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1. Introduction. This paper is a further contribution to the theory of optima-
lity conditions for optimal control problems with distributed parameters. The control
system under consideration is governed by a semilinear parabolic equation, hence the
control problem belongs to the class of nonconvex optimization problems. In contrast to
parabolic control problems with convex objective functional and linear equation, where
the list of references on optimality conditions is very extensive, merely a few investi-
gations have been devoted to the case of non-linear parabolic equations. We mention
only FRIEDMAN [9], SACHS [22], SCHMIDT [23], TROLTZSCH [24] whose papers
are close to the topic of our work. They are concerned mainly with first order necessary
optimality conditions in the form of ”local” maximum principles. Another group of
publications is devoted to generalizations of the Pontrjagin maximum principle, which
avoids the linearization with respect to the control (being typical for "local” maximum
principles). We refer to FATTORINT [8], [6], v. WOLFERSDORF [29].

First order optimality conditions are very useful to derive structural properties
of optimal controls such as bang-bang-theorems and their generalizations (see, for
instance, TROLTZSCH [24]). However, they are lacking in the sufficiency for non-
convex problems. Therefore, their application to the numerical analysis of optimal
control problems is limited mainly to the convex case, where the strong convergence
of sequences of optimal control of (FEM-) approximations of the control problems can
be shown. A number of papers is concerned with such investigations, for instance by
LASIECKA [15], [17], KNOWLES [13], ALT and MACKENROTH [1], MALANOWSKI
[19] and others.

In non—convex problems sufficient second order conditions at the optimal point
are a substitute for convexity. The theory of sufficient second order conditions for
twice differentiable extremal problems in function spaces is known to be more rich and
interesting than that for problems in finite-dimensional spaces. This is due to the so-
called two—norm discrepancy, expressing the non—compatibility of the norms needed
for second order optimality conditions. This difficulty was resolved successfully by
IOFFE [12] and MAURER [20]. Basing on these general results a satisfactory theory
of sufficient second order conditions and its application to non-linear optimal control
problems governed by ordinary differential equations was worked out. Our paper aims
to contribute to an analogous theory of second order sufficient optimality conditions for
control problems governed by semilinear parabolic initial-boundary value problems with
constraints on the control and the state. We continue our investigations in [10], where
a control problem for the one—dimensional heat equation without state constraints was
considered. For a higher dimensional version we refer to [11]. A first application of these
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results to the numerical approximations of the corresponding problem is contained in
TROLTZSCH [27].

The extension to higher—dimensional problems is based on a semigroup approach.
We rely heavily upon recent results by AMANN [3], [2], FATTORINT [7], LASTECKA
[16] and others. It should be underlined that, in contrast to the treatment of con-
trol problems for ordinary differential equations, L;—controls are not transformed to
continuous state functions (even if the control appears only linearly). In view of this,
a two—norm technique is indispensible for a satisfactory handling of the problems (at
least, if continuity of the state is needed to define the objective functional or the state
constraints).

In the paper we shall use the following notation:

Let X,Y be real Banach spaces. Then L£(X,Y) is the space of linear continuous
operators from X to Y, £L(X) = L(X,X). X" denotes the dual space to X, A* €
L(Y*, X*) the adjoint operator to A € L(X,Y). By (-, - )(D) the pairing between
L,(D) and L,(D), ;—)—l— % =1,1 < p < oo, is denoted (if p, ¢ are not specified, then this
sign stands simply for integration on D). For € IR" we shall write Qrp = [0,7] x €.

Moreover we shall work in the following spaces:

X, = U, = L,(0,T; L,(T)), 1<p<oo
X = C([0,7],0(T))
Uw = Loo((0,T)xT)

W7 () — Sobolev-Slobodeckij-space

2. Formulation of the control problem. We consider the optimal control pro-
blem to minimize

/Lp(:L',w(T,:L'))dw+/T/;/J(t,w,w(t,$))dl‘dt+/T/X(t,w,w(t,w),u(t,w))dsxdt

Q

subject to the equation of state

wi(t,z) = (Ap — Dw(t,z) on (0,7 xQ
91 w(0,z) = wo(z) on
(2.1) P

%(t,x) = b(t,z,w(t,z),u(t,z)) on (0,7]xT,

where u is looked upon as a control subject to
(2.2) ur(t,z) <wu(t,z) < ug(t, o) a.e. on (0,7 xT.
Furthermore we are able to include state constraints:

(2.3) /CI)y;(;v)w(t,x)d;v <ty om [0,T),i=1,... k

The state w € C([0,T], W7(£2)) of the control system is defined below as mild solution
for (2.1) and the control u is taken from L. ((0,7") x I'). In the problem the following
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quantities occur: Q € IR™, n > 2, is a bounded domain with C'**~boundary ', T' > 0
is a fixed time. ®; € W7(Q),¢=1,....k, wo € WJ(Q), ur,us € Lo((0,T) x T') with
ui(t,z) < ug(t,z)on [0,T] x T, and ¢; € C[0,T],¢ = 1,..., k, are real-valued functions.
Moreover, o : @ x IR — R, ¢ : [0,T] x @ x R — R, and x,b: [0,T] xT x R* - R
are non—linear functions. They are supposed for convenience to be twice continuously
differentiable on their domains (although this could be weakened partially to natural

measurability assumptions with respect to (t,x)). By o, e denote the outward normal
n

derivative at T', dS, is the surface measure on T'.

