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Abstract. The paper deals with a class of nonlinear optimization problems in a function space,
where the solution is restricted by pointwise upper and lower bounds and by finitely many equality
and inequality constraints of functional type. Second order necessary and sufficient optimality con-
ditions are established, where the cone of critical directions is arbitrarily close to the form which is
expected from the optimization in finite dimensional spaces. The results are applied to some optimal
control problems for ordinary and partial differential equations.
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1. Introduction. Let (X,S, ) be a measure space with u(X) < +00. In this
paper we will study the following optimization problem

®)Y @) =0, 1

where ug,up € L*(X) and J,G; : L*®(X) — R are given functions with differen-
tiability properties to be fixed later. We will state necessary and sufficient optimality
conditions for a local minimum of (P). Our main goal is to reduce the classical gap
between the necessary and sufficient conditions for optimization problems in Banach
spaces. We shall prove some optimality conditions very close to the ones for finite
dimensional optimization problems. In the case of finite dimensions, strongly ac-
tive inequality constraints are considered in the critical cone by associated linearized
equality constraints. Roughly speaking, this is what we are able to extend to infinite
dimensions. Due to the lack of compactness, the direct proof of the sufficiency theo-
rem known for finite dimensions cannot be transferred to the case of general Banach
spaces. Our direct method of proof is able to overcome this difficulty. To our best
knowledge, this result has not yet been presented in literature. Of course, the bound
constraints uq(z) < u(z) < up(z) introduce some additional difficulties in the study
because they constitute an infinite number of constraints. In Section 2 we introduce a
slightly stronger regularity assumption than that one considered in the Kuhn-Tucker
theorem, which allows us to deal with the bound constraints.

In Section 4 we discuss the application of our general results to different types of
optimal control problems. We consider the control of ordinary differential equations
as well as that of partial differential equations of elliptic and parabolic type.
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2. Necessary Optimality Conditions. In this section we will assume that «
is a local solution of (P), which means that there exists a real number 7 > 0 such that
for every feasible point of (P), with ||u — @||z~(x) < 7, we have that J(@) < J(u).

For every € > 0, we denote set of e-inactive constraints by

X.={z € X 1up(z) + ¢ < u(z) < up(x) — e}
We make the following regularity assumption

(2.1) Jeg > 0 and {h;}jer, C L*(X), with supp h; C X.,, such that
G;(’U,)h] = 6“-, 1,7 € Iy,

where
In={j <m|Gj;(u) =0}.

Iy is the set of indices corresponding to active constraints. We also denote the set of
non active constraints by I_

_ ={j <m|G,(@) < 0}.

Obviously (2.1) is equivalent to the independence of the derivatives {G'; (@)} jer,
in L*°(X,). Under this assumption we can derive the first order necessary conditions
for optimality satisfied by @. For the proof the reader is referred to Bonnans and
Casas [1] or Clarke [5].

THEOREM 2.1. Let us assume that (2.1) holds and J and {G;}]L, are of class

C! in a neighbourhood of . Then there exist real numbers {\; }71 C R such that

(2.2) Aji>0, m+1<j<m, \j=0ifjel_;
(2.3) (J'(a) + ZS\jG;(ﬂ),U -y >0  for all ug <u < up.
j=1

Since we want to establish some optimality conditions useful for the study of
control problems, we need to take into account the two-norm discrepancy; for this
question see for instance Ioffe [8] and Maurer [9]. Then we have to impose some
additional assumptions on the functions J and Gj.

(A1) There exist functions f, g; € L*(X), 1 < j < m, such that for every h € L>=(X)

(2.4) J'(@)h = /f 2)dp(z) and Gl(@)h = /g] (@)du(z), 1< j < m.
(A2) If {hx}22, C L®(X) is bounded, h € L®(X) and hi(z) — h(z) ae. in X,
then
(2.5) 17" (@ i Gk = [ (a i Gl
If we define

(2.6) L(u, A\) = J(u) + i A;Gj(u) and d(z i
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then

(2.7) ‘2—5( ANh = [J'(a) i Gy(a)]h = /d Ydu(x) Vh € L®(X).

From (2.3) we deduce that

0 for a.e. x € X where u,(x) < u(x) < up(z),
(2.8) d(z) = {

>0 for a.e. x € X where a(z) =
<0 for a.e. z € X where @(z) =

Associated with d we set
(2.9) X% ={z € X :|d(z)| > 0}.

Given {);}7-, by Theorem 2.1 we define the cone of critical directions
(2.10) C2 = {h € L*®(X) satisfying (2.11) and h(z) =0 for a.e. z € X°},
with

Gj(@)h = 0if (j <ma) or (j > ma, G;(E) =0 and A; > 0);

(2.11) G'(@)h <0 if j >my, Gj(@) =0and \; = 0

h(z) = { >0 if u(z) = ug(x);

<0 if u(z) = up(x).

In the following theorem we state the necessary second order optimality condi-
tions.

THEOREM 2.2. Assume that (2.1), (A1) and (A2) hold, {\; }721 are the La-
grange multipliers satisfying (2.2) and (2.3) and J and {G;}7TL, are of class C?ina
neighbourhood of w. Then the following inequality is satisﬁed

0°L

(2.12) E

(@,\)h> >0 Vhe CY.

To prove this theorem we will make use of the following lemma

LEMMA 2.3. Let us assume that (2.1) holds and J and {G;}7-, are of class C*
in a neighbourhood of u. Let h € L*(X) satisfy G';(a)h = 0 for every j € I, where
I is an arbitrary subset of Iy. Then there exist a number ¢, > 0 and C?-functions
v; i (—€n,+en) — R, j € I, such that

(2.13) { Gj(u) =07 €I, and Gj(u) <0 j & Io, V|t| <en;
' 7;(0) =7;(0) =0, j € I,

with

u=tu+th+ Y v(t)hy
jeI

{h;}jer given by (2.1).
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Proof. Let k be the cardinal number of I and let us define w : R x R¥ — R* by

w(t, p) = (G;(u + th+ sz’hi))jel-

i€l
Then w is of class C? in a neighbourhood of (0,0),

Ow _ Ow _ .

—(0,0) = (G%(@)h)jer =0 and 8—p(0,0) = (G5(@)hi)s jer = Identity.
Therefore we can apply the implicit function theorem and deduce the existence of
¢ > 0 and functions v; : (—¢,+&) — R of class C2, j € I, such that

w(t,y(t)) =w(0,0) =0Vt € (—¢,4+¢€) and ~(0) =0,

where () = (7;(t)),¢;- Furthermore, by differentiation in the previous identity we
get

Ow Ow Lo L
5700 + 6—[)(070)7 (0) =0=+'(0) =0.

Taking into account the continuity of v and G; and that v(0) = 0, we deduce the

existence of e, < ¢ such that (2.13) holds for every ¢t € (—ep, +¢p). O
Proof of Theorem 2.2. Let us take h € C9 satisfying

(2.14) h(z) =0 ifus(z) < a(x) <wug(z)+e or up(z) —e < az) < up(x)
for some € € (0,e5]. We introduce
(2.15) I={1,...,m1}U{j:mi+1<j<m, Gj(a)=0and G(a)h = 0}.

