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1. Introduction. In this paper, we consider the optimal control problem

min J(y, u) :=

∫

Ω

ψ(x, y(x), u(x)) dx +

∫

Γ

ϕ(x, y(x)) ds(x) (1.1)

subject to the semilinear boundary value problem

(Ay)(x) + d(x, y(x)) = β(x)u(x) in Ω
∂νy(x) + b(x, y(x)) = 0 on Γ,

(1.2)

and to the mixed control-state constraints

0 ≤ u(x) ≤ c(x) + γ(x)y(x) a.e. in Ω
u(x) ≤ e(x) a.e. in Ω.

(1.3)

We will investigate also another type of constraints that might be useful for ap-
plications. In this setting, A is a uniformly elliptic differential operator and Ω is a
bounded domain of IRN , N ≥ 2, with boundary Γ and outward unit normal ν. Precise
assumptions on and definitions of the quantities introduced above are formulated at
the end of this section.

The investigation of optimal control problems of this type is interesting for differ-
ent reasons: First of all, they exhibit nice theoretical properties. As we shall prove in
this paper, the Lagrange multipliers associated with optimal solutions can assumed
to be quite regular functions, while they are measures for pure state constraints. This
higher regularity allows for a better numerical analysis. For instance, second-order
sufficient optimality conditions can be discussed in a fairly complete way, [15], [14].
For pointwise state constraints, the associated theory is still partially open, cf. Casas
et al. [7], since it works only for small dimension of Ω. Moreover, we mention the
application of mixed constraints in the numerical analysis that is briefly addressed in
Section 7.

Constraints of this type are also interesting for problems, where the difference
between control and state has to be bounded (problems of bottleneck type). An
application to optimal heating has been given in [19].
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2 A. RÖSCH, F. TRÖLTZSCH

Our main issue is the existence of bounded and measurable Lagrange multipliers
associated with the constraints (1.3). We shall consider the control u in L∞(Ω) – this
is the natural space being obtained from the constraints. Therefore, the multipliers
should be expected in the dual space L∞(Ω)∗, a space of Radon measures.

However, it is known from similar problems for linear and nonlinear parabolic
problems that the Lagrange multipliers can be expected to be more regular under
natural assumptions [3], [4], [5], [18]. In fact, they can be constructed as functions
of L2(Ω) or even in L∞(Ω). Recently, the same result has been obtained for linear-
quadratic elliptic problems by convex duality theory, [17]. The elliptic case is more
difficult than the parabolic one due to the appearance of eigenvalues.

In principle, two ways are known to prove regularity. In [4], [5], the problems
are linearized at the optimal solution and the Lagrange multipliers are obtained by
the associated linear dual problem. Another technique has been suggested later in
[3]: An application of a Kuhn-Tucker theorem in Banach spaces delivers existence of
Lagrange multipliers in L∞(Ω)∗. In a second step, these multipliers are shown to be
bounded functions. This step is fairly technical.

Here, we follow again the idea of linearization and application of duality theory.
We think that this approach is more elementary, although not simple as well. More-
over, linearization and working with different norms and spaces seems to be interesting
on its own. Therefore, we devote a section to this issue. Later, we shall embed the
problem (1.1)–(1.3) into a more general class of problems in function spaces and prove
the regularity of Lagrange multipliers for this general class. The result for (1.1)–(1.3)
is obtained as a conclusion.

Assumptions. Ω ⊂ IRN , N ≥ 2 is a bounded Lipschitz domain. The functions
ψ = ψ(x, y, u) : Ω × IR2 → IR, d = d(x, y) : Ω × IR → IR, and ϕ, b : Γ × IR → IR are
measurable with respect to x for all fixed pairs (y, u) and differentiable with respect
to y and u for all fixed x. They satisfy the following conditions on boundedness and
Lipschitz continuity: There is a constant K > 0 and, for all M > 0, a constant
L(M) > 0 exists such that

∣

∣
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∣
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∣

∣

∣
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∣
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∣

∣

∣
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∣
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∣

∂ψ

∂u
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∂ψ

∂u
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∣

∣

∣

∣

≤ L(M)
{

|y1 − y2| + |u1 − u2|
}

for all ui, yi with |ui| + |yi| ≤ M , i = 1, 2, and for a.a. x ∈ Ω. The functions d, ϕ, b
satisfy the same assumptions with respect to x ∈ Ω or x ∈ Γ, respectively.

The functions β, γ, c, e : Ω → IR are bounded, measurable and nonnegative. To
avoid a trivial problem, we assume that β 6≡ 0. A is a uniformly elliptic differential
operator defined by

(Ay)(x) = −
N

∑

i,j=1

∂

∂xi

(aij(x)
∂

∂xj

y(x)) + c0(x)y(x)

with functions aij that belong to C0,1(Ω̄), satisfy the condition aij(x) = aji(x) and
the condition of uniform ellipticity

N
∑

i,j=1

aij(x)ξiξj ≥ δ0|ξ|
2 a.e. on Ω
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with some δ0 > 0 for all ξ ∈ IRN . We assume c0(x) ≥ 0 a.e. on Ω and ‖c0‖L2(Ω) > 0.
It holds ∂d/∂y(x, y) ≥ 0 and ∂b/∂y(x, y) ≥ 0 for all y ∈ IR and almost all x ∈ Ω and
Γ, respectively.

2. Lagrange multipliers and linearization. In (1.1)–(1.3), the state y is as-
sociated with u by a differentiable mapping G, y = G(u), so that y can be eliminated
from the problem. Then J(y, u) = J(G(u), u) = f(u), and the state y can also be
eliminated in (1.3). Details are worked out in the next section. Finally, we arrive at a
differentiable mathematical programming problem in Banach spaces that admits the
following form:

min f(u), g(u) ≤K 0, u ∈ C. (2.1)

Here, f : U → IR, g : U → Z are continuously Fréchet differentiable mappings defined
in real Banach spaces U , Z. Moreover, C ⊂ U is a convex set and K ⊂ Z is a
convex closed cone that defines a partial ordering ≤K in Z by z ≤K 0 ⇔ −z ∈ K. In
this sense, K can be considered as the nonnegative cone of Z, although the concrete
meaning can be quite different.