REMARK 1. The choice of the differential operator A, — I is only for technical re-
asons, in order to make the corresponding elliptic Neumann problem uniquely solvable.
By the simple transformation w(t,z) = e~"w(t,x) the case A, can be transformed back
to our problem (with re-defined non-linear functions). Moreover, the theory works ana-
logously for more general uniformly elliptic differential operators with C'*°—coefficients.

The function b = b(¢, z,w, u) defines a Nemytskij operator B by

B(w,u)(t,z) = b(t,z,w(t,z),u(t,z))

from C([0,T] xT') X Lo ((0,T) x ') to Loo((0,7) x I'). B is twice continuously Fréchet
differentiable owing to the assumptions on b. However, we shall define B in slightly
changed spaces:
It is obvious that C([0,T] x I') = C'([0,T],C(T')) = X+. Moreover
L,((0,7),L,(T")) = L,((0,T) xT'), 1 < p < oo (each equivalence class of functions

of a space can be represented by one, belonging to the other space), but only
LOO((OvT)JLOO(F)> - LOO((OvT) x F)

(cf. the simple example given by FATTORINI [6]). Therefore, in all what follows we
shall regard B as an operator from X, x Uy to X,. Clearly B remains twice Fréchet
differentiable in this more general setting. By 7 we shall indicate the trace operator.

DEFINITION 1 (CF. [2], [3]). Any w € W] (Q) satisfying
(2.4) w(t) = S(t)wo—l—/AS(t—s)NB(Tw,u)(s)ds, telo,T),

is called a mild solution of (2.1). Here A: L,(2) D D(A) — L,(Q) is defined by

D(A)={w € W;(Q) : g—w =0}, Aw=-Aw+ w,
n
S is the semigroup generated by —A in L,(Q), and the Neumann operator N : L,(I') —
W7 (Q) assigns to g the solution w of Aw —w = 0, ? = g. The parameters p and o
n

are fized subject to p>n+1 and

n 1
(2.5) —<o<1l4+ -
p p
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We should note that (2.5) implies W7(Q) — C(Q) and W;_’%(F) — (C(T'), hence
Tw € Xoo.

Completely analogous, operators A,, S,(t), and N, are introduced substituting r €
(1,00) for p in definition 1. Thus we have A = A,,5 = S,, N = N,,.

The properties of the solution of (2.4) have been discussed extensively by AMANN,
we refer for instance to [2], [3]. Tt was shown that a mild solution w ist also a weak
solution (cf. [2]). For the case of control problems see also TROLTZSCH [28]: There
is a sufficiently small T' > 0 such that for all u € U, satisfying (2.2) a unique solution
w € C([0,T],W7(Q)) of (2.4) exists. The key to this result is that A,S.(1)N, is a
continuous operator from L,(T') to W7 () for £ > 0 together with the estimate
(2.6) 1A, S (DN |l 0y @y < ct™0=7),
forall0 <o <o’ <1+ % derived by AMANN [3]. We assume throughout this paper
that T' > 0 meets this requirement. Often we can proceed on the assumption T' = oo,
we mention only SCHMIDT [23], who considered several practical important types of
nonlinear boundary conditions.

The presence of the state—constraint (2.3) essentially complicates the treatment of
our non—linear optimal control problem. This difficulty can be resolved embedding the
problem into a general class of non—linear programs in Banach spaces with equality and
inequality constraints. Therefore, it is natural and necessary to invoke the corresponding
extensive theory of optimality conditions. In view of this, we now convert the control
problem into a mathematical programming problem:

We want to minimize

[w,u) = [H(w(T)) + [*(w) + [*(w,u),

where

Lo((0,7)xT) — IR,

FPlw,u) /T/)(t zow(t, ), u(t,z)) dS,dL.

The state constraints can be formalized by linear operators G;,

/(I) t:z:d:z:



being continuous from C([0,T],C(Q)) to C[0,T]. After introducing the operators

(L)1) = /:&St—bANz s) ds

(Kz)(t) = (rLz)(1)
Az = (Lz)(T),

the new state function v(¢) = Tw(t), and d(t) = S(t)wg, we can formulate our control
problem as

(P)  fYd(T)+ AB(v,u)) + f(d + LB(v,u)) + f*(v,u) = min!
v=7d+ KB(U, u)
Gi(d+ LB(v,u)) < ¢, i=1
ue C.

