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1. Introduction. In this paper we consider the optimal control problem to min-
imize

F (y, u) =

∫

Ω

f(x, y(x)) dx+

∫

Γ

g(x, y(x), u(x)) ds(x) (1.1)

subject to the state equations

Ay + y = 0 in Ω

∂nA
y = b(x, y, u) on Γ, (1.2)

the control constraints

0 ≤ u(x) for x ∈ Γ, (1.3)

and to the mixed control-state constraints

c(x) ≤ u(x) + γ(x)y(x) for x ∈ Γ. (1.4)

The main task of our paper is to establish second-order sufficient optimality con-
ditions that are close to the associated necessary ones. For control-constrained prob-
lems, this issue was discussed quite completely in literature for semilinear elliptic
and parabolic equations. We mention Bonnans [4], Casas, Tröltzsch, and Unger [9],
Goldberg and Tröltzsch [12], Heinkenschloss and Tröltzsch [13].

The main difficulty in our problem is the presence of the pointwise control-state
constraint c(x) ≤ u(x)+γ(x)y(x) in (1.4). If pointwise state contraints are given, then
the theory of sufficient second-order conditions is faced with specific difficulties that
are still far from being solved. In particular, these problems arise for pointwise state
constraints of the type c(x) ≤ y(x). Here, the Lagrange multipliers associated with
the state constraints are Borel measures so that the associated adjoint state exhibits
low regularity, cf. Casas [5], [6] or Alibert and Raymond [1]. This fact causes specific
difficulties in the discussion for second-order sufficient optimality conditions. We refer
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to Casas, Tröltzsch, and Unger [10] and Raymond and Tröltzsch [15] or to Casas and
Mateos [7], who consider the case of finitely many state constraints.

In our problem (1.1)–(1.4), the situation is slightly simpler, since the constraint
(1.4) is a mixed control-state constraint of bottleneck type. In the associated parabolic
case, the Lagrange multipliers are more regular. They can assumed to be bounded
and measurable functions, see Bergounioux and Tröltzsch [3], Arada and Raymond [2].
The existence of bounded and measurable Lagrange multipliers for linear-quadratic
elliptic optimal control problems is proved in Tröltzsch [21]. The semilinear elliptic
case is investigated in Rösch and Tröltzsch [16].

Higher regularity of the multipliers is the main advantage enabling us to estab-
lish second-order conditions. The second-order conditions should require minimal
assumptions, i.e. they should be as close as possible to associated necessary condi-
tions. Usually, this task is accomplished by considering strongly active sets (see [11]
for control-constrained optimal control of ordinary differential equations). Here, we
apply this technique to our case of mixed constraints. The analysis shows that this
is not an easy task. It indicates that pointwise state constraints of more general type
will rise even more difficult techniques.

Our paper extends the results of [17], [18] where second-order conditions are
derived for a weakly singular integral state equation and for parabolic equations, re-
spectively. Let us shortly sketch the main difference between these papers and our
new discussion: In that papers, the proof of sufficiency is based on the nonnegativity
of some inverse operators related to the Fréchet derivative of the control-to-state map-
ping. It is this nonnegativity that cannot in general be expected for elliptic problems.
Therefore, here we abstain from such an assumption. We only require a solvability
property of an auxiliary elliptic problem. Based on similarly weak assumptions, also
the regularity of Lagrange multipliers has been shown in [16],[21].

Moreover, in our paper the definition of strongly active sets associated with the
mixed constraints is is more natural way than the one in [17],[18].

Let us remark that the inequality constraints in our problem differ from the
inequality constraints considered in [17],[18], where u ≤ c+ γy is investigated instead
of (1.4). It would be easy to adapt our theory to the inequality constraints in [17],[18].
However, even for parabolic problems, the methods in [17],[18] cannot be applied to
the inequality constraints (1.3) and (1.4): Formula (3.6) of [18] states that f ≥ 0
implies u ≥ 0. This is no longer true. The last implication in the proof of that
formula is that f ≥ 0 and v ≥ 0 imply u = f + γv ≥ 0. Our inequality (1.4) leads
now to the expression u = f − γv that may admit any sign.