Assume that ū is a local solution of (2.1), i.e., for some r > 0 it holds f(ū) ≤ f(u)
for all u ∈ U with ‖u− ū‖U ≤ r, g(u) ≤K 0 and u ∈ C. A Lagrange multiplier is an
element of the dual cone K+ of K,

K+ = {µ ∈ Z∗ : µ(z) ≥ 0 ∀z ∈ K},

where Z∗ is the dual space of Z, the Banach space of all linear and continuous func-
tionals on Z.

Definition 2.1. A Lagrange multiplier associated with ū is an element µ ∈ K+

such that the variational inequality

f ′(ū)(u− ū) + µ(g′(ū)(u− ū)) ≥ 0 ∀u ∈ C (2.2)

and the complementary slackness condition

µ(g(ū)) = 0 (2.3)

hold true.

Remark. (2.2) might be written as

〈f ′(ū) + g
′(ū)∗µ, u − ū〉 ≥ 0 ∀u ∈ C

with the adjoint operator g′(ū)∗ and the pairing 〈·, ·〉 between Z∗ and Z. We avoid g′(ū)∗

since it might be fairly complicated to find its concrete form in applications. Moreover, we

aim at finding µ in a more ”regular” subspace of Z∗.

In our applications, Z is of type L∞(Ω) and K is the associated nonnegative cone.
It has a nonempty interior int K. Therefore, we are justified to require the following
constraint qualification (regularity of ū):

There is a u0 ∈ C such that

−[g(ū) + g′(ū)(u0 − ū)] ∈ intK. (2.4)

Under this assumption, a Lagrange multiplier µ ∈ Z∗ exists, since (2.4) is equivalent
to the well-known regularity condition of Zowe and Kurcyusz [23], see [13] and [20].
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The condition of Zowe and Kurcyusz is sufficient for the existence of µ ∈ Z∗,
[23]. However, we shall apply another conclusion of (2.4) that was used in [23] as an
auxiliary result: (2.4) permits to view ū as the solution of the linearized problem.

Definition 2.2. (Linearizing cone). Let z̄ ∈ K and ū ∈ C.

C(ū) = {v ∈ U : v = λ (u− ū), λ ≥ 0, u ∈ C}

K(z̄) = {w ∈ Z : w = λ (z − z̄), λ ≥ 0, z ∈ K}.

The set

L(ū) = {v ∈ U : v ∈ C(ū), g′(ū)v ∈ −K(−g(ū))}

is said to be the linearizing cone of the feasible set at ū.
Lemma 2.3. Under the regularity assumption (2.4), it holds

f ′(ū) v ≥ 0 ∀v ∈ L(ū). (2.5)

For this result of [23] we refer to [20], Theorem 1.2.1 and condition (2.2), [20]. The
reason for (2.5) is that (2.4) ensures L(ū) ⊂ T (ū), where T (ū) is the so-called tangent
cone.

We re-write (2.5) in a more convenient form. Obviously,

L(ū) = {v ∈ U : v = α (u− ū), g′(ū) v + β g(ū) ≤K 0, u ∈ C, α ≥ 0, β ≥ 0}.

Taking α = β = 1, we obtain from (2.5)

f ′(ū)(u− ū) ≥ 0 (2.6)

for all u ∈ C with

g(ū) + g′(ū)(u− ū) ≤K 0. (2.7)

Theorem 2.4. If ū is a local solution of the problem (2.1) that satisfies the con-
straint qualification (2.4), then ū is a (global) solution of the linearized programming
problem

min f ′(ū)u, g(ū) + g′(ū)(u− ū) ≤K 0, u ∈ C. (2.8)

Proof. This follows from re-writing (2.6) in the form f ′(ū)u ≥ f ′(ū)ū, together
with (2.7).

Theorem 2.5. Let the assumptions of Theorem 2.4 be satisfied. Then a Lagrange
multiplier µ ∈ K+ associated with ū exists. It is also a Lagrange multiplier for ū,
considered as the solution of (2.8). Conversely, let ū solve (2.8) and let µ be any
Lagrange multiplier for ū in (2.8). Then ū and µ together satisfy the first-order
necessary conditions for problem (2.1).

Proof. Define f̃(u) = f ′(ū)u, g̃(u) = g(ū) + g′(ū)(u− ū). Then we have for all u

f̃ ′(u) ≡ f ′(ū), g̃′(u) ≡ g′(ū), g̃(ū) = g(ū).

The first statement of the theorem follows from [23], since the regularity condi-
tion (2.4) implies the one of Zowe and Kurcyusz. The other direction is shown
as follows: Let µ be any Lagrange multiplier associated with ū as a solution of
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(2.8). By the associated complementarity condition and the relations above, we get
µ(g(ū)) = µ(g̃(ū)) = 0. Moreover,

f ′(ū)(u− ū) + µ(g′(ū)(u− ū)) = f̃ ′(ū)(u− ū) + µ(g̃′(ū)(u− ū)) ≥ 0 ∀u ∈ C.

Therefore, (2.2) and (2.3) are satisfied so that µ is a Lagrange multiplier for (2.1).
In view of this, we may concentrate on the linearized problem (2.8) to find a

Lagrange multiplier. Why this can be helpful? There are two reasons for: (2.8) can
be considered in a space with coarser topology, where f and g are not differentiable.
Moreover, we shall be able to use cones of nonnegative functions with empty interior
such as (L2(Ω))+.

3. Transformation and linearization of the control problem. In this sec-
tion, we convert the elliptic optimal control problem (1.1)–(1.3) to a mathematical
programming problem and consider its linearization, together with an associated dual
problem.

