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1 Introduction

Many technical problems, for instance processes of cooling steel, are described by
parabolic differential equations with nonlinear boundary condition. The boundary
conditions have a complicated structure and are a-priori unknown. Therefore it is
necessary to identify the nonlinearities, beeing contained in the boundary conditions
by means of measurements. It is well known that such problems are ill-posed.

In particular, this refers to processes of cooling steel, where the heat exchange coeffi-
cient depends on the boundary temperature. This is the background for the conside-
rations in this paper. For that reason it is convenient to work with different regulari-
zation methods, among which the Tikhonov-regularization is the most important, see
TIKHONOV/ARSENIN [12], TIKHONOV/GONCHARSKIJ/STEPANOV/YA-
GOLA [13], MOROZOV [11]. In literature we find two basic different methods
to identify boundary conditions. One consists in determining a finite number of pa-
rameters. In this approach the solution is supposed to belong to a specified known
class of functions. Nonlinear optimization is the basis of this method. For the
problem under consideration we refer to KATSER/TR.O‘LTZSCH [8]. In a second
approach, the heat flux at the boundary is determined by techniques of quadratic
programming. After this step, where the boundary condition is linear, the heat
transfer law can be derived from the heat flux and the boundary values. This
roundabout way is numerical effective, but the last step is not completely justified
cf. BECK/BLACKWELL/CLAIR [3]. In this respect, we should mention also the
identification of coefficients in the leading part of the parabolic equation (e.g. diffu-
sion or heat conductivity coeflicients). A large number of publications has already
been devoted to this problem. We refer only to recent papers by ITO/KUNISCH
[7] or KUNISCH/PEICHL [10] and to the references therein, where augmented La-

grange multiplier techniques are applied to establish a numerical method.
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In this paper, we shall discuss a completely different way. In our method the nonli-
near law will be identified directly. We shall formulate an optimal control problem,
where the unknown heat transfer function is acting as the control. Our aim is to
prove the existence of an optimal control and to derive first order necessary optima-
lity conditions. We restrict ourselves to the linear heat equation and shall use for
convenience semigroup methods. In practical meaningful problems the heat equation
is nonlinear, too. However, this problem is theoretically much more difficult, as the
parabolic initial-boundary value problem does not belong to the class of semilinear
systems in this case.

The optimal control problem we are going to investigate is to minimize the functional

// (t,2) — q(t,2))2dudL, (1.1)

subject to
du
E(t,;v) = Ayu(t,z) on (0,T] x Q
u(0,z) = u’(x)on Q (1.2)
du

P10y = o(u(t,e)( — u(t,)) on (0.7]x T

where the control o is taken from the set

Uy = {Oé € Cl7y[191,192],0 <mp < oz(u) < Mhmg < a'(u) < Mg,
Yu € [91,0,], sup o) — ofu)l !
u,uz€[d1,92] |u1 - u2|

In this setting, & C R™ is a bounded domain with C*-boundary T'; T" > 0 a
fixed time, ¥ a fixed temperature and ¢ € Ly((0,7) x Q) is a given function of
"measurements”. ¥, and i, are defined by
. . 0
W = mln(ﬂ,glcrelgu (z))
Py = max(¥,supu’(z)).
rEN

We shall also regard the functional

;/ (ti,2) — qi(x))*dx (1.3)

with fixed time points ¢; € [0,T], 2 = 1,..,{, which seems to be more adequate to
practical problems. The theory for this functional is very close to that for (1.1).
Interpreting the process as a heating problem, the variable u means the tempera-
ture of the material, u° the initial temperature, ¥ the constant temperature of the
surrounding medium, and « the unknown heat transfer function, playing the part
of the control.



2 The initial-boundary value problem

In this section, we shall investigate the behaviour of the parabolic system (1.2),
which belongs to the class of semilinear problems. Therefore, it is convenient to
apply standard methods of the theory of analytic semigroups of linear continuous
operators.