k

ey 3

3. First order necessary optimality conditions. A pair (v,u) € X, X Us
satisfying all constraints of (P) is said to be admissible. In all what follows let the
admissible (v°,u®) be locally optimal for (P). Then u° is said to be an optimal control.
That means F(v° u®) < F(v,u) for all (v,u) being admissible and contained in a
sufficiently small neighbourhood of (v° u°) in the space Xo X Us. If u is sufficiently
close to u?, then so is v to v°. Hence local optimality can also be formulated in terms
of w only. For computing the Fréchet derivatives of the non—linear functionals and
operators under consideration we need the first and second order derivatives of ¢, x,
Y, b at the optimal pair. We indicate them by corresponding subscripts and omit the
dependence on v°, u°, w°. For instance,

0
Yy(t,z) = a—zi(t, z,w’(t, ),

82
¢ww<ta :C) = aq—uﬁ(t, T, ’wo(t, .L))

In this way, the first order Fréchet derivatives admit the following form:

() w—/% ia(ﬂﬂwm://mﬁJWWQMﬁ

T
= Xw(t, z)v(t, z) dSdt + Xult, z)z(t, ) dS,dt,
0/! [
(h=(v,2) € Xoo X Us),and

B'(v°,u’)h = B,v + Bz,
5



where

(Byo)(t,z) = by,(t,x)o(t,z), (Buz)(t,z)=0b,(t,x)z(t, ).

The functions ., ¥, Xw, Xu, bw and b, are bounded and measurable on their domains.

" and the linear operators B,,, B, extend continuously

Hence the linear functionals (f*)
to all corresponding L,-spaces (p according to definition 1). In the sequel we shall
regard these extensions and use the same notation as before. In doing so, we have
(1) € L), (f*) € X, () € X; x X, By, B, € L(X,). Tt should be underlined
that we first determine the derivative in X, x Us,. Only the derivatives, after having
been computed, are extended to X, x U,. The second order Fréchet derivative of B at

(v°,u®) is given by
(B"(v°,u®)[h, h])(t,z) = h(t, :v)Tb"(t, z)h(t, ),

where h(t,z)" = (v(t,z),u(t,z)) and

) buns (1, 2) b (1, 2)
b(t, x) = ( buw(t, ) buy(t, @) )

(partial derivatives taken at (¢, z,v°(t, z),u’(t,z))). In order to formulate the optimality

conditions we introduce the Lagmnge function

Lv,u;y,A) = F(o,u)+ //(v —7d — KB(v,u))(t,z)y(t,z)dS,dt

=1

+ fj/G d+ LB(v,u))(t) dri(1).

The operators K, L, and A have their range in spaces of continuous abstract functions.
Embedding the range spaces into corresponding L,—spaces we can regard them as ope-
rators from L, to L,. We shall do so in all what follows, i.e. we define K, L, and A
as operators between the following spaces: K : X, — X, L : X, — L,(0,T;L,(Q)),
A: X, — L,(9). Therefore, K* : X, — X,, L* : L,(0,T;L,(Q)) — X,, A*: X, —
L,(Q) (11—) + % = 1). The kernels of these operators are regarded in L,-spaces, too:
AS(H)N : Ly(T) — Ly(Q), TAS(t)N : L,(I') — L,(I'), t > 0. Their adjoint ope-
rators can be determined by a simple integration by parts, cf. TROLTZSCH [24]:
'(fiS(t)N)* = 755(1) + Ly(Q) — Lo(T), (TAS()N)* = 7A;5,()Ng : Ly(T') — Lq(T').
us

T

(K1) = [ 7AuSy(s = ) Nyy(s) ds,

t
T

(Lw)(t) = [ 75,5 = tw(s) ds,

t

(A)(t) = 75(T —1)e.
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For the proof of a Lagrange multiplier rule we need a certain regularity condition.
DEFINITION 2. The pair (v°,u°) € Xoo X Uy s said to be regular for (P), if there
exists a pair (0,u) € Xy x C such that

(3.1) v —v" = K(B,(v—v°) 4+ Bu(u—u”))

(3.2) (Gi(w”) + G5 L(By(T — v°) + By(@ — u)))(1) < (1)

on [0,T],:=1,...,k, where w° :=d + LB(v°,u°).

THEOREM 3.1. Suppose thalt (v°,u°) is a regular locally optimal solution of the
optimal control problem (P). Then there are y € L,(0,T; L,(T')) and monotone non—
decreasing \; € NBVI[0, T such that

Il
o

(3.3) L,(v°u’y, )
L, vy, N(u—u’) > 0 YueC

(3.5) [(Giw?) = ety dni(t)

I
<
~

I
—_
&

where L., L, denote the partial Fréchetl derivatives of L at (v°,u®) in the space Xoo XU,
A= (A, ).

We sketch only briefly the proof. The underlying two-space-technique is derived
in a more elegant way in TROLTZSCH [24], [25]:
Proof: As a (non-trivial) conclusion of the regularity condition we know that (v°, u®)
is the solution of the linearized control problem

F,(v°,u’)v + F,(v°, u”)u = min!

v=K(Byv+ By(u—u®))

Gi(w®)+ G, L(Byv+ By(u —u®)) < ¢, 1=1,...,k
uée C.