Theorem 3.1. Under the general assumptions, for all u ∈ Lp(Ω), p > N/2,
the equation (1.2) has a unique solution y = y(u) ∈ H1(Ω) ∩ C(Ω̄) =: Y . The
associated control-to-state mapping G : u 7→ y is continuously Fréchet-differentiable.
Its derivative G′(ū) at ū ∈ Lp(Ω) is given by G′(ū)u = v, where v solves the linearized
equation

(Av)(x) + dy(x, ȳ(x))v(x) = β(x)u(x) in Ω

∂νv(x) + by(x, ȳ(x))v(x) = 0 on Γ
(3.1)

and ȳ = G(ū).
This result is meanwhile standard. Existence of y ∈ L∞(Ω) follows for Lipschitz

domains by a truncation technique and the Stampacchia method as in Casas [6] or
Alibert and Raymond [1]. In [6], the continuity of y was still shown for C1,1-domains.
In [1], continuity has been deduced from a result by Murthy and Stampacchia [12]
that holds in Lipschitz domains. The reader might also consult the monography [21],
where these ideas are presented quite detailed in the Sections 4.1.3 and 7.1.2.

In what follows, we consider G and G′(ū) as operators with range in C(Ω̄) al-
though their range is actually contained also in H1(Ω). Inserting y = G(u) in J , the
elliptic problem (1.1)–(1.3) is transformed to

min f(u) := J(G(u), u) (3.2)

subject to

0 ≤ u(x) ≤ c(x) + γ(x)(G(u))(x)
u(x) ≤ e(x)

(3.3)

for almost all x ∈ Ω. If we consider u as a function of Lp(Ω), then 0 ≤ u(x) ≤ e(x)
and the assumption e ∈ L∞(Ω) guarantee u ∈ L∞(Ω). Therefore, from now on, we
fix U = L∞(Ω), Z = (L∞(Ω))2, K = (L∞(Ω)+)2 and we define g : U → Z by

(g(u))(x) =

(

u(x) − c(x) − γ(x)(G(u))(x)
u(x) − e(x)

)

.

Moreover, we define C = L∞(Ω)+. Then (1.1)–(1.3) is equivalent to

min f(u), g(u) ≤K 0, u ∈ C. (3.4)
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Let ū be a local solution of (3.4). ”Local” is related to the topology of L∞(Ω). To
satisfy the regularity condition, we must assume the existence of u0 ∈ L∞(Ω) such
that (2.4) is fulfilled. We require here a stronger condition and assume that u0 = 0
satisfies (2.4). This means that ε > 0 exists such that

ε ≤ c(x) + γ(x)ȳ(x) − γ(x)(G′(ū)ū)(x)

ε ≤ e(x) (3.5)

is satisfied almost everywhere in Ω. This assumption appears to be natural in some
sense: the smallest function – namely u0(x) – should satisfy the upper bounds strictly.
Since some monotonicity follows from the maximum principle for elliptic equations,
this is reasonable. The next result is obtained as a direct conclusion of Theorem 2.4.

Lemma 3.2. If ū ∈ L∞(Ω) is a local solution of the optimal control problem
(1.1)–(1.3) and the regularity condition (3.5) is satisfied with some ε > 0, then ū is
also a solution of the linear optimal control problem

min f ′(ū)u

subject to u ∈ L∞(Ω) and

u(x) ≤ c(x) + γ(x)(G(ū))(x) + γ(x)(G′(ū)(u− ū))(x)

u(x) ≤ e(x)

u(x) ≥ 0. (3.6)

Transforming back this problem to an elliptic control problem, we arrive at

min
{

∫

Ω

ψy(x, ȳ(x), ū(x))y(x) dx +

∫

Γ

ϕy(x, ȳ(x))y(x) ds(x)

+

∫

Ω

ψu(x, ȳ(x), ū(x))u(x) dx
}

(3.7)

subject to the linearized equation (3.1) and

0 ≤ u(x) ≤ c(x) + γ(x)ȳ(x) + γ(x)y(x) − γ(x)(G′(ū)ū)(x)
u(x) ≤ e(x).

(3.8)

We introduce the fixed part of the right-hand side by

c̄(x) = c(x) + γ(x)ȳ(x) − γ(x)(G′(ū)ū)(x).

Moreover, we introduce an adjoint state p̂ ∈ H1(Ω) ∩ C(Ω̄) by

(A p̂)(x) + dy(x, ȳ(x))p̂(x) = ψy(x, ȳ(x), ū(x)) in Ω

∂ν p̂(x) + by(x, ȳ(x))p̂(x) = ϕy(x, ȳ(x)) on Γ.
(3.9)

Then it holds
∫

Ω

ψy(x, ȳ(x), ū(x))y(x) dx +

∫

Γ

ϕy(x, ȳ(x))y(x) ds(x) =

∫

Ω

β(x)p̂(x)u(x) dx.

This well known relation is easily obtained from the weak formulation of the equations
(3.1) and (3.9), respectively. With these notations, the linear programming problem
(3.6) becomes equivalent to the primal problem

min

∫

Ω

a(x)u(x) dx (3.10)
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subject to

u(x) ≤ c̄(x) + (Su)(x)

u(x) ≤ e(x)

u(x) ≥ 0 (3.11)

with

a = β p̂+ ψu(·, ȳ, ū)

Su = γ G′(ū)u.

By our assumptions, it holds a ∈ L∞(Ω), and S is a linear continuous operator
in L∞(Ω). The unknown function is u ∈ L∞(Ω). However, we also know that
‖Su‖L2(Ω) ≤ c‖u‖L2(Ω) so that we can consider S as a linear continuous operator
in L2(Ω). Let us view S in this way and consider the linear programming problem
(3.10)–(3.11) for u ∈ L2(Ω) with all inequalities defined in L2(Ω) as well. Notice that
this does not change the feasible set, since 0 ≤ u ≤ e implies u ∈ L∞(Ω). Therefore,
ū solves the linear problem (3.11) in L2(Ω).