In all what follows we shall work in the Sobolev-Slobodeckij space W;&(Q), where
p>m—1 and

260 > —
p
. 1
20 < 1+ - (2.2)
P
The solution of the heat equation u is looked for in the Banach space
C([0,T], W;7(2)) with:

. m
20 > 20 > —. (2.3)
P

Let A be a linear, positive and elliptic operator. Then the parabolic equation

du

ot
u(0) = uY

= —Au

subject to homogeneous boundary conditions gives rise to an analytic semigroup of
linear continuous operators denoted by S(t).

We could be tempted to define A: L,(2) D D(A) — L,(2) by
D(A) = {w e W2(9Q) : 3—12’ lan= 0}, Aw=—-Aw, w € D(A).

Then the initial value problem

u'(t) = —Au(t)
u(0) = u®

has the unique solution u(t)=S(t)u". In our case the semigroup S(t) generated by
—A, S(t) =" exp(—At)” is an analytic semigroup of linear continuous operators
in L,(2). In order to handle the case of inhomogeneous boundary conditions we
make use of a suitable special solution of the corresponding elliptic boundary value
problem:

Let be g € L,(09). The mapping, which assigns g to the solution v of the boundary
problem

—Av = 0
ov



is denoted by N, i.e. v = Ng.

Clearly, for the Laplace operator A ~ —A the operator N is not defined and the
solvability condition [ g(z)dS, = 0 is to be fulfilled. That is why we shall transform
[219]

the equation and introduce A as above, but weset A=1—A, w € D(A).
In order to get this operator, we transform the heat equation: Let u = we’. Then

Aw(t,z) —w(t,z) = aa—zu(t,x) on (0,T] xQ
aw(O,;c) = u’(z) onQ (2.5)
a—:(t,x) = a(w(t,z)e") (¥ —w(t,z)e)e™ on (0,T] x 9N

Now we can apply the theory of semigroups of operators to this operator A, which
is known to generate a strongly continuous and analytic semigroup {S(¢)}, >0,
of linear continuous operators in L,(£2), see FRIEDMAN [4]. The linear mapping N
is defined by (2.4) for A ~ 1 — A. N is a continuous mapping from L,(I') to W;(Q)
for all s <14 1/p.

In the sequel we shall regard w = w(¢,z) as an abstract function w = w(t), w:
[0, T] — W27(Q). Tt is well known that the solution w of (2.5) satisfies the nonlinear
Bochner integral equation

uﬁ):/AS@—QNB@w@»@-+S@m9 (2.6)

0

We refer to AMANN [1],]2]. In this equation 7 is the trace operator and B is the
Nemytskij operator defined by

B(t,v)(t,z) = a(v(z)e") (¥ — v(z)e)e™, ve C(0N). (2.7)

In the sequel we shall assume for a while that & = a(u) is defined on (—o0, ).
Later we shall observe that « is only needed on the subinterval [Uq,d2]. In view
of the assumptions (2.1) - (2.3) we have the embedding w(s) € C(92) Vs € [0, T].
Thus the trace operator is an operator from C(Q) to C(99). For the reader, who
prefers to work with Greens functions, we should mention that (2.6) is equivalent in

some sense to

i

w(t,z) = //G(m,f,t—s)a(w(s,f)es)(ﬁ—w(s,f)es)e_sd55ds

0 9Q

+/G@@ww@%. (2.8)
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3 Discussion of the integral equation

In this section we shall investigate existence and uniqueness of solutions to the
Bochner integral equation (2.6). For that reason we introduce the linear integral
operator

t

(Lig)(t) = [ AS(=s)Ng(s)ds

0

and its nonlinear counterpart

(Lw)(t) = / AS(t — s)NB(s, rw(s))ds + S()u°

We shall investigate these operators in different spaces, using for convenience the
same symbols. Concerning the linear operator L, the following result is known: Let

g € L,([0,T],L,(09Q)), be given, define w by w(t) = (L1¢)(t) and suppose that the

inequalities

1

0<20<2&<1+;, (3.1)
(6 —6)"'<y< (3.2)
are satisfied. Then the estimates
le@llwze < elllle,, (33)
[w(ts) — w(t)llwze < etz = t1)"|lglle, (3.4)

hold with certain constants ¢ > 0, & > 0 (see TROLTZSCH [15] theorem 2.1).

