space U = L∞(Ω) and the states y in Y = H1(Ω) ∩ C(Ω̄). Then, thanks to the
assumptions (A1), (A2), (A4), for all u ∈ U a unique state yu ∈ Y exists that
solves (2.2) in the weak sense. We refer to Alibert and Raymond [2], who consider
the nonlinear system (2.2) including distributed and boundary control and certain
unbounded coefficients. Due to their more general setting, the assumptions slightly
differ from ours. We mention also Casas [5], who presented a similar technique for
the case of boundary control under assumptions that are analogous to ours. The
boundedness of the solution y was proven in [2], [5] by the Stampacchia truncation
method. For the equation (2.2) and our assumptions, this method can be found in
[21], Thm. 7.3.

The control-to-state mapping G : u 7→ y is continuously Fréchet differentiable
from U to Y , cf. again the technique of [2], [5] that can be directly transferred to our
problem.

We assume now once and for all that ū ∈ U is a locally optimal control with
associated state ȳ = G(ū). Local optimality means that there is an ε > 0 such that

J(y, u) ≥ J(ȳ, ū)

is satisfied for all (y, u) that satisfy (2.2)–(2.3) and ‖u− ū‖L∞(Ω) < ε.
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We do not discuss the existence of global solutions of the optimal control problem.
If the constraints (2.3) include, in particular, α ≤ u ≤ β with α, β ∈ L∞(Ω), the
admissible set is non-empty, and suitable assumptions on the behavior of ϕ and gi

with respect to u are required, then the existence of a global solution can be shown.
This is, however, not the issue of this paper.

We begin our analysis with the existence of Lagrange multipliers in (L∞(Ω))∗,
the dual space to L∞(Ω). The elements of (L∞(Ω))∗ can be represented by finitely
additive set functions on Ω̄ that are also called finitely additive measures. We shall
use the latter terminology.

To derive necessary optimality conditions, we need a standard constraint qualifi-
cation and assume the following linearized Slater condition:

(A6) There exist û ∈ L∞(Ω) and σ > 0 such that

gi(x, ȳ(x), ū(x)) +
∂gi

∂y
(x, ȳ(x), ū(x))ŷ(x)

+
∂gi

∂u
(x, ȳ(x), ū(x))û(x) ≤ −σ a.e. in Ω,

(3.1)

where ŷ ∈ Y is the solution of the linearized equation

Aŷ +
∂d

∂y
(x, ȳ(x))ŷ = û in Ω

∂ŷ

∂νA
+
∂b

∂y
(x, ȳ(x))ŷ = 0 on Γ.

(3.2)

Remark 3.1. It holds that ŷ = G′(ū)û.
Invoking this assumption, the following first-order necessary conditions of Karush-

Kuhn-Tucker type can be shown:
Theorem 3.2. Suppose that ū is locally optimal for (2.1)–(2.3) with associated

state ȳ = G(ū). If the assumptions (A1)–(A6) are satisfied, then there exist non-
negative finitely additive measures µi ∈ L∞(Ω)∗, i = 1, .., k, and an adjoint state
p ∈W 1,s(Ω) for all 1 ≤ s < N

N−1 , such that the conditions

∫
Ω

(
∂ϕ

∂u
(x, ȳ, ū) + p

)
h dx+

∫
Ω

k∑
i=1

∂gi

∂u
(x, ȳ, ū)h dµi = 0 ∀h ∈ L∞(Ω), (3.3)∫

Ω

gi(x, ȳ, ū) dµi = 0 i = 1, .., k, (3.4)

and the adjoint equation

A∗p+
∂d

∂y
(x, ȳ)p =

∂ϕ

∂y
(x, ȳ) +

k∑
i=1

(
∂gi

∂y
(x, ȳ, ū)∗µi)|Ω,

∂p

∂νA∗
+
∂b

∂y
(x, ȳ)p =

∂ψ

∂y
(x, ȳ) +

k∑
i=1

(
∂gi

∂y
(x, ȳ, ū)∗µi)|Γ

(3.5)

are satisfied.
The proof of the theorem can be performed analogous to Alibert and Raymond

[2] or Casas [5], where also the definition and the proof of existence and uniqueness of
a weak solution of (3.5) are presented. Notice that the multiplication operators y 7→
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∂gi

∂y (x, ȳ, ū) y are continuous from C(Ω̄) to L∞(Ω). Therefore, the adjoint mappings
µi 7→ ∂gi

∂y (x, ȳ, ū)∗ µi are continuous from L∞(Ω)∗ to C(Ω̄)∗ so that their images are
regular Borel measures, and the restrictions of them to Ω and Γ are well defined.

As linear continuous functionals on L∞(Ω), the finitely additive measures µi must
vanish on sets of Lebesgue measure zero. Thanks to Theorem 1.24 by Yosida and
Hewitt [23], each µ ∈ L∞(Ω)∗ can be uniquely written in the form

µ = µc + µp,

where µc is countably additive and µp is purely finitely additive. Moreover, if µ ≥ 0,
then µc and µp are non-negative, too ([23], Thm. 1.23).