The paper is organized as follows: In Section 2 we formulate first- and second-
order optimality conditions and state the main result. Section 3 contains auxiliary
results. The proof that our second-order conditions are sufficient for local optimality
is presented in Section 4.

In the paper, we use the following notations: By b′(x, y, u) and b′′(x, y, u) we
denote the gradient and the Hessian matrix of b with respect to (y, u):

b′(x, y, u) =

(

by(x, y, u)
bu(x, y, u)

)

, b′′(x, y, u) =

(

byy(x, y, u) byu(x, y, u)
byy(x, y, u) buu(x, y, u)

)

.

Here, the notations by(x, y, u) = Dyb(x, y, u) and byy(x, y, u) = Dyyb(x, y, u) etc.
are used for the partial derivatives. The norms |b′|, |b′′| are defined by adding the
absolute values of all entries of b′ and b′′, respectively. By ∂nA

we denote the co-normal
derivative.
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We adapt the following assumptions from [9]:
(A1) For each x ∈ Ω or Γ repectively, the functions f = f(x, y), g = g(x, y, u), and

b = b(x, y, u) are of class C2 with respect to (y, u). For fixed (y, u) they are
Lebesgue measurable with respect to x ∈ Ω or x ∈ Γ, respectively.

(A2) In this assumption, fixed parameters p > N−1 and s, r are used that depend
on the dimension N of the domain Ω. Roughly speaking, we have y|Γ ∈ Ls(Γ)
and y ∈ Lr(Ω) in the linearized system associated to (1.2). As usual, r′

and s′ denote mutually conjugate numbers. For instance, s′ is defined by
1/s′ + 1/s = 1.
For all M > 0, there are constants CM > 0, functions ψM

f ∈ L(r/2)′(Ω),

ψM,1
f ∈ L(s/2)′(Γ), ψM,2

f ∈ L(s/2)′(Γ), ψM,3
f ∈ L∞(Γ), and a continuous,

monotone increasing function η ∈ C(IR+ ∪ {0}) with η(0) = 0 such that
(i) b(., 0, 0) ∈ Lp(Γ), for some p > N − 1,

by(x, y, u) ≤ 0 for a.e. x ∈ Γ, ∀(y, u) ∈ IR2, (1.5)

|b′(x, y, u)| + |b′′(x, y, u)| ≤ CM ,
|b′′(x, y1, u1) − b′′(x, y2, u2)| ≤ CMη(|y1 − y2| + |u1 − u2|)

for almost all x ∈ Γ and all |y|, |u|, |yi|, |ui| ≤M , i = 1, 2.
(ii) f(., 0) ∈ L1(Ω), fy(., 0) ∈ Lr′

(Ω), fyy(., 0) ∈ L(r/2)′(Ω) and

|fyy(x, y1) − fyy(x, y2)| ≤ ψM
f (x)η(|y1 − y2|)

for almost all x ∈ Ω and all |yi| ≤M , i = 1, 2.
(iii) g(., 0, 0) ∈ L1(Γ), gy(., 0, 0) ∈ Ls′

(Γ), gu ∈ L2(Γ), gyy(., 0, 0)

∈ L(s/2)′(Γ), gyu(., 0, 0) ∈ L2(s/2)′(Γ), guu(., 0, 0) ∈ L∞(Γ), and

|gyy(x, u1, y1) − gyy(x, u2, y2)| ≤ ψM,1
f (x)η(|y1 − y2| + |u1 − u2|)

|gyu(x, u1, y1) − gyu(x, u2, y2)| ≤ ψM,2
f (x)η(|y1 − y2| + |u1 − u2|)

|gyu(x, u1, y1) − gyu(x, u2, y2)| ≤ ψM,3
f (x)η(|y1 − y2| + |u1 − u2|)

for almost all x ∈ Ω and all |yi| ≤M , |ui| ≤M , i = 1, 2.
Other estimates of b, f, g and their first derivatives can be derived from (A1),
(A2) by the mean value theorem.