These results permit to show the following

Theorem 1 Suppose that

) 1
D e <2<+ -, (3.5)
P P
u® belongs to W;&(Q), and w to C([0,T],W27(2)). Assume further that
1B Pl < ¢ (3.6)

for all f € C(I'). Then forv= Lw
lo()llwze(q)

[o(t2) = v(t1)llwze (o)

a1+ cal|u’|lwze (), (3.7)

<
< (t2 =) (e + eallu’lwze () (3.8)

with certain positive constants ¢y, cq, 0.



Proof: We have v = vy 4 vy, where vy(t) = (L1 B(.,7w))(t), wva(t) = S(t)u®.
From (3.3) and (3.6) we get Hvl(t)HWIga(Q) <¢.
On the other hand, we know from AMANN [1]

[vallwze@y = 1S(B)u’lwz-(@) < cllu’lwz-(a)-
Thus assertion (3.7) is true. To show (3.8) we employ at first (3.4) and find

Jos(12) = 1 (1) ey < erlte — 1"

Now we investigate the remaining term vy. Suppose t; > t1. Then

1S (t2)u” = S(t)u’llwze@) = Stz —t1) = D)S(t)u’ | wze(ay
S C(tg — t]>(&_0)/2H5(t])UOHWg&(Q).

This is a consequence of W;‘7+5 — D(A%), D(A’*®) — WpZ" (¢ > 0) and a result
from HENRY [6]. Thus

[va(te) = va(ta)llwzeay = || (t2)u® = S(t)u’wze(a) < e(te = 1)~ lwzo(q)
and (3.8) is true for 6 = min((6 — 0)/2,6). O

The theory of existence for the integral equation (2.6) is well developed. We refer
to recent papers of AMANN [1],[2]. In particular, local and global solvability follow
from theorem 15.2 in [2] under certain growth conditions. We shall proceed in a
different way. First, assuming the nonlinear function in the boundary condition to
be globally bounded and globally Lipschitz, we show global existence an uniqueness.
Due to this very strong assumption, this result can be shown by standard methods
along the lines of [1]. In a second step, invoking maximum principle arguments,
we are able to get rid of these restrictions and to allow for unbounded functions
describing the boundary conditions.

Theorem 2 Suppose in addition to the assumptions of theorem 1 that

| B(t, f2) = B(t, fi)llooa) < Uf2 — filloge)- (3.9)
Then there is a unique solution w of the integral equation (2.6) in the Banach space
C([0,T], W27 (), i.e. (Lw)(t) = w(t).
Proof: Allthough the method of proof is quite standard, we shall sketch its main
ideas for the readers convenience. Owing to AMANN [1], the estimate
[AS()N ||z, )y —w2e@ S e 177 1>0, (3.10)

holds true for certain 0 < o < 1.



Now let v, w € C([0,T], W;"(Q)) be given. From

(Lo)(t) — (Lw)(t) = /AS(t — $)N(B(s,tv(s)) — B(s,Tw(s)))ds

0

and (3.8)—(3.10) we get

(L) (1) = (Lw)(t)llwzr@) < /HAS(t—S)NHLP(F)—W,?U(Q)
NI1B (s, mo(s)) = B(s, mw(s))llz,mds

t
< et [t =5 o(s) = w(s) hwgeayds
0

Comparing the behaviour of the operator I with that of K : C[0,T] — C]0,T]
defined by

t

(Kz)(s) = c- l/(t — 8)ox(s)ds

0

it is easy to show
[(E)(t) — (L w)(O)llwse@ < (K"9)(0)  Yne N, 1€ [0,7),

where (1) = |[v(t) — w(t)”wga(g). K™ is known to be a contraction for all suffi-
ciently large n (cf. KRASNOSELSKIJ and others [9]). Thus L” is a contraction in
C([0,T1], W;"(Q)), and a known version of the Banach fixed point theorem yields
existence and uniqueness of a solution w € C([0,T], W;“(Q)) to Lw = w. a

The assumptions (3.6) and (3.9) on global boundedness and Lipschitz continuity are
very strong. However, they can be weakened essentially.