4. The dual linear problem. Let us now establish the dual problem associated
with the primal problem (3.10)–(3.11). In what follows, we denote by (· , ·) the inner
product in L2(Ω), and S∗ : L2(Ω) → L2(Ω) denotes the adjoint operator to S. By
Lagrange duality, the dual problem is obtained as follows: (3.10)–(3.11) is equivalent
to

min
u∈L2(Ω)

{

max
µ∈(L2(Ω)+)3

{(a, u) − (u, µ1) + (u− Su− c̄, µ2) + (u− e, µ3)}
}

,

where µ = (µ1, µ2, µ3). The dual problem is obtained by reversing the order of min
and max,

max
µ∈(L2(Ω)+)3

{

(−c̄, µ2) − (e, µ3) + min
u∈L2(Ω)

{(a− µ1 + µ2 − S∗µ2 + µ3, u)}
}

.

The minimum is −∞, if 0 6= a − µ1 + µ2 − S∗µ2 + µ3. This is meaningless for the
maximization, hence we obtain the dual problem as

max −

∫

Ω

(c̄(x)µ2(x) + e(x)µ3(x)) dx

subject to
µ2 + µ3 = −a+ µ1 + S∗µ2

µi ≥ 0, i = 1, 2, 3.



















(4.1)

We show that (4.1) is solvable. Moreover, the problems (3.10)–(3.11) and (4.1) turn
out to be in duality - they have the same optimal values. Preparing this discussion, we
finish this section by computing S∗. This operator is defined by (v , Su) = (S∗v , u)
∀u, v ∈ L2(Ω). We recall that Su = γG′(ū)u = γy, where y is the solution of (3.1).
Therefore

(v , Su) = (v , γy) = (γv , y) = (βq , u),

where q is the solution of the adjoint equation

(Aq)(x) + dy(x, ȳ(x))q(x) = γ(x)v(x) in Ω
∂νq(x) + by(x, ȳ(x))q(x) = 0 on Γ.

(4.2)
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This follows again in a standard way from the weak formulation of the equations (3.1),
(4.2). Therefore, S∗ is given by

(S∗v)(x) = β(x)q(x), (4.3)

where q ∈ H1(Ω) is the solution of (4.2).

5. The duality relation. Here, we discuss the equality of the optimal values
for the primal problem (3.10)–(3.11) and its dual (4.1).

Theorem 5.1. If c̄(x) ≥ 0 and e(x) ≥ 0 hold a.e. in Ω, then the minimum of
(3.10)–(3.11) is equal to the supremum of (4.1).

Proof. We sketch the proof for convenience, since it is standard for continuous
linear programming problems. We refer, for instance, to [8], [10], [22], [9], to the
monography [2] and – in the context of elliptic PDEs – to the recent paper [17].

(i) Define the convex cone E,

E = {(α, d1, d2) ∈ IR × L2(Ω)2| ∃u ∈ L2(Ω), u ≥ 0, u ≤ d1 + Su, u ≤ d2, (a, u) ≤ α}.

We show that E is closed. In fact, if (αn, d1,n, d2,n) → (α, d1, d2) in IR × L2(Ω)2 for
n→ ∞, then there are un ∈ L2(Ω) such that

0 ≤ un ≤ d2,n ∀n = 1, 2, ...

Therefore, the sequence (un)∞n=1 is bounded in L2(Ω). By weak compactness, we can
assume un ⇀ u in L2(Ω). The weak continuity of S yields Sun ⇀ Su in L2(Ω).
Finally, convexity ensures weak closedness, hence in the limit

0 ≤ u ≤ d2, u ≤ d1 + Su, (a, u) ≤ α

holds. This means that (α, d1, d2) is in E.
(ii) Let ᾱ denote the minimum for (3.10)–(3.11). Clearly, the primal problem

(3.10)–(3.11) has a solution, i.e. its infimum is attained. This follows from weak
compactness, since 0 ≤ u ≤ e gives boundedness of the feasible set. By definition,
(ᾱ− 1

n
, c̄, e) 6∈ E ∀n ∈ IN. Therefore, the element (ᾱ − 1

n
, c̄, e) can be separated from

the set E by a closed hyperplane in IR×L2(Ω)2: There are (βn, c
∗
n, e

∗
n) ∈ IR×L2(Ω)2

such that (βn, c
∗
n, e

∗
n) 6= (0, 0, 0) and

βn(ᾱ−
1

n
) + (c̄, c∗n) + (e, e∗n) < βnα+ (d1, c

∗

n) + (d2, e
∗

n) (5.1)

holds for all (α, d1, d2) ∈ E. Inserting (ᾱ, c̄, e) in the right-hand side, it follows βn > 0
and w.l.o.g. βn = 1. We deduce that µ2,n := c∗n and µ3,n := e∗n satisfy the constraints

µ2 + µ3 ≥ −a+ S∗µ2

µi ≥ 0, i = 2, 3. (5.2)

To confirm this, insert d1 = u− Su, d2 = u, and α = (a , u) in the right-hand side of
(5.1) for arbitrary u ≥ 0. Denote its (fixed) left-hand side by γn. Then

γn < (a+ µ2,n + µ3,n − S∗µ2,n , u)

must hold for all u ≥ 0. This implies a + µ2,n + µ3,n − S∗µ2,n ≥ 0, i.e. the upper
inequality of (5.2). Inserting α = 0, u = 0, d2 = 0, and arbitrary d1 ≥ 0, we obtain

γn < (d1 , µ2,n) ∀ d1 ≥ 0
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and hence µ2,n ≥ 0. In the same way, µ3,n ≥ 0 is shown.
Setting µ1 = µ2 + µ3 + a − S∗µ2, (5.2) becomes equivalent to the constraints of

(4.1). Moreover, inserting above (α, d1, d2) = (0, 0, 0) ∈ E

−

∫

Ω

(c̄(x)µ2,n(x) + e(x)µ3,n(x)) dx > ᾱ−
1

n

is obtained for every n ∈ IN. It is true in general that the dual supremum σ̄ is less or
equal the primal minimum ᾱ, cf. (6.13), hence

ᾱ ≥ σ̄ > ᾱ−
1

n
.