(A3) We assume that c, γ ∈ C(Γ), and γ(x) ≥ 0 ∀x ∈ Γ.
(A4) The domain Ω ⊂ IRN is bounded and has a Lipschitz boundary Γ. The

Lebesgue surface measure induced on Γ is denoted by ds(x). The elliptic
operator A is defined by

Ay(x) = −
m

∑

i,j=1

Di(aij(x)Djy(x)),

where aij ∈ L∞(Ω) satisfy, for some positive m0, the condition of uniform
ellipticity

m
∑

i,j=1

aij(x)ξiξj ≥ m0|ξ|
2.

2. First- and second-order optimality conditions. The control is looked
for in the space U = L∞(Γ), while the state is defined as weak solution of (1.2) in the
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state space Y = C(Ω̄) ∩H1(Ω) by

∫

Ω

(

m
∑

i,j=1

aijDjyDiv + yv
)

dx =

∫

Γ

b(., y, u)v ds(x) ∀v ∈ H1(Ω). (2.1)

We endow Y with the norm ‖y‖Y = ‖y‖C(Ω̄) + ‖y‖H1(Ω). It can be shown that the
equation (1.2) admits for each u ∈ L∞(Γ) a unique weak solution y = y(u) ∈ Y ,
see [8]. Moreover, Casas and Tröltzsch [8] have proved that the solution mapping
G : u 7→ y from L∞(Ω) into Y is of class C2.

In this paper, we discuss sufficient conditions for a local minimum. Therefore, we
investigate a candidate ū for the local optimum and an ε-neighbourhood of this point:

Bε(ū) = {u ∈ L∞(Γ) : ‖u− ū‖L∞(Γ) < ε}.

For any fixed ε > 0 and arbitrary ū ∈ U , it holds with some constant M = M(ε)

‖y(u)‖Y ≤M ∀y ∈ Bε(ū).

The boundary values of y are of particular importance for us. Thus we define the
mapping S : L∞(Γ) → C(Γ̄) with S = τG that assigns to u the boundary values
of y. Here, τ denote the trace operator. Clearly, the Fréchet differentiability of the
operator G transfers to S. The application of S ′(ū) to an element h ∈ U is given by
the boundary values of the solution z of the elliptic problem

Az + z = 0 in Ω

∂nA
z − b̄yz = b̄uh on Γ, (2.2)

i.e. S′(ū)h = z|Γ. Here we have used the abbreviations b̄y = by(x, ȳ(x), ū(x)) and
b̄u = bu(x, ȳ(x), ū(x)). The operator S ′(ū) extends to a linear continuous operator in
L(L2(Γ)). From now on, we consider S ′(ū) in this way. For the remainder term in
the first order Taylor expansion of y(ū+ h), we obtain the property

‖y(ū+ h) − y(ū) − z(ū, h)‖L2(Γ)

‖h‖L2(Γ)
→ 0 as ‖h‖L∞(Γ) → 0

using a known result of Maurer [14].
Next, we introduce the L2-adjoint operator S′(ū)∗ ∈ L(L2(Γ)). This operator is

given by S′(ū)∗µ = ϕ|Γ, where ϕ is the solution of the elliptic problem

A∗ϕ+ ϕ = 0 in Ω

∂nA∗
ϕ− b̄y ϕ = b̄u µ on Γ (2.3)

and A∗ is the formal adjoint operator to A. In all what follows, let (ȳ, ū) be a locally
optimal reference solution of (1.1)–(1.4). Let us set up the associated first-order
necessary optimality conditions in form of a Karush-Kuhn-Tucker type theorem. To
this aim, we introduce the Lagrange functional L : Y × L∞(Γ) × Y × L∞(Γ)2 → IR,

L(y, u, p, µ1, µ2) = F (y, u) +

∫

Ω

(

m
∑

i,j=1

aijDjyDip+ yp) dx−

∫

Γ

b p ds(x)