I includes all equality constraints, all strongly active inequality constraints and, de-
pending on h, possibly some of the weakly active inequality constraints. Then we are
under the assumptions of Lemma 2.3. Let us set

ut:ﬂ+th+27j(t)hj, t € (—ep,ep)-
JjerI

From Lemma 2.3 we know that G;(u;) =01if j € I and G;j(uy) < 0if j & Iy, provided
that ¢ € (—ep,+ep). From (2.11) we deduce that G;(@) = 0 and G’ (@)h < 0 for
J € Ip\ I. Therefore we have that Gj(u;) < 0 for every j & I and t € (0,¢0), for some
€9 > 0 small. On the other hand, the assumptions on h along with the additional
condition (2.14) and the fact that supp h; C X, imply that u,(z) < ui(z) < up(z)
for t > 0 small enough. Consequently, by taking €9 > 0 sufficiently small, we get that
uy is a feasible control for (P) for every ¢ € [0,g9). Now we know G;(u;) = 0for j € I
and \; = 0 for j & Iy (cf. (2.2). According to (2.11) we require G5(@)h = 0 for active
inequalities with /_\j > 0, hence if ¢ belongs to Iy \ I, then /_\j = 0 must hold. This
leads to

D XiGj(ur) =0Vt € [0,&0).

i=1
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Therefore the function ¢ : [0, +€9) — R given by

() = J(u) + > NiGj(we)

i=1

has a local minimum at 0 and, taking into account that v;(0) = 0,

¢'(0) = (J'(@) + Z NiG(@)(h + ) (0)hy) =

jeI

(7' (@) + 3 %G (@) = /X d(2)h(z)du(z) = 0.

The last identity follows from the fact that A vanishes on XP°.
Since the first derivative of ¢ is zero we have the following second order necessary
optimality condition

m

0 S ¢Il( J” ’U, Z G//

[J' (@) + Z L@ A 0)he) = [J"(@) + > NGy @)k +

i€l j=1

/ d(z (@) = [J"(a) + inG;’(a)]hQ = 0w )2

lEI j=1

Here we have used (A1). Now let us consider h € L*°(X) satisfying (2.11), but
not (2.14), i.e. h is any critical direction. The main idea in this case is to approach
h by functions h., which belong to the critical cone C2 and satisfying (2.14) as well.
Then for every ¢ > 0, we define A, = X, U{z € X : @(z) = uq(z) or u(x) = up(z)}.
This is the complement of the set of points x satisfying (2.14). Put

he = hxa, +Z</X\A )h(x)dp(x ))hiIhXAE'HA%

i€l

where x 4, is the characteristic function of A, and I is given by (2.15). We verify that
he belongs to C2, while hy 4, possibly is not contained in this cone.
Thus for every j € I, using (2.1) and taking 0 < € < €z, we have

Gi(@)he = / 05 (@) (hxa,) @) dp(z) + /X 05 (@) h(@)dp(z)

= g]( z)h(x)dp ()

+Z (/X\A )h(z )du($)> /)(gj(w)hi(x)dﬂ(x)

i€1

= [, s@h@inG +Z</ du(x))é,-i

i€l

_ /X g;(@)h(z)dp(z) = G (@)h = 0.
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In case of j € Iy \ I, then G’;(u)h < 0. Then it is enough to take ¢ sufficiently small
to get G (a)he <O0.

Thus, reminding that supph; C X.,, we have that h. satisfies the conditions
(2.11) and (2.14), therefore (2.12) holds for each h., € > 0 small enough.

Finally, it is clear that h.(x) — h(x) a.e. in X as & — 0. Therefore, assumption
(A2) allows us to pass to the limit in the second order optimality conditions satisfied
for every he and to conclude (2.12) O

3. Sufficient Optimality Conditions. In this section @ is a given feasible
element for the problem (P). Motivated again by the considerations on the two-norm
discrepancy we have to make some assumptions involving the L*°(X) and L?(X)
norms,

(A3) There exists a positive number 7 > 0 such that J and {G;}7-, are of class C*
in the L°°(X)-ball B,.(u) and for every n > 0 there exists € € (0,7) such that
for each u € B,.(u), ||v — tl|lp=(x) <€, h,h1,hy € L®(X) and 1 < j < m we
have

,

< nl1AllZ2x),

O’L, - 0L, -
[W(U’)\) - w(’u, )\):| h2

7' (w)h| < Moallbllzzcx), 1Gj(uw)h] < Mjallhllz2(x),

|J" (u)hiha| < Mo a|lhllL2(x) lhellL2(x)

[ |G (u)hiha| < Mjollhallp2(x)llhallL2(x)-
Analogously to (2.9) and (2.10) we define for every 7 > 0
(3.2) X" ={ze X :|dz)|>1}
and
(3.3) CI ={heL*(X) satisfying (2.11) and h(x) =0 ae. z€ X"}.

The next theorem provides the second order sufficient optimality conditions of
(P). Though they seem to be different from the classical ones, we will prove later that
they are equivalent; see Theorem 3.2 and Corollary 3.3.

THEOREM 3.1. Let @ be a feasible point for problem (P) verifying the first order
necessary conditions (2.2) and (2.3), and let us suppose that assumptions (2.1), (A1)
and (A3) hold. Let us also assume that for every h € L (X) satisfying (2.11) we
have

2L _
B @ N0 > 611l o) = Sl
for some §; > 0, 2 > 0 and 7 > 0 given. Then there exist € > 0 and 6 > 0 such that
J(@)+4 ||u—ﬂ||%2(x) < J(u) for every feasible point u for (P), with |[[u—1l|L-(x) < €.

(3.4)

Proof. (i) Condition (3.4) is stable w.r. to perturbations of u:

Without loss of generality, we will assume that d2 > 0. From Assumption (A3) we
deduce the existence of rg € (0,7) such that for every h € L*°(X) and |[v—a||p(x) <
To

L, - &L, -1.,
‘ [w(v’)\) - W(U,)\)] h

(0
< mm{%@} 1BI13 2 x) -
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From this inequality and (3.4) it follows easily

O°L o xn2 > L yin2 20, |2
(3-5) W(U’ Jh* > 5” Iz2(x\x7) — 262|RllZ2(x
for every h satisfying (2.11) and [|v — @[ po (x) < 70-

(ii) Some technical definitions:

Let us set
n 1)
< . 1
(3.6) M= M072+j221|)\j|M]’72 and p:mln{l,lﬁ—M},
2
8 3M  AM? Ch ) S
(3.7) C1 =max{ 5,20, 0 + =~ + A Cy = 7r],réalfllhjllm(x) > Mo |,
=1
_ 1/2 12 _
58) Co = 201X/ a1y v M
Finally we take
. 61 8t P . N
3.9 = ) s A Aj )
(3.9) €=mn {"” 64Cou(X)’ 81 + 1605° Cy jelrijoms J}

where
I ={1,...,m}U{j >mq : Gj(@) = 0 and X; > 0},

(iii) Approximation of u — u by elements of the critical cone:

Let u be a feasible point for problem (P), with ||u — @||p~(x) < €. Then u —u
will not in general belong to the critical cone. Therefore, we use the representation
u — % = h + hg, where h is in the critical cone and hg is some small correction.