Now, n→ ∞ yields ᾱ = σ̄, the statement of the theorem.
Remark. The main point in the proof was the closedness of E. It was deduced

from the boundedness of the set {u ∈ L2(Ω)| 0 ≤ u ≤ en}.

6. Solvability of the dual problem. To prove existence for the dual problem,
we rely on the nonnegativity and certain smoothing properties of S and S∗.

Lemma 6.1. S and S∗ are nonnegative, i.e.

u ≥ 0 ⇒ Su ≥ 0 a.e. in Ω.

This follows from G′(ū) ≥ 0, a consequence of comparison principles for linear elliptic
equations: Testing the linear elliptic equation (3.1) for nonnegative data u by v−, the
negative part v− of v, v = G′(ū)u is seen to vanish. Here, β ≥ 0, γ ≥ 0 is used.

By their definition, S and S∗ are linear and continuous operators in L2(Ω). We
shall estimate them in different Lp-norms for 1 ≤ p ≤ ∞. To match their domain
L2(Ω), we have to consider the intersetion of Lp(Ω) with L2(Ω) in the estimates below.
For instance, we know from Theorem 3.1.

‖Su‖L∞(Ω) ≤ cS ‖u‖Lp(Ω) ∀u ∈ Lp(Ω) ∩ L2(Ω), p ≥ N/2.

Lemma 6.2. With constants cS , δ > 0, the following estimates are fulfilled:

‖S∗v‖L∞(Ω) ≤ cS ‖v‖Lp(Ω) ∀v ∈ Lp(Ω) ∩ L2(Ω), p > N/2. (6.1)

‖S∗v‖Lp+δ(Ω) ≤ cS ‖v‖Lp(Ω) ∀v ∈ Lp(Ω) ∩ L2(Ω), 1 ≤ p ≤ N/2. (6.2)

Proof. (i) First estimate: S∗v is given by formula (4.3), where q is obtained as the
solution of the adjoint elliptic equation (4.2). The mapping v 7→ q is continuous from
Lp(Ω) to L∞(Ω). This follows from Theorem 3.1 with γ substituted for β. Therefore,
the estimate ‖S∗v‖L∞(Ω) = ‖β q‖L∞(Ω) ≤ cS ‖v‖Lp(Ω) follows immediately.

(ii) Some continuity properties: To avoid confusion of operators and their asso-
ciated spaces, let us first mention that the solution mapping u 7→ v for equation (3.1)
is linear and continuous from (H1(Ω)∗) to H1(Ω). Let us call this operator S. In this
sense, S is the restriction of S to L2(Ω) considered with range in L2(Ω). Define, for
p > N/2, Sp : Lp(Ω) → L∞(Ω) as the restriction of S to Lp(Ω). By Theorem 3.1, this
operator is continuous. For arbitrary v ∈ L1(Ω), the mapping

u 7→

∫

Ω

v (Sp u) dx
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defines a functional ϕ ∈ Lp(Ω)∗ = Lp′

(Ω). The mapping v 7→ ϕ is obviously continu-
ous from L1(Ω) to Lp′

(Ω). We denote this mapping by S⊗
p . It is the restriction of S∗

p

to L1(Ω). So we have

‖S⊗

p v‖Lp′(Ω) ≤ c1 ‖v‖L1(Ω) ∀v ∈ L1(Ω).

This estimate holds in particular for all v ∈ L2(Ω), and for such functions we have
S⊗

p v = S∗v. In fact, we find for all u ∈ L∞(Ω) and v ∈ L2(Ω)

∫

Ω

(S⊗

p v)u dx =

∫

Ω

v (Sp u) dx = (v, Spu) = (v, Su) = (S∗v, u).

Since this holds for all u ∈ L∞(Ω), it must hold S⊗
p v = S∗v for all v ∈ L2(Ω).

Therefore, the boundedness of S⊗
p extends to S∗,

‖S∗v‖Lp′(Ω) ≤ c1‖v‖L1(Ω) ∀v ∈ L2(Ω).

This shows that S∗ can be extended to a continuous linear operator from L1(Ω) to
Lp′

(Ω). In fact, it is known from Alibert and Raymond [1] or Casas [6] that the
solution operator of the adjoint equation (4.2) is linear and continuous from L1(Ω) to
W 1,σ(Ω) for all σ < N/(N − 1). However, we do not rely on this deep result. We just
use the information that is available now:

We know in particular that S∗ is continuous from Lp0(Ω) to Lp1(Ω) and from
Lq0(Ω) to Lq1(Ω) for p0 = N , p1 = 2N , q0 = 1, q1 = p′ > 1. It is now fairly clear that
the second estimate can be obtained by interpolation.

(iii) Second estimate: Define, for θ ∈ [0, 1], rj = rj(θ) by

1

rj
=

1 − θ

pj

+
θ

qj
, j = 0, 1.

Then the classical interpolation theorem in Triebel [16], 1.18.7, Thm. 1, ensures
that S∗ is continuous from Lr0(Ω) to Lr1(Ω). From now on, we only need simple
calculations. Inserting the concrete values for pj , qj , we find

1

r0(θ)
=

1 − θ

N
+ θ,

1

r1(θ)
=

1 − θ

2N
+
θ

p′
.

Therefore,

1

r0(θ)
−

1

r1(θ)
=

1 − θ

N
+ θ −

1− θ

2N
−
θ

p′
=

1

2N
+ θ (1 −

1

2N
−

1

p′
).