Let us briefly comment on the associated definitions. Countable additivity is equiv-
alent to the following property: For every sequence {En}∞n=1 of Lebesgue-measurable
sets with Ω̄ ⊃ E1 ⊃ E2 . . . ⊃ En . . . and ∩∞n=1En = ∅, it holds that

lim
n→∞

µc(En) = 0. (3.6)

Pure finite additivity is defined as follows ([23], Def. 1.13): A nonnegative finitely
additive measure µ is said to be purely finitely additive, if every countably additive
measure λ with 0 ≤ λ ≤ µ is identically zero. An arbitrary finitely additive measure is
purely finitely additive, if its nonnegative and its nonpositive part are purely finitely
additive.

Every nonnegative purely finitely additive measure µp can be characterized by
the following behaviour ([23], Thm. 1.22): If λ is nonnegative and countably addi-
tive, then there exists a decreasing sequence Ω̄ ⊃ E1 ⊃ E2 . . . ⊃ En . . . of Lebesgue
measurable sets such that lim

n→∞
λ(En) = 0 and µp(En) = µp(Ω) for all n. We refer

also to Ioffe and Tikhomirov [10], Chpt. 8.3.3.
We shall apply this theorem with the Lebesgue measure λ. This means, that

λ(En) = meas(En) → 0, n→∞, but∫
En

dµp = ‖µp‖L∞(Ω)∗ ∀n. (3.7)

Our next goal is to show that, under an additional constraint qualification, the singu-
lar (i.e. purely finitely additive) parts of all Lagrange multipliers vanish. In this case,
we will have at least µi ∈ L1(Ω) for all i ∈ {1, .., k}. This property is a consequence of
the Radon-Nikodym theorem, since the measures vanish on sets of Lebesgue-measure
zero.

The following assumption is needed for this purpose:
(A7) Define, for δ > 0, the δ-active sets

M δ
i := {x ∈ Ω : gi(x, ȳ(x), ū(x)) ≥ −δ}.

Assume that there exist δ > 0 and ũ ∈ L∞(Ω) such that there holds

∂gi

∂u
(x, ȳ(x), ū(x))ũ(x) ≥ 1 a.e. on M δ

i (3.8)

for all i ∈ {1, .., k}.
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We shall discuss the consequences of this assumption later. It is equivalent to a
”uniformly positive linear independency condition”, cf. Dmitruk [8]. For some types
of constraints, this assumption is automatically satisfied. In other cases, the optimal
solution must fulfill a separation condition.

Theorem 3.3. Suppose that ū ∈ U , ȳ ∈ Y and µi ∈ L∞(Ω)∗, µi ≥ 0, i ∈
{1, .., k}, satisfy the first-order necessary optimality conditions of Theorem 3.2 and
assume that (A7) is satisfied. Then the purely finitely additive parts of all µi are
vanishing so that all µi, i = 1, .., k, can be represented by densities in L1(Ω).

Proof. The proof follows the one given by Dmitruk [8] for the case of ordinary
differential equations. We mention first that∫

Ω\Mδ
i

dµi = 0

holds true for all i ∈ {1, .., k}. Otherwise the complementarity condition (3.4) cannot
be satisfied, since gi < −δ on Ω \M δ

i .
Consider, for arbitrary j ∈ {1, .., k}, the singular part µp,j of µj . Thanks to

Theorem 1.22 by Yosida and Hewitt, there exists a decreasing sequence {En}∞n=1

with the properties mentioned above such that∫
En

dµp,j =
∫

Ω

dµp,j ∀n. (3.9)

Without limitation of generality, we can assume En ⊂M δ
j . We define now

hn = χEn ũ,

where ũ is taken from (3.8) and χEn denotes the characteristic function of En. In-
serting hn in the gradient equation (3.3), we find

−
∫

Ω

(
∂ϕ

∂u
(x, ȳ, ū) + p

)
hn dx =

∫
Ω

k∑
i=1

∂gi

∂u
(x, ȳ, ū)hn dµi =

=
k∑

i=1

∫
Mδ

i

∂gi

∂u
(x, ȳ, ū) ũ χEn dµi ≥

∫
Mδ

j

∂gj

∂u
(x, ȳ, ū) ũ χEn dµj

≥
∫

Mδ
j

∂gj

∂u
(x, ȳ, ū) ũ χEn

dµp,j ≥
∫

Mδ
j

χEn dµp,j

=
∫

En

χEn dµp,j =
∫

Ω

χEn dµp,j = ‖µp,j‖L∞(Ω)∗ .

The last inequality was obtained by (3.8). In view of (3.6), the left-hand side tends
to zero as n→∞. Therefore, ‖µp,j‖L∞(Ω)∗ = 0.