Let us introduce the set of indices

I,={j €I:Gi(u)(u—1a)>0or [G(a)(u—a) <0and j € I;]}.

This is the set of indices, where we need to correct G (@)(u — @), since the con-
ditions of the critical cone are not met. We need this for equality constraints if
G5 (u)(u — u) # 0. Moreover this happens, if for an active inequality constraint we
have G (a)(u—u) > 0. Finally, we need this for strongly active inequality constraints,
if G’;(@)(u — @) < 0 holds instead of G’;(@)(u — @) = 0. We define for all j € I,

(3.10) a; = Gj(a)(u—1), ho= Y  ajh; and h=u—1a— ho,
j€lu

where the elements h; are introduced in assumption (2.1). Then h satisfies (2.11).
This is seen as follows:

G;(ﬁ)ho = Z Oz,G;(ﬂ)h, = Z Ozi(sz'.

i€l i€,
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If j & I, then d;; = 0 Vi € I,,, hence

G;(u)hzag(a)(u—u)—G;(a)ho=G}(ﬂ)(u—ﬂ)={ 58 iijfzi

(the last inequality follows from j & I,). So G';(@)h fulfils the conditions of the critical
cone. If j € I, then

G;(ﬁ)h = G;(ﬂ)(u - I_L) - Ozj(Sjj =a; —o; = 0
and G;(@)h fulfils the conditions of the critical cone, too.

Let us now estimate ho in L?(X). For every j € I,, there exists v; = u+6;(u—1u),
with 0 < 0; < 1, such that

_ _ 1 _ 1 _
(3.11)0 > G(u) = Gj(a) + G (a)(u —a) + 509'(vj)(u —a)* =a;+ iG;-'(vj)(u —a)%
If a; > 0 we deduce from (3.11) and (3.1) that
1
(3.12) i = a; < 516G (v;) (u — @)*| < M; ol = all72 x)-
If a; <0 and G;(u) =0, we get
1 " YA 1 =112
(3.13) laj| = —aj = §Gj (vj)(u —@)* < §MJ‘,2”U - U||L2(x)
Let us denote
I, ={jel,:Gj(u) <0and a; <0}.
This is the set of all indices, where we do not obtain an estimate of «; having

the order ||u — ﬂ||2L2(w). We should notice at this point that A; > 0 holds for all

j € I . (Since u must be feasible, j stands for an inequality constraint. Therefore,
0>a; = G%(a)(u—1u) and j € I, implies j € I;.) Then we have

3

(3.14) |lhollL2(x) < max||h Ilz2(x) [ (Z ) ||U—ﬂ||%2(x) + Z |es
= JELy
(iv) Estimation of J(u) — J(u):
Using (2.6), (2.7), (3.6), (3.10) and (3.11) we have for some v = 4+ 6(u — @), with
0<f<1,

Jw) = Ju)+> XGju Z 2G5 ( Z 2G5 (
Jj=1 j=mi+1 j=mi+1
= LX) — Y XNGju)
j=mi1+1

v

= > XGi(w) = Lw,N) —p > XGj(u)

jery jely
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since p < 1. Therefore,

J(u) > L(u,\) — p Z A\jGj(u) = L(t,A) + — (@, A\)(u — @) + =— (v, A) (u — @)*—

Jel,

P Koy = &S0 NG ) - = @) + | d(@)(u(e) - a@))dp(z)+

_ - X
JEI, JEI,

102L, - 0’L - 19%°L, -
§W(U’A)h2 + W(U7A)hh0 + §W(U,A)h3+

p > Ajlayl —g D NG (v)(u— @),

JEL, JEL,

Now from (2.8), (2.11), (3.1), (3.5) and (3.6) it follows

J(u) 2 J(@) + T/ lu(z) — a(z)|du(z) + %Ilhlliz(xvm = O||AllL2(xm) =

r

M T p T _
M||h0”L2(X)||h||L2(X)_7|lh0||%2(X)+p > )\j|04j|—§ (Z )‘ij,2) lu—all72(x) >
JEIL JELL

_ T _ 01 _ 01 _
J(u) + g”“ - u“iZ(XT) + g““ - u“iZ(X\XT) - Z“hO“zfﬂ(x\Xf) — 205 [ju — u“iz(XT)_

_ M
205 |ho[72(x-) = Mllhollz2x) (lu = @llz2(xy + [lhollz2(x)) — 7||h0||2L2(x)+

— P B
(315) p 3 Alas] = EMlfu— a2,
JeL,

Using the definition of € by (3.9) we have

T (51
1 — =209 > —.
(3.16) T2, > 7

On the other hand

2M
Milallizgo b = sy = 2 [ Gt = s | [Zcliallizc)] <

01 112 402 9
(3.17) 1_6||U_U||L2(X) + T”honm(x)-
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From the definitions of C; and p given in (3.7) and (3.6) along with (3.15), (3.16)
and (3.17) we get

v, 0 _
Tw) 2 @ + Flu=llEacx) = Callholltax -

61 _ < o1 e
1_6”u —all72(x) +p E Ajlag| = ﬁ”u —@ll72x) =
JeEL,

01 _ . T
(3.18) J(@) + §||u = @ll72(x) = Cillholl[F2(x) + P Aj ZI_ |aj-
jel;

(v) Two auziliary estimates and final result
From (3.7), (3.9) and (3.14) we get on using (a + b)? < 2 (a® + b?)

2 2
1 [ & _
CillhollZ2(x) < C1 I]_Iéalf)CthH%Z(x) B (Z Mm) Il = allg2(x) + 2 (Z |04j|)
j=1

1=,

2
= Collu — @l|72(x) +2C1 TJ%%ZC”th%%x) (/Z |aj|> <

1=m

2
Coe® u(X)|lu — |7 2(xy +2C: f]%a;ff||hj||%2(x) (Z |04j|) <

Jjely

2
1 _
(3.19) a”u — al|F2(x) + 2Ch max 11172 x) (Z |aj|> .
JeI,
The definition of a; given by (3.10) along with the assumption (3.1) imply
(3.20) || < Mjallu—allpz(x) < Mjaey/p(X).

From (3.8) and the above inequality we deduce

(3.21) 20 I]%%fthjH%Z(X) (Z |0<j|) < Cse.

Jel,

Definition (3.9) and (3.21) lead to

(3.22) p . _min ;=20 Ijrgfllth%Z(X) (Z |Oéj|) > 0.

Jjelt,j>ma
JEI,
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Finally combining (3.18), (3.19) and (3.22) we conclude the desired result

.0 i,
Tw) 2 @ + gy llu = il o)

a

Now we prove the equivalence between the sufficient optimality conditions stated
in Theorem 3.1 and the classical ones.