−

∫

Γ

µ1u ds(x) −

∫

Γ

(u+ γy − c)µ2 ds(x).
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Let us comment on this choice for L. The elliptic quation (1.2) is considered
in Y , while the inequality constraints (1.3) are posed in L∞(Γ). Knowing the gen-
eral Karush-Kuhn-Tucker theory in Banach spaces, one expects associated Lagrange
multipliers p ∈ Y ∗ and µi ∈ (L∞(Γ))∗, together with a related quite complicated
Lagrange functional. In contrast to this, special techniques for optimal control prob-
lems of bottleneck type have shown that, under natural assumptions, the Lagrange
multipliers can be expressed by regular functions, i.e. p ∈ Y and µi ∈ L∞(Γ), we refer
to Tröltzsch [21], Rösch and Tröltzsch [16]. This well known advantage of bottleneck
type problems is our key idea to establish special second-order sufficient optimality
conditions, which can hardly be expected for µi ∈ (L∞(Γ))∗. The existence of such
regular multipliers can be shown under a Slater type condition and the assumption
γ(x) ≥ 0. Here, the nonnegativity of γ plays a crucial role.

Therefore, we are justified to assume that an adjoint state p̄ ∈ Y and Lagrange
multipliers µ̄i ∈ L∞(Γ) exist such that (ȳ, ū, p̄, µ̄1, µ̄2) satisfies the following first-order
necessary optimality system (FON),

(FON)



























































DyL(ȳ, ū, p̄, µ̄1, µ̄2) = 0

DuL(ȳ, ū, p̄, µ̄1, µ̄2) = 0

and for almost all x ∈ Γ

µ̄1(x) ≥ 0

µ̄2(x) ≥ 0

ū(x)µ̄1(x) = 0

(ū(x) + γ(x)ȳ(x) − c(x))µ̄2(x) = 0.

Note that the Lagrange multipliers may be not unique. The last two conditions of
(FON) are the well-known complementary slackness conditions. They imply µ̄1(x) >
0 ⇒ ū(x) = 0 and µ̄2(x) > 0 ⇒ c(x) = ū(x) + γ(x)ȳ(x). Let us express these
optimality conditions also in terms of the partial differential equation. As it is well
known, the first equation of (FON) is equivalent to the adjoint equation

A∗p̄+ p̄ = fy(x, ȳ) in Ω

∂nA∗
p̄− by(x, ȳ, ū)p̄ = gy(x, ȳ, ū) − γµ̄2 on Γ. (2.4)

The second equation of (FON) is equivalent to

gu(x, ȳ, ū) + bu(x, ȳ, ū)p̄− µ̄1 − µ̄2 = 0. (2.5)

Next, we discuss a sufficient second-order optimality condition (SSC). For this
purpose, following Dontchev et al. [11], we define strongly active sets and the associ-
ated critical subspace. Assume that (ȳ, ū, p̄, µ̄1, µ̄2) fulfils (FON).

Definition 2.1. Let δ1, δ2 > 0 be real numbers and µ̄1, µ̄2 ∈ L∞(Γ) be Lagrange
multipliers introduced in (FON). The sets

A1(δ1) := {x ∈ Γ : µ̄1(x) ≥ δ1}, (2.6)

A2(δ2) := {x ∈ Γ \A1(δ1) : µ̄2(x) ≥ δ2} (2.7)

are called strongly active sets.
All further arguments hold true for an arbitrary choice of δ1 and δ2. Later, these

numbers will be chosen such that a second-order sufficient optimality condition is
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satisfied. To shorten the notation, we will drop the dependence of the active sets on
these parameters in the proofs, but we will use the detailed notation for the statements
of the main results.

Definition 2.2. We say that (y, u) ∈ C(Ω̄) × L∞(Γ) belongs to the critical
subspace, if

u = 0 on A1(δ1), (2.8)

u+ γy|Γ = 0 on A2(δ2), (2.9)

and

Ay + y = 0 in Ω

∂nA
y − b̄y y = b̄u u on Γ. (2.10)

Notice that (2.10) implies y|Γ = S′(ū)u. This assumption is stronger than really
needed. A smaller critical convex cone is discussed at the end of the paper.