Remark 3.4. Thanks to the regularity µi ∈ L1(Ω), the adjoint equation admits
the simpler form

A∗p+
∂d

∂y
(x, ȳ)p =

∂ϕ

∂y
(x, ȳ) +

k∑
i=1

∂gi

∂y
(x, ȳ, ū)µi (3.10)

∂p

∂νA∗
+
∂b

∂y
(x, ȳ)p =

∂ψ

∂y
(x, ȳ).
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Moreover, the optimality condition (3.3) and the complementarity condition (3.4) read
now

∂ϕ

∂u
(x, ȳ, ū) + p+

k∑
i=1

∂gi

∂u
(x, ȳ, ū)µi = 0 a.e. in Ω, (3.11)∫

Ω

gi(x, ȳ, ū)µi(x) dx = 0, ∀i ∈ {1, . . . , k}. (3.12)

4. Some examples of constraints. Next, we discuss the regularity condition
(3.8) for some examples that might be of interest in the applications.
Example 1. (Control constraints) Consider the constraints

ua(x) ≤ u(x) ≤ ub(x) a.e. on Ω.

We define

g1(x, y, u) = u− ub(x),
g2(x, y, u) = ua(x)− u.

Assume ub(x)−ua(x) ≥ α > 0 a.e. on Ω and take δ = α/3. Then M1(δ)∩M2(δ) = ∅.
Therefore, we can define

ũ(x) =

 1 on M δ
1

−1 on M δ
2

0 else.

Then
∂g1
∂u

ũ = 1 on M δ
1 ,

∂g2
∂u

ũ = 1 on M δ
2 .

In this case, the assumption (A7) is automatically satisfied. However, the existence of
regular Lagrange multipliers can here be obtained in an easier and even better way,
without assuming ub(x)− ua(x) ≥ α > 0, since

µ1(x) =
(
∂ϕ

∂u
(x) + p(x)

)+

µ2(x) =
(
∂ϕ

∂u
(x) + p(x)

)−
are Lagrange multipliers, see [20], Thm. 2.29, (2.58) or Sect. 6.1., (6.8).

Example 2. (Pure mixed control-state constraints of bottleneck type)
Consider the constraint

ya(x) ≤ λu(x) + y(x) ≤ yb(x)

with λ 6= 0 and assume again yb(x)− ya(x) ≥ α > 0 a.e. on Ω. We define
g1(x, y, u) = λu+ y − yb(x), g2(x, y, u) = −λu− y + ya(x) and

ũ(x) =


1
λ on M δ

1

− 1
λ on M δ

2

0 else .
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Again, condition (3.8) is automatically satisfied. Also here, the regularity of Lagrange
multipliers can be obtained without assuming yb − ya ≥ α by a transformation to a
control constrained problem, cf. [12].

Example 3. (Control constraints and unilateral mixed constraint)
Let the following constraints be given,

ua(x) ≤ u(x) ≤ ub(x)
λu(x)− y(x) ≤ yb(x),

with λ > 0. We define

g1(x, y, u) = u− ub(x)
g2(x, y, u) = ua(x)− u

g3(x, y, u) = λu− y − yb(x)

and assume, for some δ > 0, the separation condition M δ
2 ∩ M δ

3 = ∅. Moreover,
assume again ub(x)− ua(x) ≥ α > 0. Then, if δ is sufficiently small, M δ

1 ∩M δ
2 = ∅ is

automatically satisfied. We set

ũ(x) =


max(1/λ, 1) on M δ

1 ∪M δ
3

−1 on M δ
2

0 else.

Then (3.8) is satisfied. However, we had to assume a separation condition that de-
pends on the unknown solution (ū, ȳ). If we have, for example, ua(x) ≡ 0 and we
know from maximum principle arguments that u ≥ 0 ⇒ yu ≥ 0 a.e. on Ω, then
obviously yb(x) ≥ β > 0 yields y(x) + yb(x) ≥ β > 0. In this case, M δ

2 ∩M δ
3 = ∅

is automatically satisfied; we have obtained a result of [17]. We should mention that
also Arada and Raymond [3] introduced a separation condition of this type.

Example 4. (Equi-directed mixed constraints)

Consider the general constraints (2.3) and assume that condition (5.2) below is
satisfied. Here we can define

ũ(x) ≡ 1
m

∀x ∈ Ω

and (3.8) is automatically satisfied.

Example 5. (Bilateral control and mixed control-state constraints)

For the following constraints, a separation condition is needed again:

ua ≤ u ≤ ub

ya ≤ u+ y ≤ yb.

We define g1, g2, g3, and M δ
i , i = 1, 2, 3, analogously to Example 3. Additionally, we

introduce

g4(x, y, u) = ya(x)− u− y
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and M δ
4 = {x ∈ Ω : ya(x)− ū(x)− ȳ(x) ≥ −δ}. We require, for some δ > 0,

(M δ
2 ∪M δ

4 ) ∩ (M δ
1 ∪M δ

3 ) = ∅ (4.1)

Then, by the same arguments as before, we see that (A7) is fulfilled. Again, we have
to assume (4.1), an additional separation condition.