In a next step we extend the space X, x U to X, x U, i.e. we look for all solutions
of this problem in X, x U,. As K and L map X, into spaces of continuous functions,
the linearized admissible set remains unchanged. Moreover, continuity and extension
properties of B,, By, (%), ¢ = 1,2,3, imply that F, and F, can be continuously
extended to X, and U,. In view of this, we can assume F, € X;‘, F, € U;. On the
other hand, the linearized problem in X, x U, satisfies the regularity condition at (v,%),
too. Therefore, a Lagrange multiplier rule is valid: There exist y € X,, A\, € NBV[0,T]
such that
(ABu, 00)(2) + (LByv,$0)(Qr) + (Xu,v)(T'1)  +
(3.6) kT
(v—KB,v,y)(I'r)+ X [(GiLB,v)(t)dX\(t) = 0

=1
0

! Space of functions of bounded variation with the normalization condition X;(7") = 0
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for all v € X,

(ABu(u = u®), 0u)(Q) + (LBu(u — u®), 4,)(Qr)  +

T
k
(3.7) ((xu — KBy)(u—u®),y)(T'r) + > /(GiLBu(u —u®))(t)d (1) > 0
0

for all u € C', and the complementary slackness condition (3.5) holds. Writing down £,
and £, we see that (3.6-3.7) are equivalent to (3.3-3.4). a

The concrete expression of (G;L)* is derived in

LEMMA 3.2. For (G;L)*: NBV[0,T] — L,(0,T; L,(T")) it holds
T
(LG /TSps—t(I)d)\()

t
The function S,(s — t)®; belongs to C(D,C(Q)), where D = {(t,s)[0 <t < s < T} .
Proof: We have

(AS(s —t)N)"®; = 75,(s —t)®; = 75,(s — )P,

as ®; € W7(Q). This follows by means of theorem 5.5, chpt. 4, of PAZY [21]. Moreover,
it is known, that S,(¢) restricts to a strongly continuous semigroup on W;’(Q), cf.

AMANN ([3], hence S,(s — ¢)®; is a continuous abstract function on D with values in
W7 (Q) — C'(Q). This yields the second assertion of the lemma. Thus

/GLZ () = (@i,/AS(t—s)Nz(s)ds)(Q)d)\i(t)

(TSp(t — 5)®;, 2(s)) (') dsd (1)

(rS,(s — 1)®;d)i(s), z(£))(T) di

S O

((G:L:)"(1), z(1))(T) dt,

Oty O Oy O

where the abstract Riemann—Stieltjes integral exists due to the continuity of
75,(s —1)®;. O
Using in (3.6-3.7) the (L,~) adjoint of the linear operators we arrive at

k
L,(0%u’y, v = (v,y+ BJ{—K"y + AN, + Z L*GIA} + xw)(Tr)
=1
T
(3.8) =: //v(t,:z:)ﬁu(t,:zz) dS,dt,
or

8



k
L uy, Nu = (u, B{=K"y + Ny, + D L*GIA} + xu)(T'r)

(3.9) =: /T/u(t,x)ﬁu(t,x)dsxdt.

From the optimality conditions,
k
y(t) = =by(t, ) {—K"y + AN gy + L™y, + Z L*GIA () — xwl(t, ),
=1

hence after inserting the expressions for the adjoint operators,

y(t,) = —by(t,-) {_ / TAS, (s —)Nyy(s)ds + 75,(T — 1)y

(3.10) + / (5 — )bu(s) +Zk:/75ps—tq)dA()}—Xw(t ).

This may be defined as adjoint equation. However, it is more convenient to introduce

p(t,) = {—/TAqu(S — ) Nyy(s)ds + 785,(T — t)py

(3.11) + /qu(s — 1)p(s) ds + ﬁ:/’rsp(s - t)cbz-d/\i(s)}

as a new adjoint state. This function can be interpreted as the mild solution of an

adjoint parabolic initial boundary value problem (cf. TROLTZSCH [26]).

4. Second order sufficient optimality conditions. In what follows let (v°, u®)
be an admissible pair for (P). The set M(v% u°) consisting of all elements (k,z) €
X X Uy with

k= K(Bok + By2)
Gin+G¢L(ka+Buz) <e¢, t1=1,...,k,

z = Mu—u®), X > 0, u € C, is sald to be the linearized set at (v°,u®). By
r5(h) we denote the second order remainder term of £ at (v° u°) in the direction

h=(v—0v%u—u°) € Xy X Us:
1
(4.1) r5(h) = L(v,u) — L(v°,u°) = (Lo, v — 0°) — (Lo, u — u°) — §E”(v°,uo)[h, k.