THEOREM 3.2. Let @ be a feasible point of (P) satisfying (2.2) and (2.3). Let Cy
be the set of elements h € L*°(X) satisfying (2.11) and C, be given by (3.3). Let us
suppose that assumptions (2.1), (A1) and (A3) hold. Let 7 > 0 be given. Then the
following statements are equivalent

82[’ — Y\1.2 2 T
W(U,)\)h > 0||hllz2(xy VR € Cq,

0L -
W(U»)\)’ﬁ > S1llhl[2x\x-) = S2llhllT2(x-) Vh € Ca.

(3.23) >0 :

(324) 351 > 0,62 >0 :

Proof. Tt is obvious that (3.24) implies (3.23), since h = 0 in X7 if h € CL.
Therefore, it is enough to take § = 6;. Let us prove the opposite implication. Let
h € Cyz. We set h, = hxxr, where x x- is the characteristic function of X7, and

In={j€lo:Gja)h—h:)>0 or [Gj(@)(h—h:)<0 and G(@)h=0]}.
We define

JEIRL

where the functions h; are given by (2.1).
Let us see that ho € C7. Since supp hj C X,, and h — h,; = h(1 — xx-), we have
that ho(z) = 0 for z € X7. Now we distinct between the cases j € I and j € Iy \ I.
If j € I, then

G (@ho = G5(@)(h = hy) = Y @iGj(@)hi = Gj(@)(h = hy) = aj = 0.

i€l

If j € Io \ In, then from the definition of I, we obtain that G';(@)ho = G’(@)(h —
he) < 0.

If this inequality reduces to an equality, G} (@)(h — h,) = 0, then hq verifies the
condition to be in C7. In the remaining case that j € Ip \ I, but G';(@)(h — h,) <0
using again the definition of I, we deduce that G (u)h < 0. (Gj(u)h = 0 and
G5 (a)(h — h;) < 0 would give j € I5.) Consequently, since h € Cy, we have that
j >my and A; = 0 (otherwise h € Cj and A; > 0 would imply G;(u)h = 0). Then
the inequality G (4)ho < 0 also means that ho verifies the condition to be in C7.

We now prove that

(3.25) Al z2xy < CollhrllL2(x)s
where

Co =Y llgjllzzcxyllhgllzzcx),

Jj€lo
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g; given in (2.4). Indeed, if a;; > 0 then
jos| = @ = G (@) (h — hy) = G (@)h — Gy (@)hy < —G(@hy < llgsllacxllhr o).
If aj <0, then from the definition of I we have that G';(@)h = 0, therefore

loj| = —a; = =G(@)(h — hr) = Gj(@hr < lgjllz2cx)lhrllzacx)-

Combining the previous two inequalities and the definition of h we get (3.25).
Finally, taking M as in (3.6), we obtain from (3.23) and (3.25)

0L, - 0L, - 0L, - 0L, - -
2 @A) ?= 2 @A) o+ g2 @A) (e + h)? + 25 5@ Nho(hr +h)

v

Sllholl32(xy = Mllhr + hll32(x) — 2M ||hollz2(x) 1R + PllL2(x) >
= BellZagy = 31y = 22 (I By + Il ax) ) -
2 TlL2(x) L2(X) TlL2(x) L2(X)
2M (Ilh = e llzaey + 1hllz) (Illisco + Wllzaco ) >
1) .
Slh = hrl3axy = G0l ) = 2M(C3 + DllAr |2 x)—

)
2M (Co + 1) (Ilh = hrllz2(x) + Collhrll2(x)) 1B llL2cx) > Ak = hellZ2(x)

AM?(Cy + 1)?

01" L owrico + 1)00} e lZax, =

— {cga +2M(C3+1) +

OullhlIZ2(x\ x ) = GallRlIZ2 xmy

where obviously §; > 0 and d» > 0 are independent of h € Cy. O

The following corollary is an immediate consequence of Theorems 3.1 and 3.2.

COROLLARY 3.3. Let @ be a feasible point for problem (P) satisfying (2.2) and
(2.3) and let us suppose that assumptions (2.1), (A1) and (A3) hold. Let us also
assume that

62L — 3 2 2 T

for some § > 0 and 7 > 0 given. Then there exist € > 0 and o > 0 such that
J(fa)+oz||u—ﬂ||%z(x) < J(u) for every feasible point u for (P), with ||u—1||p~(x) <.

REMARK 3.4. If we compare the sufficient optimality condition (3.4) with the
necessary one (2.12), we notice the existence of a gap between both coming from two
facts. Firstly the constant d; is strictly positive in (3.4) and it can be zero in (2.12),
which is the classical situation even in finite dimension. The second fact is that we
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can not replace, in general, C7, with 7 > 0, for C2 in (3.26), as it is done in (2.12).
This is motivated by the presence of an infinite number of constraints. The following
example, due to J.C. Dunn [6], demonstrates the impossibility of taking 7 = 0 in
(3.26). Let us consider X = [0,1], S the o-algebra of Lebesgue measurable sets of
[0,1] and let u be the Lebesgue measure in [0,1]. Now we take J : L%([0,1]) — R
defined by

1
I (u) =/ [2a(2)u(z) - sign(a(z))u(z)’]dz,
0
with a(z) = 1 — 22. The optimization problem is

Minimize J(u)
u € L>([0,1]), with u(z) > 0 a.e. z € [0,1].

Let us set 4(x) = max{0, —a(z)}. Then we have

1
J'(@)h = /0 2[a(z) — sign(a(z))a(z)]h(z)dx =

1 1/2
/0 d(z)h(z)dz = /0 2a(z)h(z)dz > 0

for all h € L?([0,1]), with h(z) > 0. If we also assume that h(z) = 0 for z € X° we
have

1 1 1/2
T (@) = —/ 2 sign(a(z))h2(x)dz = 2 h2(:c)dx—2/ B2 (@)dz = 20| ),
0 1/2 0
where, following the notation introduced in (2.9), we have
X0 ={z€[0,1] : |d(z)| >0} =[0,1/2).
Thus we have that (3.26) holds with 6 = 2 and 7 = 0. However @ is not a local

minimum in L>([0, 1]). Indeed, let us take for 0 < & <

_f a(x)+3e ifze[s—e 1]
us(2) { a(x) otherwise.
Then we have

1

T(ue) — J(@) = / * [6e(1 — 22) — 9¢%)dz = —3<% < 0.