5. Higher regularity of local solutions. In this section we show, how the
regularity µi ∈ L1(Ω) can be improved by bootstrapping arguments to finally obtain
Lipschitz regularity of ū. To this aim, we have to impose stronger conditions on ϕ
and on the gi:

(A8) The function ϕ possesses the second derivative ∂2ϕ/∂u2(x, y, u) on Ω̄ × IR2.
All functions gi, i = 1, . . . , k, are defined on D × IR2, where D ⊂ IRN is an
open set containing Ω̄. They satisfy (A3) on this extended set.
Moreover, there is a constant m > 0 such that the monotonicity properties

∂2ϕ

∂u2
(x, y, u) ≥ m ∀x ∈ Ω̄, ∀(y, u) ∈ IR2 (5.1)

∂gi

∂u
(x, y, u) ≥ m ∀x ∈ D, ∀(y, u) ∈ IR2 (5.2)

are satisfied.
Remark 5.1. The extension of the gi from Ω̄ to a larger open set D is needed

in the proof of the next theorem. We apply the Robinson implicit function theorem in
an open covering of Ω̄ × [−M,M ]. In our examples, the dependence of the gi on x
comes with that of the functions ua, ub or ya, yb defining the bounds. The extension
of these functions to a neighborhood around Ω̄ should not cause difficulties.

We will also consider bilateral constraints of the form

αi(x) ≤ γi(x, y(x), u(x)) ≤ βi(x), i = 1, .., l, (5.3)

where the γi, i = 1, .., l, satisfy (A8) and αi ≤ βi are Lipschitz functions.
Lemma 5.2. Suppose that g1,..,gk satisfy assumption (A8). Then there exist

functions φi : Ω̄ × IR2 → IR with the following properties: All φi(x, y) are Lipschitz
with respect to x for all y ∈ IR,

|φi(x, y1)− φi(x, y2)| ≤ L(M)|y1 − y2| (5.4)

is satisfied for all x ∈ Ω̄ and all |yj | ≤M , and there holds

gi(x, y, u)

 = 0 ⇔ u = φi(x, y)
< 0 ⇔ u < φi(x, y)
> 0 ⇔ u > φi(x, y).

(5.5)

Proof. Consider, for fixed i, the equation

gi(x, y, u) = 0. (5.6)

By (5.2) we have lim
u→±∞

gi(x, y, u) = ±∞, and hence, for each (x, y) ∈ D×IR, equation

(5.6) has a unique solution u = φi(x, y). To show the Lipschitz property of φi, we
invoke the implicit function theorem of Robinson, [16], Thm. 2.1. It ensures that,
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for each pair (x0, y0) ∈ D × IR and each ε > 0, there is an (open) neighborhood
Nε(x0, y0) ⊂ D × IR such that

|φi(x, y)− φi(ξ, η)| ≤ (λ+ ε)|gi(x, y, φi(x, y))− gi(ξ, η, φi(x, y))| (5.7)

holds for all (x, y) and (ξ, η) in Nε(x0, y0), where λ = 1/m with m defined by (5.2).
The collection of all neighborhoods Nε(x0, y0), (x0, y0) ∈ D × [−M,M ], defines

an open covering of the compact set Ω̄× [−M,M ]. Selecting a finite covering, an easy
application of the triangle inequality shows that (5.4) holds everywhere in Ω̄× IR with
a suitable constant L(M).

In view of the strong monotonicity of g with respect to u for all fixed (x, y), the
reader may now readily verify the relations (5.5).

Lemma 5.3. Assume that the optimality system (3.10)–(3.12) is fulfilled with
Lagrange multipliers µi ∈ L1(Ω). If (A8) is satisfied, then the Lagrange multipliers
µi satisfy almost everywhere on Ω the equation

k∑
i=1

∂gi

∂u
(x, ȳ(x), ū(x))µi(x) = max

(
0,−

(∂ϕ
∂u

(
x, ȳ(x), min

i=1,..,k
φi(x, ȳ(x))) + p(x)

))
.

(5.8)

Proof. We extend an idea introduced in [18] and consider two cases for x ∈ Ω.

(i) x ∈M+ = {x ∈ Ω :
k∑

i=1

∂gi

∂u
(x, ȳ(x), ū(x))µi(x) > 0}.

Assumption (A8) assures in particular ∂gi/∂u ≥ 0 so that, for each x ∈ M+, at
least one multiplier µi(x) must be positive. In view of the complementary slackness
condition (3.12), almost everywhere in this set, at least one inequality constraint is
active. Therefore, in view of (5.5), we have

ū(x) = min
i
φi(x, ȳ(x)) a.e. on M+. (5.9)

Moreover, from
k∑

i=1

∂gi

∂u
(x, ȳ(x), ū(x))µi(x) > 0 and the gradient equation (3.11) we

deduce
∂ϕ

∂u
(x, ȳ(x), ū(x)) + p(x) < 0 a.e. on M+.

Inserting the expression (5.9) for ū in this inequality, it follows that

0 < −
(∂ϕ
∂u

(x, ȳ(x),min
i
φi(x, ȳ(x))) + p(x)

)
a.e. on M+.