Moreover, we shall use the following norms throughout this section: For 1 < pha < oo
we denote by || - ||» the norm of U,. The product space X, x U, will be confined with
the norm

(v, )l == max([[o]a, |[ulla)-
9



In order to overcome the known ”two—norm discrepancy” which is the main diffi-

culty to derive sufficient second order conditions, we follow MAURER [20] and assume:

(A1) For all admissible (v, u) there is a pair (k,z) = (k(v,u), z(v,u)) belonging to
the linearized set M (v°, u®) such that for h = (v — v%, u — u°)

I(k; 2) = All2[[A]I5" — 0,

as ||h]|s — 0.
(A2) (5) IrEG)IAIE — 0, as bl — 0
(i1) de > 0 = |[L"(v°, u®)[(v1,u1), (V2 ua)]| < ¢f|(v1,ur)][2][(v2, ug)||2 for all
(Vi ;) € Xoo X Unoy 1 = 1,2.
Then the following assertion holds:
THEOREM 4.1 (SECOND ORDER SUFFICIENT OPTIMALITY CONDITION). Suppose
that (A1), (A2) are satisfied. Let (v°,u®) be admissible for (P) and fulfil the first order
necessary condition (3.3-3.5). Suppose further the existence of a 6 > 0 such that

(4.2) L' (0%, u®)[(k, 2), (k, 2)] = 8] (K, 2)|l3
for all (k,z) € M(v°,u®). Then there exist positive o and p such that
(4.3) F(v,u) 2 F(o°,u°) + afl(v = 0%, u — )3

Jor all admissible (v, u) with |[(v—v°u— u®)||x < 0.
Proof: We shall sketch the essential steps of the proof, differing in some details from
that given by MAURER [20].

Suppose that (v,u) is an admissible pair. (A1) implies the existence of (k,z) be-
longing to M (v, u°®) and

v—0° =k(v,u)+wi(v,u), u—u’=z(v,u)+ wv,u),
where
lwi(o,u)llallo —v°ll5" =0, [lwa(v,u)llaflu —w’]I3" — 0
as ||(v—v% u—u)||sc — 0. Now we begin to estimate the objective functional:
F(v,u) > L(v,u)

follows from the fact that the state equation is fulfilled and the state constraints are
satisfied. From the Taylor expansion of £ and (3.3-3.5)

Using essentially (A2, ii) it can be shown, that (4.2) remains true, if k and z underly a
sufficiently small perturbation: There exist positive 69 and ~, such that

L7 (0% u)[(k 4wy, 2 + wy), (k + w1,z + w3)] > | (k + w2z + wﬁ“%
10



holds for
[wi(v, u)lla < A|lkllz and  [[wa(v, u)llz < vz

These inequalities follow from (A1), if ||(v — v u — u°)||o < 01 with a certain positive
01. We obtain

1
F(v,u) > F(v°u’) + §5OH(U — 0% u —u’)||3+ 'I'QE('U — 0% u—u’).

(A2, i) yields the existence of a positive oq, such that for all admissible (v,u) with
(0= 0% u—u?)]|o0 < 02

6
|'r'2£(v — v u— uo)| < IOH(U — v’ u— uo)”g

Choosing 0 = min{g1, 02} and a = %0 we get (4.3).
Owing to (4.3), F(v,u) > F(v° u°) for all admissible (v, u) in a sufficiently small
Xoo X Uss—neighbourhood of (v, u®). O

REMARK 2. Besides the first and second order condition the proof of the theorem
does not invoke any other assumptions than (A1), (A2) and the differentiability pro-
perties of B and L. Therefore, theorem 2 remains true for Uy, := L,(0,T; L,(T")) and
|(k, 2)|| 0 := max{||k||c, ||z|lp}, provided that B and L are twice continuously differen-
tiable in the space Xo x U,. This is true for the choice

(4.4) b(t, z,w,u) = bi(t,z,w) + ba(t, z, w)u
and
(4.5) X(t, T, w, u) = Xl(t, T, w) + Xz(t, z, w)u + (w, u)Xg(t, ;v)(w, u)T,

where x3 s a 2 X 2-matrix with L., —entries.

In the remainder of our paper we shall verify the assumptions (A1), (A2). (A2) will
follow from the differentiability properties of £ and the special behaviour of the linear
operators K, L, A. (Al) is implied by the regularity of (v°,u®).

The second order derivative L"(v°, u®)[hy, ha], hi = (vi,u;) € Xoo X Uy, is

L0, u®)[ha, hy] = //hl(t,x)T{X"(t,x)+p(t,x)b”(t,J;)}hQ(t,x)dedt

0
T

+ //%w(tv$>(LB'h1)(t,w)(LB’h2)(t,x)dxdt

0

(4.6) + / (@) (AB'hy)(2)(AB'hy)(x) de,

where x"(t, z) is defined analogously to b”(¢, z) in section 3, p(t, ) is taken from (3.11),
Yy (t, ) = Yyt 2, w°(L, 7)), Puww = Puww(z, w’(T,z)) and B" = B'(v°,u®).
11



The corresponding computations are too lengthy to be presented here." They are
along the lines of the one—dimensional case discussed in GOLDBERG/TROLTZSCH
[10] and use mainly the formula for the derivative of ¢(z) = Q(e + T'B(z)) (with fixed
element e, linear continuous operator 7T'):

q"(z2°)[h1, k2] = Q"(e+TB(z°)[TB'(2°)h1, T B'(2°)hy]
b ), T, o))
Now we are going to verify (A1), (A2). The key to show (A2) is that y(¢,z) and thus
also p(t,z) is bounded and measurable on (0,7") x T

LEMMA 4.2. The function y(t,z) is bounded and measurable on (0,T) x T.
Proof: Equation (3.10) admits the form

(4.7) y(t, ) = —bu(t,) {h<t) - /TAQSQ(S —)Nyy(s,) ds} — Xuw(t,")
with
h(t) = 7S,(T — 1) pu + /qu(s (s ds + Zk:/TSq (s — 1)®:dAi(s).