—E

4. Application to some optimal control problems.

4.1. An abstract control problem. Let, in addition to the measure space
(X,S,1), Y and Z be real Banach spaces, let A : Y — Z be a linear continuous
operator, and let B : Y x L®(X) — Z be an operator of class C2. Moreover,
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F,F; : Y x L°°(X) — R are functionals of class C?, j = 1,..,m. Consider the
optimal control problem

Minimize F(y,u)
Ay + B(y,u) =0

(0C) Q¢ ug(x) < ulz) < up(z) ae. v € X,
F](y7u) =0,1 S] <my,
F](y7u) Soa mi +1 S] Sm7

where the control u is taken from L®°(X). We assume that for all u € L*°(X) the
equation Ay + B(y,u) = 0 admits a unique solution y € Y, so that a control-state
0B
mapping G : u + y is defined. Moreover, the inverse operator (A + 6—y(y,u))_1 :
Z —'Y is assumed to exist for all (y,u) € Y x L*°(X) as a linear continuous operator.
Then the implicit function theorem yields that G is of class C? from L*(X) to Y.
The first and second order derivatives G'(u) and G"(u) are given as follows: Define
y = G(u), zr, = G'(u)h, and zp,p, := G"(u)[h1, h2] := (G"(u)h1)ha. Then z, is the
unique solution of

OB OB
4.1 A —-— — =
(1) 2+ G )2+ G h=0,
while zp,p, is uniquely determined by
OB 0’B 0’B
A — = {— — h
49 Z+ ay (y,u)z 8y2 (yvu)[zhlvzh2] + ayau(yvu)[zhﬂ 2]
( . ) 823

2B i ] + LB (g ik, ol
6U6y Yy, u 15%ho 611/2 Yy, u 1,102]f-

We omit the proof, which can easily be transferred from that of Theorem 2.3 in [3].
The abstract control problem (OC) fits in the optimization problem (P) by

J(u) = F(G(u),u),  Gj(u) = Fj(G(u),u).

In this way, we obtain necessary and/or sufficient conditions for local solutions (g, )
of (OC) by application of the Theorems 2.1, 2.2, 3.1 and Corollary 3.3 provided that
the corresponding assumptions (2.1), (A1)—(A3) are satisfied. We tacitly assume this
in the sequel and formulate these results in a way, which is convenient for optimal
control problems. A Lagrange function £ = L(y,u, e, \) is associated with (OC) by

(4.3) L(y,u,0,)) = Fy,u) — (¢, Ay + B(y,u) +Z/\Fy,

where ¢ € Z*, and (-, ) denotes the duality between Z and Z*. Notice that we must
distinct between L for (P) and £ for (OC). We have

oF 8F

1/ = N Yall v _
and obtain similar expressions for G;(@)h. Therefore, (2.6) yields
oL, <., _ OF, = ~: OF; _ .
%th—<®<m+Zxaﬁ @))G' (a)h+
(4.4) ot
Z OF .
= 7 ou
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Define an adjoint state ¢ € Z* by

" F OB
(4.5) Z 8— W)y =(p, Ay + 5 @0)y) VyeY.

We assume that ¢ is well defined by (4.5), which is true in our applications. Notice that

(4.5) is equivalent to OL/0y (§,a, $,A)y =0 for all y € Y that is 0L/0y (y, 4, p,\) =

0 in the sense of Y*. Insert y = z, = G'(a)h in (4.5), then y solves (4.1), and the
B

right hand side of (4.5) is equal to —(@, g—u(gjﬂ) h). Substituting this for the first

item in (4.4) we find that

oL, . D, .

for all h € L>(X). If (A1) is satisfied, then we deduce from (2.7) that d(z) expresses
the derivative 9L/0u, i.e.

(4.7) 30 @09\ h= . d(z)h(z)du(z).

COROLLARY 4.1. Define J and G, j = 1,..,m, as above and let @ with associated
state § be a local solution of (OC). If the regularity assumption (2.1) is fulfilled, then
there are Lagrange multipliers \;, j = 1,..,m, such that (2.2), (2.3) are satisfied.
Assume further that @ € Z* is uniquely determined by (4.5). Then (2.3) is equivalent
with

(4.8) - (0,8,0,N)(u—1) >0  Vu, <u < up.
oL -

If additionally (A1) is satisfied, then %(gj,m&)\) can be identified with a real func-
tion d = d(z), and (4.8) admits the form

(4.9) /X d()(u(e) — @) >0 Vug <u<up

Proof. The statement follows from Theorem 2.1: The variational inequality (4.8)
is obtained from (2.3) by (2.6) and (4.6). If (A1) is satisfied, then (4.8) and (4.7)
imply (4.9) O

Let us now apply the second order conditions to the control system. We have to
express 02L/0u? in terms of £. From

L(u,A) = F(G(u),u) + f:)\j F;(G(u),u

we get after some straightforward computations
82L = ) "
g2 WA ho] = (FY(,3) + E X Ff'(F,@))[(y1, ), (g2, ho)]
(4.10) Y
Z)\ @))G" (@)[h1, ha),
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where y; = G'(a)h; = zp,, 1 = 1,2. We know that G (@)[hy,hs] = 2p,n,, Where
Z = Zp,hy is the solution of (4.2), hence this term can be reduced to zp, and zp,. By
definition of @, (4.2), and (4.5),

OF <. OF; ~ OB
(8_y + Z)‘j 3—;) Zhihy = (P, AZnhy + By ks )
= _<(p7 B”(g7ﬂ)[(zh17h1)7(zhz7h2)]>

is obtained. Insert this in (4.10), then y; = zp, and zp,p, = G" (@)[h1, h2] give

Jj=1

%(Q,X)[hl, hz] = (F”(g,ﬂ) + i 5‘]' F]”(gvﬂ))[(yla hl)v (y27 hZ)]

(4.11) (@ B @ D)1 hn), (g2 1))
= I(Iy,u)(g7ﬁ7 9575‘)[(:’/17 hl), (yz,hQ)].

Notice that in (4.11) the increments (y;, h;) cannot be chosen independently, since y;
and h; are coupled through y; = G'(@)h; = zp,. Hence the definition of zp, shows
that the pairs (y, h) = (y;, h;) have to solve the linearized equation

4.12 Ay + (g, =
(4.12) Y+ y(y,U)y+ —h

COROLLARY 4.2. Assume that (2.1), (A1), and (A2) are satisfied and that p € Z*
is uniquely defined by (4.5). Then

(4.13) Ly (@8, M) (y,h)?> >0

holds for all (y,h) € Y x L®°(X), which satisfy the linearized equation (4.12) and the
relations

o (g, w)y + 50 (g, 1) h=0 if (j <ma) )
(4.14) or (j >mq, Fj(g,a) =0 and X\; >0);
OF; oOF; o o -
8—;(y7u)y+8—u](y7u)h50 lf.7>m17 F](y,u)ZOandA]:O,
| >0 ifa(z) = ue(x);
(4.15) h(x)‘{ <0 i u(x) = up(o);
(4.16) h(z) =0 if ze€ X°.

The second order sufficient optimality conditions are given by the

COROLLARY 4.3. Let (§,a) fulfill all constraints of (OC) and, together with ¢ and
5\]-, j=1,..,m, the first order optimality conditions stated in Corollary 4.1. Assume
that (2.1), (A1), and (A83) hold true. If there exist 7 > 0, 1 > 0, and d2 > 0 such
that

(4.17) L, 0 @8, @, M) (Y, h)? = 6 [|hl[F20x0 xry = O2 1Bl 72 xn
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holds for all (y,h) € Y x L®(X), which satisfy the linearized equation (4.12) and the
relations (4.14), (4.15). Then the conclusions of Theorem 3.1 hold true, hence u is a
local solution of (OC). Here, the set X7 is defined by (3.2). The same conclusion is
true, if the condition

holds instead of (4.17) with some 0 > 0, where h(z) =0 Yz € X7 for some T > 0,
and (y,h) are subject to (4.12), (4.14), and (4.15).