Before we formulate the second-order sufficient optimality condition, we mention
for convenience the explicit expression of L′′

(u,y)(ȳ, ū, p̄, µ̄1, µ̄2)[hy, hu]2:

L′′
(u,y)(ȳ, ū, p̄, µ̄1, µ̄2)[hy , hu]2 =

∫

Ω

fyyh
2
y dx+

∫

Γ

(gyyh
2
y + 2gyuhyhu + guuh

2
u) ds(x)

+

∫

Γ

(b̄yyh
2
y + 2b̄yuhyhu + b̄uuh

2
u)p̄ ds(x). (2.11)

Here, hy ∈ C(Ω̄), hu ∈ L∞(Γ) denote arbitrary increments of y and u, respectively.
Now we state the second-order sufficient condition.

(SSC): There exist positive numbers δ, δ1, δ2 such that the definiteness condition

L′′
(u,y)(ȳ, ū, p̄, µ̄1, µ̄2)[hy, hu]2 ≥ δ‖hu‖

2
L2(Γ) (2.12)

holds true for all (hy, hu) belonging to the critical subspace defined upon δ1, δ2.
In our further analysis, the boundary value problem

Av + v = 0 in Ω

∂nA
v + (−b̄y + χA2(δ2)b̄uγ)v = φ on Γ (2.13)

plays a basic role. We require the following regularity assumption:
(R) For φ = 0, the problem (2.13) has only the trivial solution v = 0.
For instance, this assumption is fulfilled, if

−b̄y + γχA2(δ2)b̄u ≥ 0 a.e. on Γ. (2.14)

Here χA2 denotes the characteristic function of the set A2(δ2). In particular, this
condition is fulfilled if b̄u ≥ 0 holds. Now, we state the main result of the paper.

Theorem 2.3. (Second-order sufficiency) Assume that (ȳ, ū, p̄, µ̄1, µ̄2) fulfils the
first-order optimality system (FON) and the regularity condition (R) holds. If the
second-order condition (SSC) is satisfied, then there exist δs > 0 and ε > 0 such that
the quadratic growth condition

F (y, u) − F (ȳ, ū) ≥ δs‖u− ū‖2
L2(Γ) (2.15)

holds for all admissible pairs (y, u) with ‖u− ū‖L∞(Γ) < ε. Therefore, ū is a locally
optimal control in the norm of L∞(Γ).

The proof is carried out in Section 4.
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3. Auxiliary results. Lemma 3.1. Let β ∈ L∞(Γ) be a fixed function that is
almost everywhere nonnegative. Then for all φ ∈ Lp(Γ) with p > N − 1, the weak
solution v ∈ H1(Ω) of

Av + v = 0 in Ω
∂nA

v + β(·) v = φ on Γ
(3.1)

belongs to C(Ω̄) and satisfies the estimate

‖v‖C(Ω̄) ≤ cp ‖φ‖Lp(Γ) (3.2)

with a positive constant cp that does not depend on φ.
For this classical result, we refer to [6] and to the arguments in [1] concerning the

case of Lipschitz domains.
The trace of v ∈ H1(Ω) belongs for N = 2 and any r <∞ to Lr(Γ) and for N > 2

to L
2(N−1)

N−2 (Γ). Therefore, it belongs to L2+s(Γ) with s = 2/(N − 2) > 0 (arbitrary
s > 0 for N = 2) so that the mapping φ 7→ v is continuous from L2(Γ) to L2+s(Γ)
and from Lp(Γ) to L∞(Γ), in particular also to Lp+s(Γ). By classical interpolation,
cf. Triebel [20], 1.18.7, Thm. 1, the mapping φ 7→ v satisfies

‖v‖Ls+δ(Γ) ≤ cs ‖φ‖Ls(Γ) ∀ s ≥ 2. (3.3)

provided that β(·) ≥ 0. We can dispense with this sign condition on β, if a regularity
condition is fulfilled. Therefore, we now consider equation (3.1) for arbitrary β ∈
L∞(Γ) and assume that the associated homogeneous equation (3.1) has only the
trivial solution. Then the mapping Sβ : L2(Γ) → L2(Γ) that assigns to φ the trace of
the solution v of (3.1) is well defined and continuous.