Corollary 1:

If @ = a(u) is Lipschitz continuous on (—oo, 0c) with compact support, then the
integral equation (2.6) admits a unique solution w € C([0, 7], W;"(Q))

Proof: We have B(t,v(z)) = a(v(z)e") (¥ — v(z)e)e™". Suppose that supp a C
(—a,a). Then B(t,v(z)) = 0 for |v(z)| > a. Let ¢ be the global bound for |a|. Then

|B(t,v(x))| < e(|9] + |a])
indepently from t and x. Hence (3.6) is satisfied. Moreover,

|B(t, v1(2)) = B(t,va(2))] < |a(vi(z)e)|[vr(2) — va(2)]
Ha(vi(z)e’) — ava(z)e)][9 — va(z)ele™

< allor = valloy + e - lllor — v2ll ey,
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as a = 0 for |v| > a and a is globally Lipschitz. This implies (3.9). Theorem 2
concludes the proof. O

As a conclusion of theorem 1 we see that the solution w of the integral equation

(2.6) belongs to C*([0,T], W27(2)). Now it is more convenient to return to the

original integral equation for u. Transforming back w = e~"u we get in turn

u(t) = /AS(t — S)Ne(t_s)oz(Tu(s))(ﬂ — 7u(s))ds + etS(t)uo. (3.11)

0

Let us assume now that v is any solution of (3.11) on [0, 7], indepently from the
assumptions (3.6),(3.9). If a(u) > 0 for all u € R, then the maximum principle
implies

where
¥ = min(ﬁ,irelgf)uo(x))

¥y = max(¥,supu’(z)).
zEQ

Corollary 2:

For each a € Uy,4 the integral equation (3.11) admits a unique solution

u e C%([0,T], W2 (52)).

Proof: o € U, is given on [U1,¥2]. We extend o on (—oo,00) to a globally
bounded and globally Lipschitz function. Corollary 1 ensures the existence of a
unique solution of (3.11). By (3.12) it is independent from how « was extended. O

4 Existence of an optimal control

We are now in a position to answer the question of existence of at least one optimal
control for the problem (1.1)-(1.2). In all what follows we shall denote by u(«) the
unique solution u of (1.2) assigned to a given a € U,q. Thus u(a) = u(a;t, x) is the
solution of the integral equation (3.11).

Moreover, we introduce the set
T :={(a,u(a)) :a € Uy; u€E 00’6([0,T],W;‘7(Q))}.

Lemma: 7,, is precompact in C'[4,9,] x C([0, 7], W;”’(Q)) with 0 < ¢/ < 0.
Proof: We can show by standard arguments that U, is compact in C'[dq,9s].
According to corollary 2, to each control @ € U,4 belongs exactly one state v = u(a).

The set of these states u(a) is bounded in C%4([0, T, W27(€2)). This follows from
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the boundedness of U,4 and theorem 1. For o/ < o the space C%°([0,T], W2 (Q)) is

compactly embedded in the space C([0,T], W;UI(Q)). For that reason the set T,; is
precompact. O

Theorem 3 The set T,y is closed in the space C'[9;,195] x C([O,T],W;”/(Q)), for
all 20 > 20" > m/p.

Proof:

Let (e, u,) be a sequence of T,4. Without loss of generality the whole sequence
converges to (a,u). Now we shall prove that the control o and the state u are
connected by the integral equation (3.11), i.e. u = u(a).

We estimate

(u(t, 2)) (¥ —u(t,2)) = an(un(t, 2)) (0 = un(l, 2))|

|a(u(t, @))|[ult; 2) = un(l, )| + [a(u(t, 2)) = an(un(l, 2))[ | = un(t, 2)]
Millu=unl oy, wzeayy Fella(ult, 2)) =a(un(l, 2)) [ +]a(ua(l, ) = an(ua(l, 2))])
Miju — un”c([o,T],WgU () T alu(tsz) = ua(l, 2)[ + cafla — anllop, o,

cillu — “n“o([o,T],W;o'(Q)) + caller = el g, 0.1

ININ ININ S

with certain constants ¢1,¢; > 0. Here we employed u(t,z) € [V, 0], un(t,z) €

[01, Y] and the properties of a, o, € Uyg. Thus g, (4, ) = an(un(t, @) (9 — un(t, )
converges uniformly to ¢(¢,z) = a(u(t,z))(? — u(t, x)). Clearly, from

t
un(t,.) = /AS(t - S)Ne(t_s)gn(s, Jds + 'S (t)u’