4.2. Optimal control of ODEs. In this section we discuss an optimal control
problem governed by an ordinary differential equation. We concentrate on a very
simplified setting to give the reader an easy insight in the application of the theory.
For further problems and open questions we refer to the survey by Hartl, Sethi and
Vickson [7]. Define

Fy,u) = w;ym)+f0Tfo(t,y<t),u<t>>dt
o Filty(t),ut)dt,

7 =1,..,m, and regard the optimal control problem

<
—
s
£
I

( Minimize F(y,u)
y'(t) +b(t,y(t),u()) =0 ae. te(0,T),
y(0) =0,
(ODE)
e (t) < u(t) < up(t) a.e. t€(0,T),
FJ(yvu):Ov ]-S.jsmla

Here, T is a fixed time. To reduce the amount of technicalities, let us discuss only
real-valued functions y and u. The vector-valued case can be handled analogously.
For the same reason, we assume that the functions 4, f;, and b are of class C? on
R and [0,7] x R X [min u,, max up], respectively, although weaker Carathéodory type
conditions would suffice. We introduce the state space Y = {y € WH>(0,T)|y(0) =
0} and put

(Ay) ) =y'(t),  (Bly,uw))(t) = (¢, y(t),u(t)).

A is continuous from Y to Z = L*(0,T), and B is of class C? from Y x L>(0,T) to
Z. In this way, (ODE) is related to (OC) as a particular case, where X = [0,77], and p
is the Lebesgue measure, du = dt. For convenience, the variable ¢t € X is substituted
for the variable z, which was used in the former sections.

Let (g,@) € Y x L*(0,T) be our reference solution, a given candidate for opti-
mality. For (ODE), the Lagrange function

T m
@19) L) = Fo) = [ ol +bey )+ Y B

=1

is introduced, where ¢ € W1°°(0,T) will be defined by the adjoint equation below.
In an obvious way this ¢ generates a linear functional belonging to Z*, but it has
more regularity than arbitrary functionals of this space.
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REMARK 4.4. Given the inhomogeneous initial condition y(0) = yo, we have
to work with the space Y = W1°°(0,T) and must include the initial condition in
the definition of A. Then the additional term o(y(0) — yo) would appear in (4.19).
This requires some more notational effort. However, the optimality conditions are not
changed. Therefore, w.l.o.g. we confine ourselves to a homogeneous initial condition.

Having in mind the particular form of ¢, we see that here (4.5) is nothing more
than the definition of the adjoint equation

(4.20) YTy
e(T) = ¢'T).
It is obvious that (4.20) admits a unique solution ¢ € W1°°(0,T). In section 5 we

show that (Al) is satisfied for (ODE). We obtain the following derivatives of the
Lagrange function:

L, . 0fo  _0b . O
(4.21) 5. (58,8, \)h = /0(%— ;)\ Jhdt

(all derivatives taken at (,u)), hence 0L/0u can be identified with d € L*>°(0,T),

(4.22) d(t) = (% —<ng +ZXJ- %)(t)-

The second derivative of L is
£I(Iy u)(ga u, 953 5‘)[(yla h1)7 (y2a hz)] 'lnbll(g( )) ( ) (T)
(2 [T ) (5 .0 — 28 (7. 0) + 50 1,0 )

where fy', b, f}' stand for 2 x 2-Hessian matrices taken at (t,3(t),u(t)). It is easy to
verify that (A2) is satisfied.

The first order necessary optimality conditions are stated in Corollary 4.1. In
particular, the following variational inequality has to be satisfied:

(4.24) /X d(t) (u(t) — a(t)) dt > 0

for all ug < u(t) < up, hence u(t) = u, where d(t) > 0, and u(t) = up where d(t) < 0.
(These points form the set X°.) No information is obtained where d is zero. Roughly
speaking, this is the set, where higher order conditions are needed.

The second order necessary conditions are formulated in Corollary 4.2. We have
to specify the linearized equation (4.12) and the form of the derivatives in the relations
(4.14). The linearized equation is

ob
! a.- Y, u - Y, U =

while

% oy Bgan= [ (Lo Wi
(4.26) 2% (g, @)y + 5 (g, @) h = X{ 2y (t,g,a)y + M (t,g,u) h} dt.
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4.3. Optimal boundary control of an elliptic equation. As a further ap-
plication, we consider an elliptic control problem. For convenience, we discuss a
simplified version and refer for further reading to [4].

Let © ¢ RY be a bounded domain with boundary T of class C%1. Let v denote
the outward unit normal vector at I' and 8, be the associated normal derivative.
Define

F(y,u) = Jo0(@,y(@))dr + Jo bo(x,y(z))duo () + [ fo(w,y(x), u(x))dS(z)
Fi(y,w) = Jovi(@,y(@))dr + Jo ¥;(2,y())du; (@) + [ f5(z,y(2), u(x))dS (z),

Jj =1,..,m. We assume that the functions v; = v;(z,v), ¢¥; = ¢¥;(z,y), and f; =
fi(z,y,u) are of class C% on Q x R and Q x R?, respectively. Moreover, real Borel
measures fi; are given on (). Here, y is the Lebesgue surface measure induced on I,
dp = dS. The appearance of the measures p; in the functionals will heavily influence
the verification of the assumptions (A1)-(A3). Therefore, the easier case ¥; = 0,
j=1,..,m, is of interest as well.

Regard the optimal control problem

4

Minimize F(y,u)
—Ay+y=0 in Q,
Oy + b(z,y,u) =0 on T,

(ELL)
tg(z) <u(z) <up(x) ae. onT,
Fj(yvu)zov 1<5<my,
| Fj(y,u) <0, my+1<j<m.

In this setting, the boundary control u is looked upon in the space L*°(T'), hence
X =T, while the statey belongsto Y = {y € H'(Q) | —Ay+y € LI(), o,y € LP(T)}
(g > N/2 and p > N—1 are given fixed). Endowed Y with the graph norm, it is known
that Y C C(Q), the embedding being continuous. Assume that b = b(x,y,u) satisfies
the same conditions as the f;. Additionally, we require that (9b/0y)(z,y,u) > 0 on
I x R x [minu,, max up]. Define

A:Y 5 LIQ) x IP(T) and B:Y x L®(T) = LY(Q) x LP(T)

by

= (T2 ) w3000 = (@) )

The equation Ay + B(y,u) = 0, which is equivalent to our elliptic boundary value
problem, admits for each u € L*°(T") exactly one solution y € Y. The mapping u — y
is of class C2 from L>=°(T) to Y. Now we proceed in the same way as in the preceding
section. The Lagrange function is

Ly,u,,N) = F(y,u) —S{(—Ay +y) pdr

_I‘[(ally + b(xvyvu)) (pdS + Z:I )‘j Fj(y,u),
J:

where ¢ € W#(Q) for all s < % is the adjoint state. The adjoint state ¢ together
with its trace ¢ forms a Lagrange multiplier of Z* = LY (9) x LP (T) having higher
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regularity. Here (4.5) reduces to the adjoint equation

—Ap+y = %+% Hole Z 67’+67’Z’ njla)

ob 0 e 0 o
8,,<p+a—y<p = fO Z j fJ |F+Z/\J dy /J’Jlr

(all partial derivatives taken at (z,y(z),@(z))). This equation has a unique solution
@ € Wh5(Q) associated with (7, @, \). Notice that for N = 2 the Sobolev imbedding
theorem yields ¢ € L7(R) for all o < 0o, but not in general ¢ € L>(Q2). For N > 3 the
regularity of ¢ is even lower. This indicates that we have to discuss the assumptions
(A1) — (A3) with more care. We shall do this in the last section.