To verify this, we consider also the shifted equation

Av + v = 0 in Ω
∂nA

v + (‖β‖L∞(Γ) + β(·)) v = φ on Γ.
(3.4)

Clearly, the associated mapping S̃β : L2(Γ) → L2(Γ), S̃β : φ 7→ v, is well defined and
compact. By the Fredholm theory, it has only countably many eigenvalues. A number
λ ∈ IR is an eigenvalue of S̃β , if in (3.4) the boundary condition

∂nA
v + (‖β‖L∞(Γ) + β(·)) v = λ−1v (3.5)

is satisfied with some nontrivial v. Obviously, we have a one-to-one correspondence
between the eigenvalues of S̃β and those of Sβ. The boundary condition (3.5) holds
for nontrivial v iff the condition ∂nA

v + (‖β‖L∞(Γ) + β(·)) v = (λ−1 − ‖β‖L∞(Γ)) v is
fulfilled so that 1/(λ−1 − ‖β‖L∞(Γ)) is eigenvalue of Sβ .

In view of this, the assumption on the homogeneous equation (3.1) implies that
(3.1) is uniquely solvable for all φ ∈ L2(Γ) and that Sβ is continuous in L2(Γ).

In the following, we will use the short notation ‖v‖L2(Γ) instead of ‖v|τ‖L2(Γ).
Lemma 3.2. Assume that the homogeneous equation (3.1) has only the trivial

solution and that φ ∈ L∞(Γ) is given arbitrarily. Let v ∈ H1(Ω) be the solution of
(3.1). Then there exists a constant cβ not depending on φ such that the following
estimates hold true:

‖v‖L2(Γ) ≤ cβ‖φ‖L2(Γ),
‖v‖C(Γ) ≤ cβ‖φ‖Lp(Γ) for all p > N − 1,
‖v‖L1(Γ) ≤ cβ‖φ‖L1(Γ).

(3.6)
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Proof. (i) The first estimate is a simple consequence of the continuity of Sβ in
L2(Γ). It is only stated for convenience.

(ii) The second inequality follows by bootstrapping: The solution v solvesAv+v =
0 subject to the boundary condition

∂nA
v = φ− β(·) v.

By (3.3) and the first estimate, we find with some s > 0 and with some generic
constant c

‖v‖L2+s(Γ) ≤ c (‖φ‖L2(Γ) + ‖β‖L∞(Γ)‖v‖L2(Γ))
≤ c ‖φ‖L2(Γ) ≤ c ‖φ‖L2+s(Γ).

Repeating this estimate, we get from the one in L2+s(Γ)

‖v‖L2+2 s(Γ) ≤ c (‖φ‖L2+s(Γ) + ‖β‖L∞(Γ)‖v‖L2+s(Γ))
≤ c ‖φ‖L2+ s(Γ) ≤ c ‖φ‖L2+2 s(Γ).

After finitely many steps, the estimate ‖v‖Lp(Γ) ≤ c ‖φ‖Lp(Γ) can be derived for some
p > N − 1. Finally, again by (3.3), it follows

‖v‖C(Γ) ≤ cp (‖φ‖Lp(Γ) + ‖β‖L∞(Γ)‖v‖Lp(Γ)) ≤ c ‖φ‖Lp(Γ).

(iii) To show the last estimate, we proceed by duality. The operator Sβ is self-
adjoint. Moreover, roughly speaking, we have by (ii) that its restriction Sβ,p to Lp(Γ)
is continuous from Lp(Γ) to C(Γ). We can assume p ≥ 2. The adjoint operator S∗

β,p

is continuous from C(Γ)∗ to Lp′

(Γ), where p′ is conjugate to p. Therefore, it is in
particular continuous in L1(Γ). Finally, it can be shown that S∗

β,p φ = S∗
β φ = Sβ φ for

all φ ∈ L2(Γ). This shows that Sβ is continuous in L1(Γ) so that the third estimate
is true. These facts are explained more precise and slightly more detailed in [16].