We shall prove below that h € Lo,((0,7) x T'), thus h € X, too. It follows from PAZY
[21], chpt. 4, thm. 5.5, that the part of A, in L,(Q) is A, and the restriction of S,(t)
to L,() coincides with S,(t). Therefore, v € X, implies

(4.8) A S (s — )Nyu(s) = ApSy(s — t)Nyu(s).

The real-valued function b,, = b,(t, z) is bounded and measurable on (0,7) x I'. Now
we regard the slightly changed equation

T
:l)(t7 ) = _bw(tv ) {h(t) - /TAPSP(S - t)NPZQ(Sv ) ds} - Xw(tv )
It admits a unique solution § € X,,. Moreover § is bounded and measurable on (0,7") x T,
as the integral operator maps X, in Xo, h, by, xu € Leo((0,7) x T'). From (4.8),
AgSy(s = 1)Ngii(s) = ApSy(s — L) N(s),

hence g solves (4.7), too. By the uniqueness of the solution to (4.7) we conclude y = 7,
hence y € Loo((0,7T) x T'). It remains to show that h € L. ((0,7") x I'). The function
z(t) = S, (T — f)gow solves the parabolic problem

—z(t,x) = Az(t,z)—z(, )
2(Tyz) = pulz)

subject to homogeneous Neumann boundary conditions, where
12



ouw(r) = @u(z,w’(T,z)). On the other hand, w’(7T,z) is continuous on £, as
w® € W7 (Q) — C'(Q). Invoking the maximum principle, |2(¢, z)| < max ¢, (z). Clearly,
r€Q
S
0,

Loo((0,7) x I'). The real-valued function t,(t,z) is bounded and
T) x Q, hence 1, € L,(0,T; L,(Q)). From AMANN [2],

this implies 7z
measurable on (

1S5(s — )Ly (@)—wg(@) < cls — 7%,

is known. In view of this,

z(t)

/TSp(s — U)thy(s)ds

belongs to C([0,T], W7(Q)) € C([0,T], C(Q)), if p > (1 — %), The latter holds true
for p > 3, asa<1+21—). By n >2and p >n+1 we have p > 3. The third part of h
is bounded and measurable, too: By ®; € W;(Q) we find as above that S,(s —1)®; =
Sp(s —1)®;, hence v;(t,s) = Sp(s —1)®; belongs to C(D, W7 (Q)) € C(D,C()), where
D = {(t,s) € [0,T] x [0,T]\{(¢,5)[0 <t < s}}. Therefore the abstract Riemann-
Stieltjes-integrals

/qu(s 0®dN(s)  (i=1,....k)

exist and belong to the class of abstract functions of bounded variation on [0, 7] with
values in C(I). O
LemMA 4.3. (A2) is satisfied under the assumptions imposed on ®p,...,®,.
Proof: We begin with (ii):
All entries of x"(t,z), b"(¢,x), and the functions @y, Yuw, p(t, z) are bounded and
measurable. Therefore by (4.6),

L7 (0 u) b, hall < el nll2]all2

+ &l LB ||y 0,1:02) || LB hal| 1y 0,7:15(2))
(4.9) +  cal|AB' ||y @)|A B hal| (0

Arguing as above we find
¢
(L)1) = /AQSg(t — §)Naz(s) ds,
0

T
Az = /AQSQ(T — 8)Nyz(s)ds
0

for z € X,,. The operators on the right hand side are continuous from
Xy to L3(0,7T; Ly(€2)) and Ly(2), respectively (we use (2.6) for r = 2 and results
about weakly singular integral operators in KRASNOSEL’SKIJ a.o. [14]). B maps
continuously X3 x X3 into X3. Now (A2, ii), follows directly from (4.9).

13



(i): By means of the second order Taylor expansion of 3(t) = L((v°,u®) + th,y) at
=0,
T
2i(h) = | / Bt ) (U 2) = X ()] 4 plt, ) B, ) = B(1, )]} h(t, ) dS,d
0
T

+ f /w — (1 2)(LB'R)(1, ) *dads

[}

+ 6 = punl@)(ABR) () d,

o]

where v € (0,1) is independent of (¢,z), h = (v, u),

Yot ©) = Yun(t, 2, 0 (L, ) + vw(l, )
(w = Lv), and 2, b, ©¥ = are defined analogously at (v° + vv,u® 4+ vu) and w°(T) +

vw(T), respectively. All terms in [...]-brackets tend to zero in Ly, as ||h||oc — 0 owing

to the continuity of the corresponding Nemytskij operator in U,,. The other parts can

be estimated by c||h||3. This yields (A2, ii). O
LEMMA 4.4. For all z € L,(0,T; Ly(T)),