Therefore, again in view of (3.11), we obtain

k∑
i=1

∂gi

∂u
(x, ȳ(x), ū(x))µi(x) = max

(
0,−

(∂ϕ
∂u

(x, ȳ(x),min
i
φi(x, ȳ(x))) + p(x)

))
,

since the left-hand side is positive.

(ii) x ∈ Ω \M+ = {x ∈ Ω :
∑k

i=1

∂gi

∂u
(x, ȳ(x), ū(x))µi(x) = 0}.

Here, the gradient equation (3.11) shows

−
(
∂ϕ

∂u
(x, ȳ(x), ū(x)) + p(x)

)
= 0. (5.10)
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Moreover, we have

ū(x) ≤ min
i
φi(x, ȳ(x)).

From the monotonicity condition (5.1), it follows

∂ϕ

∂u
(x, ȳ(x), ū(x)) ≤ ∂ϕ

∂u
(x, ȳ(x),min

i
φi(x, ȳ(x))).

Together with (5.10), this implies

−
(
∂ϕ

∂u
(x, ȳ(x),min

i
φi(x, ȳ(x))) + p(x)

)
≤ 0,

hence

k∑
i=1

∂gi

∂u
(x, ȳ(x), ū(x))µi(x) = 0 = max

(
0,−

(∂ϕ
∂u

(x, ȳ(x),min
i
φi(x, ȳ(x))) + p(x)

))
holds also a.e. in Ω \M+, too.

Theorem 5.4. Suppose that (ȳ, ū) ∈ H1(Ω) ∩ C(Ω̄) × L∞(Ω) satisfy, together
with p ∈ W 1,s(Ω), 1 ≤ s < N

N−1 , and µ1, .., µk ∈ L1(Ω), the optimality conditions of
Theorem 3.2. If the assumptions (A3) and (A8) are satisfied, then all multipliers µi,
i = 1, . . . , k, are bounded and measurable functions. If Γ is of class C1,1, then ū and

k∑
i=1

∂gi

∂u
(x, ȳ, ū)µi are Lipschitz functions on Ω̄.

Proof. We show this result by a bootstrapping argument. At the beginning, we
know that ū ∈ L∞(Ω) and ȳ ∈ C(Ω̄).

Thanks to p ∈ W 1,s(Ω), by Sobolev embedding theorems there is a σ > 0 such
that p ∈ Ls1(Ω) with s1 = 1 + σ (see also our arguments at the end of the proof).
From the gradient equation (3.11), we deduce

k∑
i=1

∂gi

∂u
(x, ȳ, ū)µi = −∂ϕ

∂u
(x, ȳ, ū)− p ∈ Ls1(Ω). (5.11)

Because of (5.2) and by the nonnegativity of the multipliers µi, this implies µi ∈
Ls1(Ω) for all i ∈ {1, .., k} and hence

k∑
i=1

∂gi

∂y
(x, ȳ, ū)µi ∈ Ls1(Ω).

Inserting this in (3.10), the right-hand side is seen to belong to Ls1(Ω). Therefore,

p ∈W 1,s1(Ω) ↪→ Ls2(Ω), where s2 = s1 + σ and σ > 0.

We explain below why the same σ can be taken. By (5.11), we find

k∑
i=1

∂gi

∂u
(x, ȳ, ū)µi ∈ Ls2(Ω).
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Repeating this bootstrapping method, we get numbers si with si+1 ≥ si + σ. We can
take the same σ > 0 for all i for the following reason: If p ∈W 1,s(Ω), then p ∈ Lr(Ω)
for all r given by

1
r

=
1
s
− 1
N
, (5.12)

provided that 1 < N
s , cf. Adams [1]. Let us assume 1 < N

s . Then (5.12) implies

r − s =
s2

N − s
>
s2

N
> 1/N

by s ≥ 1, and we are justified to take σ = 1/N .
After finitely many steps, in any case we arrive at a situation, where N/si+1 < 1

while N/si > 1 (notice that we have some freedom in the choice of σ to avoid the
equality sign in both the equations).

In this case, it holds that p ∈W 1,si+1(Ω) ↪→ C(Ω̄). This implies

µi ∈ L∞(Ω) ∀i ∈ {1, .., k}.

Now we need the higher smoothness C1,1 of Γ. Exploiting again (3.10), we obtain
p ∈W 2,s(Ω) for all s <∞. This regularity result follows from Grisvard [9]. Therefore,
p is continuously differentiable, Adams [1], and hence Lipschitz.

Now, we invoke formula (5.8). Since ū is bounded and measurable, ȳ is also
Lipschitz. The same holds true for the function

min
i∈{1,..,k}

φi(x, ȳ(x)),

since all φi are Lipschitz. Thanks to this, the right-hand side of (5.8) is Lipschitz so
that the left-hand side must have this property, too.