0
and the properties of the integral operator in the limit

u(t,.) = /AS(t — S)Ne(t_s)g(s, Jds + €' S(t)u®

0

is obtained. Thus a and u correspond to each other. We should mention finally that
ay, € Uyq for all n implies a € Uy,q, too. Thus a belongs in particular to C1[dy,9,].
This is the reason to assume «, € C1, as a, € C! and a Lipschitz bound would
only ensure o € C'%% a

Theorem 4 The optimal control problem (1.1)-(1.2) possesses al least one optimal
control ay € Uyy.

Proof:
This 1s an immediate consequence of theorem 3, the continuity of the functional @,
and the Weierstrass theorem. a



5 Necessary first order optimality conditions
and adjoint equation

To establish first order necessary conditions we shall proceed similarly as GOEBEL
and OESTREICH [5]. In the following let o be an optimal control with correspon-
ding state ug and « an arbitrary other admissible control.

We define a linear combination a.,

a. = (1 —¢)ag(u) + cafu), a, o € Uyg.

This a. is also an admissible control for all ¢ € [0,1]. We recall for our next
investigation the transformed integral equation (3.11),

uft) = /AS(t_s)Nef Sa(ru(s))(d — ruls))ds + S(1)u°

A A

Now it is natural to define an operator F' = F(u,¢): C([O,T],W;"(Q)) X R —
C([0, 7], C(09)),

Flu,e) = 7(u— / AS(t — s)Nea.(tu)(9 — Tu)ds — ' S(t)u").

0

In our next investigation we shall need only the trace of u on 0. Therefore we
introduce the trace of u by © = ru. Let F' = F(x,¢): C([0,T], W7 (09)) x R —
C([0,T],C(09)) be the corresponding operator,

t

F(z,e) = z— 'r(/ AS(t — s)Ne'*a.(z)(9 — x)ds — ' S(t)u?).

o]

For convenience we define also operators M, K, K by

M(z,¢) = a(z)(V — x)
M: (o T] C(99)) x R — C([0,T],C(99))

(Kg)(t) = / AS(t — s)Net=2g(s)ds

K: C([0,T],C(09) — C([0,T],C(Q))
(Kg)(1) = 7( / AS(t — s)Net=*g(s)ds)

K: C(0,T],0(09) — C([0,T],C(09)).
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By means of this notations we can write
F(z,e)(t) = z(t) — KM(z,e)(t) — 7€' S(1)u’.

Now we notice some important properties of the operator F:

For ¢ € (—¢1,¢1) there exists a unique solution z. of F(z.,¢) = 0 provided that e;
is sufficiently small. In particular zy = Tug is the solution of this equation for ¢ = 0.
This statement was proved in section 3.

For ¢ € (—¢1,¢61) and =z € C([0,T],C(09Q)) the partial Fréchet derivative of F' with

respect to x exists,

(Fu(z,e)v)(t, &) = (v— KM,v)(t,¢§)
M.(z,e)v = (al(z)(¥ —z)— a.(z))v.

€

Using the same methods as in section 3, we can prove that the linear integral equa-
tion F,(z,e)v = f with f € C([0,T],C(09)) has a unique solution v. Thus the
operator F,(z,¢) is invertible and onto.

For ¢ € (—ey,e1) and = € C([0,T],C(09)) the operator F(z,¢) has also a partial

Fréchet derivative with respect to ¢,
F.(z,e) = —KM..
From a. = (1 — ¢)ag + ca it is clear that
M. = (afz) — ao(z))(V - z).

Next we shall apply the Implicit Function Theorem.

In a sufficiently small neighbourhood of (xg,0) this theorem yields the following
properties:

For every ¢ € (—¢&1,e1) there exists a unique z(e) with F(z(e),e) = 0. Clearly,
x(O) = xop.