I(7 = K Bu) ™" 212 < ellz]l2-

Proof: It is well known that for z € X, the Bochner integral equation

i

«(t) — /TAS(t — $)Nby(s)z(s) ds = =(t)

0

admits a unique solution z € X,. Arguing as in the proof of lemma 4.2 we have
t
z(t) — /TAQSQ(t — 5)Naby(s)x(s)ds = z(1),
0
hence (with a generic ¢),

i
[y < 6/HTAzsz(t—S)N2!|L2<r>—>L2<r)H () lzayds + 12D )
0

i

< Ol + ¢ [ (= )7l ds

0

by (2.6), where ¢ > 0 can be taken arbitrarily small. This is a weakly singular integral
inequality with positive kernel. Therefore, ||z(?)|| can be estimated by ||z(t)|| < a(t),
where

t
at) = (Ol + ¢ [(1 = 5)7Fa(s) ds.
0

14



(cf. DIXON and McKEE [5]).
Now it follows from the theory of weakly singular integral equations for real func-
tions that

1
2

T
memnSc(ﬂvwmﬂwﬂ =zl
0

hence ||z||2 < ¢||z||z2, too. O
LEmMMA 4.5. Let (v°,u®) be regular and admissible. Then assumption (A1) is

salisfied for problem (P).

Proof: Let (v,u) be an admissible pair for problem (P). Then

(4.10) v=KB(v,u)+1d
(4.11) Gi(LB(v,u) + d)(t) < ¢(1) (t=1,...,k).

From the Taylor expansion of B at (v°, u®) we obtain

(4.12) v —0° = K[By(v —v°) + By(u —u’)] + KrP (v — v’ u — u°)

and

(4.13)  Gi(w®) + GiL[B,(v — v°) + By(u — v°)] + GiLrP(v — v’ u —u°) < ¢
(¢ =1,...,k) (note that w® = LB(v°,u’) + d).

Now consider the pair (v1,u) solving the linearized state equation
(4.14) v — v’ = K[(B,(v1 —v°) + B,(u — u?)].

Substracting (4.14) from (4.12),

(4.15) v—v1 = KB,(v—u1)+ [X’T‘lB(U — v u—u’).
By lemma 4.4,
(@16)  fo—ulls < dlKrP(o - v*u— )l < cllrP(0 - v*u — )l

(with generic ¢). It is known that for the Nemytskij operator B
(4.17) Hrf(v — 0% u—u)|o][(v — 0% u — w7t — 0

as |[(v —v°,u — u®)||cc — 0. Therefore ky = v1 —v°, 21 = u — u® could be a candidate
for (A1), but (kq,z1) will possibly not fulfil the linearized constraints. (4.13) yields

(4.18) G;(w°) + G L(Byky + Byz1) < ¢; — GiL(B,(v —vq) + rf(v — v’ u —u’)),

t=1,..., k. From the second assertion of lemma 3.2 we conclude that ;L is continuous

from X, to C'[0, 7] (note that (AS(t —s)N)*®;, = 75,0, = 75,9;). Hence

max |GiL(By(v — 1) + r) ()] < aile + DllrPll2 < el

15



i=1,...,k As (v° u°) is regular, there are (v,%) and a § > 0 such that

(4.19) v —0v" = K(B,(v—v°)+ B,(u—u))

(4.20) (Gi(w®) 4+ G;L(By(v —v°) + By(u —u®)))(t) < ¢;(t) — 6
- _apBlL y L ©
i=1,....k t €[0,T]. We put ¢ = c'||r{|2, A s

uy = (1 — Xu + A, vy = (1 = X)vy + Aw.

Then the pair (vy —v°, uz — u®) belongs to M (v°, u®). This follows simply from a convex
combination of (4.14), (4.19) and (4.18), (4.20), respectively. We take k = vy — v°,

z = ug — uj and find

1(k; 2) = (v =% u—u’)l [02 = oll2 + [luz — ull»

[0 = v1l2 + [lva = vil2 + Alf — ul]

cllrillz + AT = vl + [[7 = ull2)

2 ll2(c + 67" e (7 = vallo + 7 = ull2)),

by (4.16) and the definition of A. For |[(v — v°,u — u°)|| — 0 we have v; — v°, hence
the term in the last bracket remains bounded. The proof is completed by (4.17).

VAN VAN VAR VAN

O

Summarizing up, theorem 4.1 and lemma 4.2-4.5 yield the main

THEOREM 4.6. Let (v°,u®) be regular and admissible for the optimal control pro-
blem (P), w® =d+ LB(v° u°).

If (v°,u®) satisfies the second order condition (4.2), then (v°, u®) is locally optimal
for (P), and (4.3) holds.

COROLLARY 1. Under the assumptions of theorem 3, there are o > 0, a > 0, such
that (4.3) holds for all admissible (v,u) such that ||u — u°||s < 0. Thus u® is a locally
optlimal control.

(The corollary follows from (4.3), since ||[v — v°||oe — 0 for ||u — u?|[s — 0.)