From the gradient equation (5.11), we now obtain

∂ϕ

∂u
(·, ȳ, ū) ∈ C0,1(Ω̄). (5.13)

Next we make use of the assumption (A8), (5.1), i.e.
∂2ϕ

∂u2
≥ m > 0. Invoking the

implicit function theorem again, we arrive at the Lipschitz continuity of ū.
Bilateral nonlinear mixed constraints. Finally, we consider the constraints

(5.3), where we need an additional separation assumption to prove the Lipschitz
continuity of ū. We assume

(A9) The functions γi satisfy Assumption (A8) on the gi. Moreover ϕ satisfies
(A8), too, and there is a δ > 0 such that the sets

Mα
i,δ := {x : γi(x, ū(x), ȳ(x)) ≤ αi(x) + δ},

Mβ
i,δ := {x : βi(x)− δ ≤ γi(x, ū(x), ȳ(x))}

satisfy the condition

k⋃
i=1

Mα
i,δ ∩

k⋃
i=1

Mβ
i,δ = ∅.
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Theorem 5.5. Consider the optimal control problem (2.1)–(2.3) for constraints
of the form (5.3), i.e. for

gi =
{
γi − βi, i ∈ {1, .., l},
αi−l − γi−l, i ∈ {l + 1, .., 2l}.

Suppose that ȳ ∈ H1(Ω)∩C(Ω̄) and ū ∈ L∞(Ω) satisfy together the first-order neces-
sary optimality conditions. Assume that (A9) is satisfied and that Γ is of class C1,1.
Then the functions

l∑
i=1

∂gi

∂u
(x, ȳ, ū)µi,

2l∑
i=l+1

∂gi

∂u
(x, ȳ, ū)µi,

and the optimal control ū are Lipschitz.
Proof. Let us recall first that we have assumed ∂γi/∂u ≥ m for all i ∈ {1, . . . , l}.

Therefore, in view of the definition of the gi, it holds that

∂gi

∂u
≥ m, if 1 ≤ i ≤ l,

∂gi

∂u
≤ −m if l + 1 ≤ i ≤ 2l.

Now we proceed similarly to the proof of Theorem 5.4 and distinct between four cases
with respect to x ∈ Ω:

l∑
i=1

∂gi

∂u
µi > 0,

l∑
i=1

∂gi

∂u
µi = 0,

2l∑
i=l+1

∂gi

∂u
µi < 0,

2l∑
i=l+1

∂gi

∂u
µi = 0.

Here and in the sequel we supress the arguments (x, ȳ, ū) in ∂gi/∂u for convenience.
The first two cases concern the upper bounds, hence they are of the type considered
in Theorem 5.4. Let us therefore concentrate on the remaining two cases.

(i)
2l∑

i=l+1

(
∂gi

∂u
µi

)
(x) < 0:

At least one of the multipliers µi, i ∈ {l+1, . . . , 2l}, must be positive, thus one of the
associated lower constraints is active. Hence, by the separation assumption (A9), no
one of the upper constraints can be almost active. This implies that all multipliers µi

with i ∈ {1, . . . , l} must vanish almost everywhere on this set, i.e.

l∑
i=1

(
∂gi

∂u
µi

)
(x) = 0.

Invoking the gradient equation (3.3), we find

0 < −
2l∑

i=l+1

(
∂gi

∂u
µi

)
(x) =

∂ϕ

∂u
(x, ȳ(x), ū(x)) + p(x),

hence

−
2l∑

i=l+1

(
∂gi

∂u
µi

)
(x) = max

(
0,
∂ϕ

∂u
(x, ȳ(x), ū(x)) + p(x)

)
.
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Moreover, we have in this case that

ū(x) = max
i∈{1,..,l}

φα
i (x, ȳ(x))

with Lipschitz functions φα
i , which are associated to the lower bounds and defined by

gi(x, y, u) = αi(x) ⇔ u = φα
i (x, y).

This follows by the arguments of Lemma 5.2. Consequently,

−
2l∑

i=l+1

(
∂gi

∂u
µi

)
(x) = max

(
0,
∂ϕ

∂u
(x, ȳ(x), max

i∈{1,..,l}
φα

i (x, ȳ(x))) + p(x)
)

holds on this set.

(ii)
2l∑

i=l+1

(
∂gi

∂u
µi

)
(x) = 0 :

The gradient equation implies then

∂ϕ

∂u
+ p = −

l∑
i=1

(
∂gi

∂u
µi

)
(x) ≤ 0

and

ū(x) ≥ max
i∈{1,..,l}

φα
i (x, ȳ(x)).

In view of the monotonicity property (5.1), we obtain

∂ϕ

∂u
(x, ȳ(x), max

i∈{1,..,l}
φα

i (x, ȳ(x))) + p(x) ≤ ∂ϕ

∂u
(x, ȳ(x), ū(x)) + p(x) ≤ 0.