The difference 1/r0(θ) − 1/r1(θ) is a linear function of θ. It admits the values 1/2N
and 1 − 1/p′ > 0 for θ = 0 and θ = 1, respectively, thus

1

r0(θ)
−

1

r1(θ)
≥ δ > 0

holds with δ = min(1/2N, 1 − 1/p′). After multiplication with r0r1 > 1 we get
r1(θ) − r0(θ) ≥ δr0r1 ≥ δ for all θ ∈ [0, 1], hence r1 ≥ r0 + δ. Therefore, the second
estimate holds true for all r0 = p ∈ [1, N ], in particular for p ∈ [1, N/2].
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Theorem 6.3. If the regularity condition (3.5) is satisfied, then the dual problem
(4.1) has a solution µ̄ ∈ (L∞(Ω))3.

Proof. (i) Boundedness in L1: We know that the supremum ᾱ in (4.1) is finite.
Let (µi,n)∞n=1 ∈ L2(Ω), i = 1, 2, 3, be sequences such that the constraints of (4.1) are
satisfied and

−(c̄ , µ2,n) − (e , µ3,n) → ᾱ

for n→ ∞. The regularity condition (3.5) gives c̄ ≥ ε, e ≥ ε a.e. on Ω, hence

−(c̄, µ2,n) − (e, µ3,n) ≤ −ε (‖µ2,n‖L1(Ω) + ‖µ3,n‖L1(Ω)).

Therefore, the L1-norm of µ2,n and µ3,n is bounded. The boundedness of µ1,n in
L1(Ω) can now be obtained from the constraints of (4.1).

(ii) Boundedness in L1+δ: The constraints of (4.1) are equivalent to the con-
straints (5.2), i.e., µ2 ≥ 0, µ3 ≥ 0, and

µ2 + µ3 ≥ −a+ S∗µ2.

In view of this, we have

µ2,n + µ3,n ≥ −a+ S∗µ2,n. (6.3)

By Lemma 6.2 and the L1-boundedness of the sequence µ2,n, the sequence (S∗µ2,n)
is bounded in the reflexive Banach space L1+δ(Ω), hence the right-hand side of (6.3)
is bounded in L1+δ(Ω). Now, we re-define µ2,n, µ3,n as follows: We take

µ̂2,n(x) + µ̂3,n(x) =

{

0 where − a(x) + (S∗µ2,n)(x) ≤ 0
−a(x) + (S∗µ2,n)(x) where − a(x) + (S∗µ2,n(x)) > 0

(6.4)
and require 0 ≤ µ̂2,n ≤ µ2,n and 0 ≤ µ̂3,n ≤ µ3,n. Certainly, this is possible. Then,

|µ̂2,n(x)| + |µ̂3,n(x)| ≤ |a| + |(S∗µ2,n)(x)|, a.e. on Ω,

hence these new sequences are bounded in L1+δ(Ω). Moreover, µ̂2,n, µ̂3,n ≥ 0 and
µ̂2,n ≤ µ2,n together with S∗ ≥ 0 shows

µ̂2,n + µ̂3,n ≥ −a+ S∗µ2,n ≥ −a+ S∗µ̂2,n,

so that the new functions are feasible. They have a larger or equal objective value
than the pair µ2,n, µ3,n since c̄ ≥ 0 and e ≥ 0. In this way, we have found a sequence
with better objective value that is bounded in the reflexive Banach space L1+δ(Ω).
By selecting weakly convergent subsequences we can assume in L1+δ(Ω) that

µ̂2,n ⇀ µ2, µ̂3,n ⇀ µ3, n→ ∞

where µ2, µ3 ∈ L1+δ(Ω) satisfy all constraints of the dual problem. Moreover, the
functions are optimal, and

µ1 := µ2 + µ3 + a− S∗µ2.

is the associated optimal µ1.
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(iii) Solution in (L∞(Ω))3: We have found an optimal triplet in (L1+δ(Ω))3 that
satisfies the nonnegativity constraints and

µ2 + µ3 ≥ −a+ S∗µ2. (6.5)

By the smoothing property (6.2) of S∗, the function S∗µ2 belongs to L1+2δ(Ω). Apply-
ing the technique of (ii), we find µ̂2 ≥ 0, µ̂3 ≥ 0 which satisfy all constraints. Moreover,
they belong to L1+2δ(Ω) and have the same objective value (clearly, the value cannot
improved further). Applying this bootstrapping technique, we arrive after finitely
many steps to the case where 1+kδ > N/2. In the next step S∗ : L1+kδ(Ω) → L∞(Ω)
is used to have µ̂i ∈ L∞(Ω), i = 1, 2, 3.

Theorem 6.4. Suppose that ū is a local solution of the optimal control problem
(1.1)–(1.3) that satisfies the regularity condition (3.5). Then there exist Lagrange
multipliers µi ∈ L∞(Ω), i = 1, 2, 3, satisfying with ū, ȳ, p̄ the following optimality
system that consists of the constraints (1.2)–(1.3), the adjoint equation

(Ap)(x) + dy(x, ȳ(x))p(x) = ψy(x, ȳ(x), ū(x)) − γ(x)µ2(x) in Ω
∂νp(x) + by(x, ȳ(x))p(x) = ϕy(x, ȳ(x)) on Γ

(6.6)

and, for almost all x ∈ Ω, the conditions

ψu(x, ȳ(x), ū(x)) + β(x)p(x) + µ3(x) + µ2(x) − µ1(x) = 0 (6.7)

µi(x) ≥ 0 (6.8)

(ū(x) − e(x))µ3(x) = 0 (6.9)

(ū(x) − γ(x)ȳ(x) − c(x))µ2(x) = 0 (6.10)

ū(x)µ1(x) = 0. (6.11)

Proof. We consider the optimal solutions µi ∈ L∞(Ω) of the dual problem (4.1)
and show that they fulfill the required properties. First, we mention

(a , ū) ≥ (a , ū) + (ū− c̄− Sū , µ2) + (ū− e , µ3) (6.12)

= (a+ µ2 + µ3 − S∗µ2 , ū) − (c̄ , µ2) − (e , µ3)

≥ −(c̄ , µ2) − (e , µ3), (6.13)

since ū, µ2, µ3 ≥ 0 and the inequalities (3.11), (6.5) hold true. From the duality
relation proved in Theorem 5.1,

(a , ū) = −(c̄ , µ2) − (e , µ3),

we deduce that the inequalities (6.12), (6.13) must hold as equations, hence

0 = (ū− c̄− Sū , µ2) = (ū− e , µ3) = (a+ µ2 + µ3 − S∗µ2 , ū). (6.14)

By definition, c̄ = c+ γ ȳ − Sū, hence (6.14) yields
∫

Ω

(ū− c− γ ȳ)µ2 dx =

∫

Ω

(ū− e)µ3 dx = 0.