For z(¢) we have

x(e) =29+ Exa+ 0(6),
lo(e)lloqo,r1,0009))
le]

— 0 for |e] — 0.

za is the derivative of the abstract function z(¢): ¢ — z(e,.) with respect to ¢ at
the point ¢ = 0. Thus

TA = —Fx_l(:vo,O)Fs(:zzo,O)
A = ([—K]\/[x)_lKME. (5.1)

Now we are able to derive the necessary optimality condition and the adjoint equa-
tion. For the reasons of duality it is useful to interprete K, K, M as operators acting

11



in the space Ly:

M, : Ly(09Q) — Ly(09)
K : Ly(08)) — Ly(09)
K @ Ly(09) — Ly(9).

After introducing ¢ := ¢ — €'S(1)u’, we can write the objective functional ® as

O(e) = [KM(x(e),2) = ¢lli, qo1x0)-

Especially, we have for ¢ = 0

®(0) = HKM(%vo) - 99“%2([0,T]><Q) = HAoHig([O,T]ny
thus the defect of the objective functional is denoted with Ay. Because of the
optimality of the pair (ag, zo), we get the inequality

d(e) > 0(0) for e € [0, 1],

The differentiability of the map ¢ — z(¢) implies the existence of this directional
derivative.
Performing the differentation we find

L 19(e) —9(0)

=10 2 c = (Ao, K(Meza + M.)) 1, 0.19x02) 2 0,

where (.,.) denotes the inner product of Ly-spaces. By means of (5.1)
lim=——"———" = (Ao, K(M,(I — KM,)™"' KM. + M.))1,(0,11x2) > 0.

Denoting adjoint operators by stars,

i 19(e) — 2(0)
£l0 2 e

Now let p be defined by

= (K*(I-M:K*)""M;K* Ao+ K* Ao, M2)r, (o, 11x00) > 0. (5.2)

p=(I—M:K)""M;K*Aq
beeing equivalent with
p=MEK"p+ M KAy = M(K*p+ K*Ay).
However, it is more convenient to define the adjoint state by

pi= K+ K™ Ao, (5.3)

12



Then
ﬁ - M;;pa

hence we arrive at the adjoint equation
p=K*Mp+ K*A,. (5.4)

For the derivation of the adjoint operators K* and K* we refer to TROLTZSCH
[14]. Inserting their concrete forms (5.4),

p(t /AS (s —t)e (s=1) N(ag(zo) (P — x0) — ao(xo))p(s)ds + / S(s s_tAods).

We can interprete the abstract function p(t) as boundary values of the solution y of
the following adjoint problem:

(Z‘th = Ay+ Ay
y(T) = 0 (55)
D~ (al(r0)(9 ) — alm))y

The trace of the solution y of this problem is just the adjoint state p:
P=TY.
Now we return to the inequality (5.2). According to the definition of p,
(K*p+ K*DNoy M2) 1, 0.11x50) > 0,
and after inserting formula (5.3),
(py M2) 1, (0, 11x89) = 0. (5.6)

Formula (5.6) is our necessary optimality condition, which reads in a more detailed
form

//(04(3?0) — ao(20))(V — xo)pdSeds > 0.

0 9Q

Using the adjoint state y we summarize these results in our main result:

Theorem 5 Let ag be optimal for (1.1)-(1.2) and zo the trace of the corresponding
state ug on the boundary. Then

| [ (atao(s,€)) = aolao(s, )W = wos,€))y(s, )dSeds > 0,

0 2Q

where y is the solution of the adjoint problem (5.5).
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We can formulate the necessary optimality condition for the functional U (see equa-
tion (1.3)), too, but we must define the adjoint state y in an other form:

!
y(t7 .T) = Z yi(tv x)
=1
Each variable y; is defined by
yi(t,z) =0 Vit e (t;,T]

and y; solves the following backward problem on [0, ¢;]:

_ayi
ot
yi(ti,x) = Ai(z)

T~ (afao)(0 — ) — afn) s

where A; is the defect at the time ;.
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