Obviously, it therefore holds that

0 = −
2l∑

i=l+1

(
∂gi

∂u
µi

)
(x) = max

(
0,
∂ϕ

∂u
(x, ȳ(x), max

i∈{1,..,l}
φα

i (x, ȳ(x))) + p(x)
)
,

(5.14)
so that (5.14) is satisfied a.e. on Ω. Invoking the same bootstrapping arguments as
in the proof of Theorem 5.4, we deduce the desired Lipschitz properties.

6. The parabolic case. It is fairly obvious that the method of the preceding
sections can be extended to problems with parabolic state equation. There are some
differences in the regularity results of the equation, but the main ideas are analogous.
Here, we briefly sketch the arguments to show Hölder regularity of the optimal control.

In [3], the L1-regularity of Lagrange multipliers has already been investigated for
parabolic equations. Therefore, we prove Hölder continuity on the assumption that
the Lagrange multipliers belong to L1. In [3], sufficient conditions can be found that
assure this property.

We consider the following parabolic counterpart to the elliptic optimal control
problem (2.1)–(2.3):

minJ(y, u) :=
∫

Ω

∫ T

0

ϕ(x, t, y, u) dxdt+
∫

Γ

∫ T

0

ψ(x, t, y) dsdt (6.1)
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subject to

∂y

∂t
+Ay + d(x, t, y) = u in Q := Ω× (0, T )
∂y

∂νA
+ b(x, t, y) = 0 in Σ := Γ× (0, T )

y(·, 0) = y0(·) in Ω

(6.2)

and to

gi(x, t, y(x, t), u(x, t)) ≤ 0 a.e. in Q, i = 1, .., k. (6.3)

We rely on the following general assumptions:
(A10) The given data have to satisfy direct extensions of (A1)–(A5) to the parabolic

case that are obtained as follows: In (A1), we additionally assume that Γ is
of class C1,1. (A2) remains unchanged except that c0 is now a function of
L∞(Q) not restricted in sign. In (A3)–(A5), the sets Ω and Γ are replaced
by Q and Σ, respectively, and x̃ := (x, t) replaces x in these assumptions.
Moreover, we assume that y0 is Hölder continuous in Ω.

In particular, d, b are monotone non-decreasing w.r. to y and d(·, ·, 0), b(·, ·, 0) belong
to L∞(Q) and L∞(Σ), respectively.

Under these assumptions, for all u ∈ Lr(Q) with r > N/2 + 1, the parabolic
equation (6.2) has a unique solution y ∈ W (0, T ) ∩ C(Q̄), cf. Casas [6] or Raymond
and Zidani [15]. The space W (0, T ) is defined by

W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) :
dy

dt
∈ L2(0, T ;H1(Ω)′)}.

For the remainder of this section, let ū ∈ L∞(Q) be (locally) optimal for (6.1)–
(6.3). We assume that nonnegative Lagrange multipliers µi ∈ L1(Q) and an adjoint
state p exist such that the following first-order necessary optimality conditions are
satisfied:

−∂p
∂t

+A∗p+
∂d

∂y
(x, t, ȳ) p =

∂ϕ

∂y
(x, t, ȳ) +

k∑
i=1

∂gi

∂y
(x, t, ȳ, ū)µi in Q

∂p

∂νA∗
+
∂b

∂y
(x, t, ȳ) p =

∂ψ

∂y
(x, t, ȳ) in Σ

p(·, T ) = 0 in Ω,

(6.4)

∂ϕ

∂u
(x, t, ȳ, ū) + p+

k∑
i=1

∂gi

∂u
(x, t, ȳ, ū)µi = 0 a.e. in Q, (6.5)∫∫

Q

gi(x, t, ȳ, ū)µi dxdt = 0 ∀i ∈ {1, . . . , k}. (6.6)

The adjoint state p is the weak solution of (6.4) and belongs to Lr̃(0, T,W 1,r(Ω)) for
all r̃ > 1, r > 1 satisfying

N

2
+

1
2
<
N

2r
+

1
r̃
,

cf. [14], Thm. 4.3. Now we are going to show Hölder continuity of ū. To this end, we
assume in addition:
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(A11) The function ϕ possesses the second-order derivative ∂2ϕ/∂u2(x, t, y, u) on
Q̄ × IR2. All functions gi, i = 1, . . . , k, are defined on D × IR2, where D ⊂
IRN+1 is an open set containing Q̄. They satisfy (A3) on this extended set.
There is a constant m > 0 such that the monotonicity properties

∂2ϕ

∂u2
(x, t, y, u) ≥ m ∀(x, t) ∈ Q̄, ∀(y, u) ∈ IR2 (6.7)

∂gi

∂u
(x, t, y, u) ≥ m ∀(x, t) ∈ D, ∀(y, u) ∈ IR2 (6.8)

are satisfied.
The assertions of the Lemmas 5.2 and 5.3 do not depend on the special structure
of the underlying PDE. Obviously, they can be directly transferred to the parabolic
case. Therefore, the following extension of equation (5.8) is satisfied a.e. in Q:

k∑
i=1

∂gi

∂u
(x, t, ȳ(x, t), ū(x, t))µi(x, t) =

= max
(

0,−
(∂ϕ
∂u

(
x, t, ȳ(x, t), min

i=1,..,k
φi(x, t, ȳ(x, t))

)
+ p(x, t)

))
.