COROLLARY 2. If b and x salisfy the condition (4.4) and (4.5) respectively, then
theorem 3 and corollary 1 remain valid for Uy, = L,(0,T; L,(T)) and ||u — u°]|s =
[

This i1s a simple consequence of remark 2.

REMARK 3.

1. The method of this paper extends also to more general optimal control problems
with additional control distributed in Q. The equation of state would be of the

Lype
wf(tv JE) = (A - 1>w(t7 JE) + bl<t7 €, w<t7 'I)v ul(tv JE))
w(0,2) = wo(x)
Jw
a—n(tv I) = bQ(tv Ty w(tv .I), uQ(tv I))
Introducing v(t,z) = Tw(t,z) this leads to a system of Bochner integral equa-
tions for the state (v(t,z),w(t,z)). However, the presentalion of the theory is

notationally much more complex.
16



2. State constraints of the form

/(@(:c),vxw(t,x»d;c < ei(t)

Q

can be transformed to (2.3) integrating by parts, provided that
®; € (W, T7(2))" N ( Wy ()" .

5. Verification of the second order condition. To verify the strict positivity
of quadratic forms is a difficult task in general. This refers also to (4.2). It is well
known from the optimal control theory for systems of ordinary differential equations
that matrix Riccati equations may be helpful to solve this problem, see for instance
BRYSON and HO [4] or MALANOWSKI [19]. A similar approach works for parabolic
equations, where the control is distributed, i.e. acting only within the domain under
consideration. In this way, parabolic equations of Riccati type are obtained for the
kernels representing certain operator-valued functions. We refer to LIONS [18], chpt.
3 . This method cannot be extended directly to boundary control problems.

On the other hand, even the solution of parabolic Riccati equations is a difficult
question , which generally can only be answered numerically. Therefore, we propose
the reduction of the problem to one for a system of ordinary differential equations by
means of a finite element method.

We have
L'(v°,u®)[(k, 2), (k, 2z)] = Q(w, 2),

where

Q(w,z) = /(w(t, ), 2(t,2))Qu(t, ) (w(t, z), 2(t, )T dS,dt

/QQ(t,x)w(t,J})2 dxdt
Q
¢

+ ww(2)w (T, 2)* da,

+
O Oy O

= Qu(w,w)+ Qra(w, 2) + Q2(z, 2),
(1 is a certain 2 X 2-matrix with L. —entries, Q2 € Lo (cf. (4.6)) and w solves
we(t,z) = (A—1w(t,z)

(5.1) w(0,z) = 0
%(t,x) = by(t,z)w(t,z) + b,(t,x)z(t, z).

Let Vi, € H'(Q) be a finite element space depending on a discretization parameter
h >0, V, =span{vy,...,v,}. We approximate (5.1) by the finite element scheme

/[%wh(t, z)v(z) + wi(t,z)v(z) + vwi(t,r) 7 v(z)]de =

17



(5.2) = [ (by(t,x)wp(t, )+ by(t,z)z(t,z))v(x) dSa

S T

wp(0) =

for all v € V3, where wy(t,z) = in: w;(t)vi(z). It can be shown that under natural
=1

assumptions on V}

max fut,) = wi(t, )0 + / ot ) = wn(t, ) oy
T
(5.3) < o [0,
0

where a > 0. The proof is based on a technique, developed by LASTECKA [15] for
boundary value problems with L,—boundary data.

(5.2) is equivalent to a system of ordinary differential equations for the vector valued
function w(t) = (wy(t), ..., wn(t)).
THEOREM 5.1. Suppose that the error estimate (5.3) holds true. Then

(5.4) Q(w, z) > 8|23

if and only if

(5.5) Q(wn, z) > (6 — &)=l
Jor all e >0 and all h < ho(e).

Proof: Simple estimations yield

|Qui(wr,wa)| < er((lunlleflwalle + |lwllan{[ws]|m)
|Qua(w, 2)| < coffwllm |zl

where |[w|c = ||wllc(o,17, L)) |wlla = [[w] L0758 (@)

Let (5.4) be satisfied. Then

Qwn,z) = Qw,z)+ Quw + wp, w, — w) + Qra2(wy — w, 2)

> bllzll; = ealllw + wallellwr — wlle + [lw + wallmlwn — wllm)
—Caffwn —wllg |22
(5.6) > (6~ ch®P)||z|l3,
as

max{[|wl[; [lw|[} < ¢ll=]2

(see TROLTZSCH [28]) and (5.3) is true. (5.5) is a consequence of (5.6).
18



Conversely, if (5.5) holds, then as in (5.6),
Q(w,2) 2 (6 =€)zl — ch/?||=|;

for all h < ho(e). (5.4) follows from h | 0, as ¢ was arbitrary. Theorem 5.1 permits
to investigate the positivity of the quadratic form @ for all solutions of a system of
ordinary differential equations, where the known theory of Riccati—equations applies.
We shall not discuss the further details.

Acknowledgement: The authors are very grateful to Prof. N. Weck for a valuable
remark improving lemma 4.2.
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