The situation is easier in the case ¥; =0, j = 0,..,m. Then all data given in the
adjoint equation are bounded and measurable, and the regularity theory of elliptic
equations yields @ € C(Q) (see [2]).

Let us establish the first and second order derivatives of £. We get

of;, _ _ ob
_u(x7yvu)_996 (:L' Y,u ))hdS

and

El(ly u) (ﬂ,a P, X)[(ylv hl)a (y2a h2)] =
= Jolys, b)) (fg' (@, 9. 3) + E Xjff'(x,y,a) — PV (2,5,))(y2,h2) T dS

0? =
+ fQ '70 _ Z

)) y1y2 dz

2¢ a2¢j ~
+loss e (z,9) y1ya dpo + E Aj e (z,9) y1ya dp;.-
j=1

3 S

We observe that, due to our notation, there is almost no difference to the expressions
derived for the case of (ODE) in (4.21), (4.23). The first and second order conditions
for our elliptic problem (ELL) admit the following form: Put

a@) = L0, (o), 5@ + 3%

Then d has the same form as in (4.22). The first and second order optimality condi-
tions are given by the Corollaries 4.1-4.3. We put there X =TI to obtain all first and
second order conditions for (ELL). Now the directions (y, h) are coupled through the
linearized boundary value problem

-Ay+y=0
(4.27) ob ob

8uy+ay($ Y )y+6_( gvﬂ)hzo
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The derivatives in (4.14), (4.15) admit the form

OF, OF, o, 50
2 @0+ 5@ h = aiy](t,g)ydmf aiyf(t,g)yduj
(428) Q af] o Qaf] o
+ el 6.9y + 50 (4,5, @) h} dS.

In this way, we have obtained the second order sufficient condition for a simplified
elliptic control problem. For the discussion of more general problems we refer to [3],
[4]. We should underline again that so far we have stated the optimality condition in a
formal way. It remains to verify (A1)-(A3) to make our theory work. Low regularity
of the adjoint state ¢ can be an essential obstacle for this. We refer to section 5.

4.4. Optimal distributed control of a parabolic equation. We confine
ourselfes to a distributed parabolic control problem. A more general class, including
also boundary control and boundary observation, is considered in a forthcoming paper
by Raymond and Troltzsch [10]. Let © be defined as in the last section and put
Q=0x(0,T), =T x (0,T). Define

F(yvu) = fQ ’70(.’11'7y(.’11'7T))d:E—|—fQ ¢0($7y($7T))d,u,0(3})+
+fQ folz, t,y(z,t),u(x, t))dedt
Fj(y,u) = fQ Yi(z,t,y(x, t))dp;(z,t) —I—fQ fi(z, t,y(z,t),u(z, t))dzdt,

j =1,.,m. We assume again that the functions 1;, f;, and ~; are of class C? on
Q x R and Q x R?, respectively. Moreover, real Borel measures Wi, Jj = 0,..,m are
given on 2 and @, respectively. Now p is the Lebesgue measure on Q, dy = dzdt.
Regard the optimal control problem

( Minimize F(y,u)
%—Ay%—b(x,ty,u):O in Q,
61/y =0 on E,
(PAR){ ¥(%,0)=0 in Q,
’u,a(.’IJ,t) < U(.’L‘,t) < ’U,b(.’L',t) a.e. on Qa
F](yau)zo 1§3§m17
| Fi(y,u) <0 mi+1<j<m.

In this setting, the distributed control u is looked upon in the space L>(Q), hence
we put X = Q. The state y belongs to Y = {y € W(0,T)|y(0) = 0,y — Ay €
LY(Q), 8,y € LP(X)}, where ¢ > N/2+1 and p > N + 1 are given fixed. It is known
that Y C C(Q), the embedding being continuous for the graph norm. Assume that
b = b(x,t,y,u) satisties the same conditions as the f;. Additionally, we require that
0b/0y(z,t,y,u) > 0 on @ X R X [min u,, maxup]. Define

A:Y 5 LYQ) x LP(8) and B:Y x L®(Q) = LY(Q) x L*(%)
by
0
Ay = ( P ay ) and  Blyu)(a.8) = ( bt y(o. ) (2. ) )

Ovy
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The equation Ay + B(y,u) = 0, which is equivalent to our parabolic initial-boundary
value problem, admits for each u € L*(()) exactly one solution y € Y. We refer to
[2]. The mapping u — y is of class C? from L>°(Q) to Y. Here, the Lagrange function
is

‘C(ya u, Y, )‘) = F(yau) - f(yt - Ay - b(.%', ta iU’U)) Lpd.’L'dt
Q

_i{‘ally(pdet_'— X:IAJ FJ(yau)7
J:

where ¢ is the adjoint state and dS denotes again the Lebesgue surface measure
induced on I'. Equation (4.5) turns out to be the adjoint equation

|
2|
|
<
+
2|
©
I

Op A ab afo +Z (9fJ 6% i) in Q,
j=1

D
<
AS)

(en]

in 3,
O, O, .
T = — T T Q
o(z,T) 3y (z,9(z,T)) + 2y — (2,9, T))po  in
)). This equation has a unique solution @ €

(all partial derivatives taken at (x,7,a)).
Wh3(Q) associated with (g,a,p,A). If, however, ¢; =0, j = 1,..,m, then ¢ is more
regular, g € W(0,T)NC(Q).

The relevant derivatives of £ are

oL
5 — (7,4, %, \) h =

~ Jol2 8fo _ aHi;%(w,g,a)—ga@(x,y,ﬁ))hdwdt

U
If,

= [od(z, t)h(z,1) dxdt

Uy (@38, N[(y1, ha), (v, h2)] =
= Joly1, ha)(fg (z, 9, 0) + Z X (@, 5,3) — @b (2,5,0)) (y2, ha) T dwdt

0? 0?
+f % (2, 9(T)) y1(T)y=(T duo+/z>\1 aywjﬂﬂy Y1y2 dp;

8270

+f (1)) y1(T)y2(T) d.
The first and second order conditions for the parabolic case are covered by the Corol-
laries 4.14.3. We have to substitute there @Q for X and to replace the variable z
by (z,t). Moreover, in the second order conditions y and h are coupled through the
linearized initial-boundary value problem

ob o ob
- Ay + a—y(x,t,y7u)y+ %(
dyy=0
y(xz,0) = 0.

z,t,g,u)h =0
(4.29)

We leave the calculations of the derivatives in (4.14) to the reader. They are obtained
by an obvious modification of (4.28). We should mention again that these optimality
conditions are only meaningful, if the assumptions (A1)—(A3) are satisfied.
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5. Verification of the assumptions. Our theory relies on the general assump-
tions (A1)-(A3). We shall see that (A1)—(A3) are naturally satisfied for the problem
(ODE), while the situation is more complicated in the case of the elliptic or parabolic
PDE.