(6.9)

The functions φi are constructed again by the Robinson implicit function theorem
that assures, in particular, an estimate of the type (5.7). Now, the functions gi in this
estimate are only locally Hölder continuous so that all φi(x, t, y) are locally Hölder
continuous: There is a constant λ ∈ (0, 1) and, for all M > 0, a constant H(M) > 0
depending on M such that

|φi(x1, t1, y1)− φi(x2, t2, y2)| ≤ H(M)|(x1, t1, y1)− (x2, t2, y2)|λ (6.10)

holds for all (xi, ti) ∈ Q̄ and for all yi ∈ [−M,M ].
Theorem 6.1. Suppose that (ȳ, ū) ∈ W (0, T ) ∩ C(Q̄)× L∞(Q) satisfy, together

with p ∈ Lr̃(0, T,W 1,r(Ω)) for all r̃ > 1, r > 1 and µ1, .., µk ∈ L1(Q), the optimality
conditions (6.4)–(6.6). If the assumptions (A10) and (A11) are satisfied, then all
multipliers µi, i = 1, . . . , k, belong to L∞(Q). Moreover, the optimal control ū and

the expression
k∑

i=1

∂gi

∂u
(x, t, ȳ, ū)µi are Hölder continuous on Q̄.

Proof. We proceed by bootstrapping arguments following the proof of Theorem
5.4. By our assumptions, we know ū ∈ L∞(Q) and ȳ ∈ C(Q̄).

Consider now the adjoint equation (6.4). Thanks to Theorem 4.2, (i), in [14],
right-hand sides of the adjoint equation in Ls(Q) are transformed to solutions in
Lα(Q) with α ≥ s, if

1
s
(
N

2
+ 1) <

1
α

(
N

2
+ 1) + 1,

and hence right-hand sides from Ls(Q) are transformed to Lα(Q) for all α ≥ 1 with

α <
s(N/2 + 1)
N/2 + 1− s

provided that s < N/2 + 1. For s > N/2 + 1, the transformation is from Ls(Q) to
C(Q̄). The gain of smoothness α− s is

α− s =
s2

N/2 + 1− s
− ε,
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where ε > 0 can be taken arbitrarily small. Therefore, by s ≥ 1, at least the gain

α− s ≥ s2

N/2 + 1
≥ 1
N/2 + 1

=: σ

is obtained, and hence p ∈ Ls+σ(Q).
We start a bootstrapping procedure at s := 1. From the gradient equation (6.5),

we deduce

k∑
i=1

∂gi

∂u
(x, t, ȳ, ū)µi = −∂ϕ

∂u
(x, t, ȳ, ū)− p ∈ Ls+σ(Q). (6.11)

Because of (6.8) and by the nonnegativity of the multipliers µi, this implies

µi ∈ Ls+σ(Q) ∀i ∈ {1, .., k}.

Inserting this in (6.4), the right-hand sides of the adjoint equation are seen to belong
to Ls+σ(Q). Therefore, we obtain by the same arguments as before

p ∈ Ls+2σ(Q).

By (6.11) and the boundedness of the functions ∂gi/∂u(x, t, ȳ, ū), we find

k∑
i=1

∂gi

∂u
(x, t, ȳ, ū)µi ∈ Ls+2σ(Q).

Repeating this bootstrapping method, after finitely many steps, we arrive at the
situation that N/2 + 1 < 1 + (j + 1)σ while N/2 + 1 > 1 + jσ. In this case, it holds
that p ∈ C(Q̄) and (6.11) implies

µi ∈ L∞(Q) ∀i ∈ {1, .., k}.

We know that p is bounded on Q̄ and its terminal value is zero, hence Hölder contin-
uous on Ω̄. Therefore, Theorem 4 in Di Benedetto [7] yields Hölder continuity of p.
(For our case of variational boundary data, this theorem ensures Hölder continuity of
the solution on Ω̄ × [0, T − ε] for all ε > 0. Moreover, it states Hölder continuity on
Q̄, if the prescribed terminal data are Hölder.)

Now, we invoke formula (6.9). Since ȳ bounded and y0 is Hölder continuous, ȳ
exhibits this property too. The same holds true for the function

min
i∈{1,..,k}

φi(x, t, ȳ(x, t)),

since, by (6.10), all φi are Hölder continuous. Thanks to this, the right-hand side of
(6.9) is Hölder continuous so that the left-hand side has this property, too.

From the gradient equation (6.11), we now obtain

∂ϕ

∂u
(·, ȳ, ū) ∈ C0,κ(Q̄) (6.12)

with some κ ∈ (0, 1). Next we make use of the assumption (A11), (6.7), i.e.
∂2ϕ

∂u2
≥

m > 0. Invoking the implicit function theorem again, we deduce the Hölder continuity
of ū.
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