Thanks to ū− c− γȳ ≤ 0, ū ≤ e and the nonnegativity of µ2, µ3 this is equivalent to
(6.9)–(6.10). Inserting µ1 = a+ µ2 + µ3 − S∗µ2, we obtain from (6.14)

∫

Ω

ū µ1 dx = 0.
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The nonnegativity of ū and µ1 implies (6.11). By definition, it holds

a+ µ2 + µ3 − µ1 − S∗µ2 = 0. (6.15)

The representation (4.3) for S∗ permits to write

S∗µ2 = β q, (6.16)

where q solves the adjoint equation (4.2) with right-hand side γµ2. Moreover

a = ψu(ȳ, ū) + β p̂, (6.17)

where p̂ is the solution of (3.9). Obviously, (6.15)–(6.17) are equivalent to (6.6)–(6.7).
The complete system of necessary conditions is shown.

7. An application to pointwise state constraints. Consider the optimal
control problem (1.1)–(1.2) subject to the pointwise constraints

0 ≤ u(x) (7.1)

0 ≤ c(x) + y(x). (7.2)

We know y ∈ C(Ω̄), hence a Lagrange multiplier µ2 associated with (7.2) is in general
a regular Borel measure provided that c ∈ C(Ω̄), cf. Casas [6]. One way to deal with
(7.2) numerically, is the Lavrentiev type regularization

−λu(x) ≤ c(x) + y(x) (7.3)

with λ > 0 being small [11].
For the results of this section, we assume that the control problem (1.1), (1.2),

(7.1), (7.3) has a locally optimal solution ū ∈ L∞(Ω). Notice that this boundedness
does not follow from the constraints (7.1), (7.3).

We do not consider here the pass to the limit λ ↓ 0. However, we are able to show
that, for λ > 0 fixed, the associated Lagrange multiplier µ2 can be taken as a function
from L∞(Ω) again. For this result, the theory of the preceding sections needs a few
modifications. To simplify the notation, we write µ := µ2 below. Recall that now
γ(x) = 1, S = G′(ū) and therefore c̄ = c+ ȳ − S ū.

The state constraints in (7.2) are only meaningful, if c 6≥ 0, since otherwise u ≥ 0
would imply c+ y ≥ 0. Therefore, we cannot assume c̄ ≥ 0 now, if we are interested
in taking λ small (consider, for instance, the linear case, where ȳ = Sū and hence
c = c̄).

Our approach is based on linearization and needs the regularity condition (2.4).
For the case of the constraints (7.1),(7.3), this condition amounts to the existence of
u0 ∈ L∞(Ω) and ε > 0 such that

ε ≤ u0(x), ε− λu0(x) ≤ c̄(x) + S u0(x) (7.4)

for almost all x ∈ Ω. It is easy to see that this condition is satisfied for the function
u0(x) ≡ c0, if c0 is taken sufficiently large. Indeed, for c0 → ∞, the term −λ c0 in (7.4)
tends to −∞, while S c0 remains nonnegative. Moreover, c̄ is bounded. Therefore,
(7.4) is satisfied for sufficiently large c0, and we are justified to linearize at any ū.

The associated linear programming problem for a local solution of (1.1)–(1.2),
(7.2), (7.3) which replaces (3.10)–(3.11), is now

min (a , u)

−λu ≤ c̄+ Su (7.5)

u ≥ 0, u ∈ L∞(Ω).
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We know that ū is a solution of that problem, since ū is supposed to be a local
solution of the optimal control problem in L∞(Ω) and the regularity condition is
satisfied. However, this information is related to the space L∞(Ω) that is not suitable
to obtain regular Lagrange multipliers. Therefore, we show that the optimal value
of the problem (7.5) does not increase, if the feasible set is extended from L∞(Ω) to
Lp(Ω) with p > N/2.

Lemma 7.1. The optimal value of problem (7.5) does not change, if its feasible set
is extended to all u ∈ Lp(Ω), p > max{2, N/2}, satisfying the associated constraints.

Proof. Let an arbitrary u ∈ Lp(Ω) be given such that u ≥ 0 and

−λu ≤ c̄+ S u a.e. in Ω. (7.6)

We construct a sequence of functions un ∈ L∞(Ω) such that un satisfies (7.6) and
un → u in Lp(Ω) as n→ ∞. This implies the statement of the Lemma.

By the smoothing property (6.2) of S, we know c̄+ S u ∈ C(Ω̄). Define

K =
1

λ
‖c̄+ S u‖L∞(Ω)

and introduce the ”cut-off” function

vn(x) =

{

n, u(x) > n
u(x), u(x) ≤ n.

This function is bounded, measurable and nonnegative. Then vn → u holds in Lp(Ω)
as n→ ∞. For all n ≥ K we have

−λ vn ≤ c̄+ S u a.e. in Ω.

This inequality is trivial for all x with u(x) ≤ n, since vn(x) = u(x) holds there. In
the remaining points, it holds

−λ vn(x) = −λn ≤ −λK = −‖c̄+ S u‖L∞(Ω) ≤ c̄(x) + (S u)(x).