(i) Problem (ODE)
(A1): It is obviously sufficient to regard one of the functionals G;(u) = F;(G(u),u)
to assess the situation. We have

T
_ ofj ., Tt -
1 _ J J
(5.1) Gy = [ Graaydi+ [ Flegana,
0

where y = G'(a)h. Here, 0f;/0y, 0f;/0u are bounded and measurable functions.
Moreover, the estimate

(5-2) lyllcio,r) = IG"(@) hllcp,r) < cllhllz2o,r)

holds, since ||yl|lcio,71 < cllyllaro,7) < cllhllL2(0,r)- Thus the mapping h — G (u)h
defines a linear and continuous functional on L?(0,T). By the Riesz representation
theorem,

T
(5.3) G(a)h = /0 g;(t) h(t) dt

must hold with some g; € L?(0,T), hence (A1) is fulfilled.
(A2): Here, the derivative

T
G (@){hy, hy) = / (v1, ) £1(6,9,) (92, ho) T dt

is characteristic for the discussion. All entries of f” are bounded and measurable. If
hf = h; in L*(0,T), k — oo, i = 1,2, then yf — y; in C[0,T], hence G (a)[h}, h§] —
G”( )[h1, hs]. This shows (A2)

(A3) First, we must estimate differences of the type G} (i) — G} (a) for i in a
L*-neighbourhood of 4. We get

T
(G} (@) — G (w)) h*| < /0 |fi' (¢, 9, @) — f7 (t.,9)| [(y, h) [ dt,

where § = G(4), § = G(@), y = G' (@) h. Due to our assumptions, we find that

(54) (G5 (@) -G @) | < o(llyliz,z + 1hlIEz,r) < cdllbllZao,1),

where 6 — 0 as ||t — 4|~ — 0. Another characteristic part in >L/0u? is the
coupling of the nonlinearity b with @. It is the essential advantage of our simplified
case (ODE) that ¢ € L*°(0,T). Therefore, we are justified to estimate

(5.5) o () 6" (6, 9,0) (9, 1) Todtl < cll@llieior) (llidgo 2y + 1l 20 )
< C||h||L2(0,T)

Discussing all second order terms in this way, we easily verify that (A3) is satisfied,
too.
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(ii) Elliptic Problem (ELL)
We repeat the discussion of (A1)—(A3) along the lines of (i) but concentrating on
the essential differences to the case of (ODE). Here, it holds

G (a)h fg (z,79) ydx+/ 8;(.’1‘ ¥)yduj+

6 ,
e :a>yd5+/ra—1j<:c,g,a)hds,

where y = G'(@) h. In contrast to (5.2), now the mapping G'(@) is not in general
continuous from L2(T) to C(Q). This property only holds for N = dim Q =
(see ([4]). For N > 2 we assume that ;, the support of uj, satisfies Q; C Q.
Then the mapping h — G'(ua)h is continuous from L*(T) to C(Q;), hence h —
Gj(u)h is a linear and continuous functional on L2(T"). The Riesz theorem yields a
representation analogous to (5.3). Hence (A1) is shown under additional assumptions
on the subdomains ;. (A2) then holds true in the same way. Notice that the
restriction to {1; is not needed, if all +); vanish.

To verify (A3) we need even more restrictions on the data. The situation is easy,
if ¢; =0, 7 =1,..,m. Then all given data in the adjoint equation are bounded and
measurable, and the regularity theory of elliptic equations yields @ € C(Q2). In this
case, (A3) is obviously satisfied.

Let us now assume that at least one of the 1); is not zero. Then the best regularity
of the trace @ is gp € L™(T') for all 7 < (N —1)/(N — 2). For instance, ¢ € L"(T)
for all » < oo is obtained in the case N = 2. We therefore cannot assume that
@ € L>™(0). Regard the elliptic counterpart to (5.5),

_ 0% 021) 8%b
|f1" y, h) ' (x,5,4) (y,h) T @dS| = |fp¢(ﬁyz Bydu h+6—h2)d5|

¢ [(Ily” + |@lyh + |@|h?)dS.
T

IA

This expression has to be estimated for h € L*(T'). If g ¢ L*(T), which is the
normal case, then we must exclude the third term from (5.6). This means that
0?b/du® has to disappear — u must appear linearly. Next we consider the second
term, where ||@ry||z2(r) is to estimate against ||h||z2r). The mapping h = y is
continuous from L2(T') to C(T) (N = 2), to L™(T) for all r < oo (N = 3), and
to L™(T") for all r < 2(N —1)/(N —3) (N > 3). Therefore, the second term can
be estimated iff N = 2, while it must be cancelled for N > 2. The latter means
0%b/0udy = 0 — here b = by (x,y) + bz2(z)u must hold. In the same way we arrive
at the surprising fact that for N > 3 the first term in (5.6) must vanish, too. In
other words: In the case of elliptic boundary control with pointwise functionals F; we
cannot admit nonlinear equations for N > 3.

Remark: We should underline again that these restrictions are not needed, if the
functionals F; are sufficiently regular (¢; = 0, j = 1,..,m). Moreover, the case of
distributed controls permits to slightly relax the restrictions on the dimension N.
(iii) Parabolic Problem (PAR)

Once again, (A1)-(A3) are satisfied, if ¢»; = 0, j = 1,..,m. This is due to the
high regularity ¢ € W(0,T) N C(Q) in this case.

In the opposite case, the problem of regularity is even more delicate than in
the elliptic problem. We cannot discuss the general case in detail and refer to the
forthcoming paper [10]. Instead of this, let us explain the point for a very particular
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constraint: Suppose that only one (pointwise) state-constraint of the form

T
g1(y,u) = / y(z1,t)dt =0
0

is given, where z; € Q is a fixed position of observation. To make the theory work, we
need some strong restrictions: We assume N = dim Q =1, i.e. Q = (a,b) and require
that 92b/0u® = 0 (the control appears linearly). Then the mapping h — y = G'(a)h
is continuous from L?(Q) to C(Q), and the functional h + g;(y, h) is continuous on
L?(Q). We know that ¢ € L*(Q) for all s < 3 (this follows from Thm. 4.3 in [10] for
N =1 and a = &). Hence ¢ ¢ L>*(Q), and that is the reason why we cannot admit
a control appearing nonlinearly. The estimate of the parabolic counterpart of (5.6) is

82b 8%b
| Jo! 972 Py’ + 25 -Gy h) dedt| <

<c ||99||L1(Q)||y||Loo(Q) +cl@llrz @) lyllr=(@llhllz2(@) < cllhllZz(q)

Discussions of this type reveal that (A1)-(A3) are satisfied. However, we needed
very strong assumptions, in particular N = 1. The case N = 2 can be handled
under additional restrictions concerning the appearance of control and observations
(" control and observations have disjoint supports”, see [10]).

If there are no pointwise state-constraints, the situation is easier, as the reader
can check.
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