In view of vn → u, the continuity of S from Lp(Ω) to C(Ω̄) yields

−λ vn ≤ c̄+ S vn + εn

with εn ↓ 0 as n→ ∞. For sufficiently large constant c0 > 0, we have

−λ c0 ≤ c̄+ S c0 − 1.

For all t ∈ [0, 1], the convex combination un := (1 − t) vn + t c0 is nonnegative and
satisfies

−λun ≤ c̄+ S un + (1 − t) εn − t.

We take t = tn = εn/(1 + εn). Then (1 − tn) εn − tn = εn − tn (1 + εn) = 0, thus

−λun ≤ c̄+ S un,

hence un satisfies the linearized constraints. Moreover, it holds un → u, n→ ∞.
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Lemma 7.1 ensures that ū is also a solution of the extended primal problem

min (a , u)

−λu ≤ c̄+ Su (7.7)

u ≥ 0, u ∈ Lp(Ω).

The dual problem to (7.7) is

max (−c̄ , µ)

a ≥ λµ+ S∗µ (7.8)

µ ≥ 0, µ ∈ Lp′

(Ω),

where a function µ ∈ Lp′

(Ω) is to be found. We have already discussed that S⊗
p

maps L1(Ω) to Lp′

(Ω), hence S∗ can be extended to a continuous operator in Lp′

(Ω).
Moreover, S∗ is nonnegative. We shall see that the constraints above imply µ ∈
L∞(Ω), hence µ ∈ L2(Ω) so that the notation S∗ in (7.8) is justified.

We show that both problems admit the same optimal values and that (7.8) has a
solution.

Lemma 7.2. The function a is nonnegative a.e. on Ω.
Proof. As the regularity condition is always satisfied here, Theorem 2.4 shows

that ū solves the linearized problem (7.5). Moreover, Lemma 7.1 ensures ū to be a
solution of the extended problem (7.7), too. Therefore, (7.7) must have at least the
optimal solution ū. For all u ≥ 0, ū+ u satisfies the constraints of (7.5): Obviously,
we have ū+ u ≥ 0. Moreover,

−c̄ ≤ λ ū+ Sū ≤ λ(ū+ u) + S(ū+ u)

follows from λ ≥ 0 and S ≥ 0. Assume that a(x) < 0 on M ⊂ Ω, where M has
positive measure. Take

u(x) =

{

1 on M
0 on Ω \M.

Then ū+ u is feasible, but (a , ū+ u) < (a , ū) holds in contrary to the optimality of
ū.

Theorem 7.3. The dual problem (7.8) admits a solution. Moreover, the maxi-
mum of the primal problem (7.5) is equal to the minimum of (7.8). The solution of
(7.8) is bounded and measurable and is a Lagrange multiplier associated with (7.2).

Proof. (i) Solvability of (7.8): We know from Lemma 7.2 that a is nonnegative.
Therefore, µ = 0 is feasible for (7.8). The feasible set is bounded in L∞(Ω), since
µ ≥ 0 implies S∗µ ≥ 0 and hence

a ≥ λµ+ S∗µ ≥ λµ ≥ 0.

Now the existence of an optimal solution of (7.8) follows by weak∗-compactness.
(ii) Equality of optimal values: Re-write (7.8) in the form of a primal problem,

namely

min (c̄ , µ2)

λµ+ S∗µ ≤ a (7.9)

µ ≥ 0.
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Its dual has the form

max (−a , u)

λu+ Su ≥ −c̄ (7.10)

u ≥ 0.

(If B is a linear continuous operator, then the general rule for establishing dual prob-
lems is as follows: If the primal problem is to minimize (c , u) subject to B u ≤ a and
u ≥ 0, then is dual is to maximize (−a , µ) subject to B∗ µ ≥ −c and µ ≥ 0.)

The optimal values of (7.9) and (7.10) are equal. To show this, we follow the
same steps as in the proof of Theorem 5.1 We introduce the cone

E := {(α, d) ∈ IR × Lp′

(Ω)| ∃µ ≥ 0 : λµ+ S∗µ ≤ d, (c̄, µ) ≤ α}.

Again, E is closed (boundedness of a sequence {αn, dn} in IR × Lp′

(Ω) implies that
the associated sequence {µn} is bounded). Moreover, the element (ᾱ − 1

k
, c̄) does

not belong to E for all k ∈ IN. This element can be separated from E by a closed
hyperplane. Continuing as in the proof of Theorem 5.1 (here, the term e does not
occur) the equality of the optimal values of (7.9) and (7.10) is obtained. By changing
the signs, the same holds for the problems (7.8) and (7.7). Lemma 7.1 completes the
proof. It follows as in Section 6 that the solution µ ∈ L∞(Ω) of (7.8) is a Lagrange
multiplier associated with the mixed pointwise control-state constraint (7.2).

REFERENCES

[1] J.-J. Alibert and J.-P. Raymond, Boundary control of semilinear elliptic equations with

discontinuous leading coefficients and unbounded controls, Numer. Funct. Anal. and Opti-
mization, 3&4 (1997), pp. 235–250.

[2] E. J. Anderson, Linear programming in infinite-dimensional spaces. Theory and applications.,
Wiley, Chichester, 1987.

[3] N. Arada and J. P. Raymond, Optimal control problems with mixed control-state constraints,
SIAM J. Control, 39 (2000), pp. 1391–1407.
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[11] C. Meyer, A. Rösch, and F. Tröltzsch, Optimal control of PDEs with regularized pointwise

state constraints, tech. rep., Inst. of Math., Technische Universität Berlin, 2003. Report
14-2003, to appear in Computational Optimization and Applications.

[12] M. K. V. Murthy and G. Stampacchia, A variational inequality with mixed boundary con-

ditions, Israel J. Math., 13 (1972), pp. 188–224.
[13] J.-P. Penot, On regularity conditions in mathematical programming, Mathematical Program-

ming Study, 19 (1982), pp. 167–199.
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