We should remark that the third estimate is not surprising. For β ≥ 0, it follows
from the results by Casas [5] and Alibert and Raymond [1]: They have shown in
this case that the boundary value problem (3.1) with given regular Borel measure φ
admits a unique solution v ∈ W 1,σ(Ω) for all σ < N/(N − 1). Clearly, this implies
the L1-estimate. More or less, the result for arbitrary β is a natural extension. We
have presented these details for convenience of the reader.

As a corollary of the preceding Lemma, we obtain for β := −b̄y + γχA2 b̄u the
following result:

Lemma 3.3. Suppose that the regularity condition (R) is satisfied. Then, for all
φ ∈ L2(Γ), the boundary value problem

Av + v = 0 in Ω

∂nA
v + (−b̄y + χA2 b̄uγ)v = φ in Γ (3.7)

has a unique solution v ∈ H1(Ω). Moreover, the estimate

‖v‖L1(Γ) ≤ c1 ‖φ‖L1(Γ) (3.8)

is fulfilled with some constant c1 that does not depend on φ.
To perform our analysis, we repeatedly need controls u defined as follows:

u(x) =

{

φ(x) on Γ \A2,
φ(x) − γ(x)(S′(ū)u)(x) on A2.

(3.9)
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The next lemma shows that this setting is correct:
Lemma 3.4. Assume that the regularity condition (R) is fulfilled. Then, there is

exactly one function u ∈ L∞(Γ) that satisfies condition (3.9). Moreover, the estimates

‖u‖L1(Γ) ≤ c1‖φ‖L1(Γ), (3.10)

‖u‖L2(Γ) ≤ c2‖φ‖L2(Γ), (3.11)

‖u‖L∞(Γ) ≤ c∞‖φ‖L∞(Γ) (3.12)

hold with certain constants c1, c2, c∞ that do not depend on φ.
Proof. Suppose that u ∈ L∞(Γ) satisfies (3.9). Put v := G′(ū)u. Then v satisfies

an elliptic problem with the boundary condition

∂nA
v − b̄yv =

{

b̄uφ on Γ \A2,
b̄u(φ− γv) on A2,

(3.13)

that is

∂nA
v + (−b̄yv + χA2 b̄uγ)v = b̄uφ on Γ. (3.14)

This is exactly the boundary condition of (3.7). Consequently, the solution v is unique.
Therefore, if u satisfies (3.9), then v = G′(ū)u is unique, hence u is unique, because
of

u =

{

φ on Γ \A2,
φ− γv|Γ on A2.

(3.15)

On the other hand, starting from φ, the solution v of the elliptic equation with the
boundary condition (3.14) is well defined, and the function u given by (3.15) satisfies
(3.9), since, by definition of v, u = S ′(ū)v|Γ.

The estimate (3.10) is obtained by Lemma 3.3. Estimate (3.11) follows by stan-
dard arguments. The Stampacchia method [19] delivers estimate (3.12).

To prove the main result, we later have to compare the reference pair (ȳ, ū) with
another admissible pair (y,u), where y = G(u). In this case, we estimate the difference

y|Γ − ȳ|Γ = S(u) − S(ū) = S′(ū)(u− ū) + r1(ū, u− ū), (3.16)

where r1 stands for the associated first-order remainder term of S. In the following, if
there is no risk of notational confusion, we denote for short the remainder r1(ū, u− ū)
and the derivative S′(ū) by r1 and S′, respectively.

Before continuing our analysis of second-order sufficiency, let us discuss the main
difficulties and our main ideas to resolve them. We start without the pointwise control-
state constraints. On A1, we have ū(x) ≡ 0, hence u− ū ≥ 0 on A1. The associated
term in the Lagrange functional can be estimated as

∫

A1

µ̄1(u− ū) ds(x) ≥

∫

A1

δ1(u− ū) ds(x) = δ1‖u− ū‖L1(A1). (3.17)

In the proof of the sufficiency theorem, the L1-norms on the right-hand side will
compensate for the lack of coercivity, since (2.12) does not contribute to definiteness
on A1 ∪ A2.

However, we cannot expect such a property for the mixed control-state con-
straints. It can happen that

∫

A2
µ̄2(u+y−ū−ȳ) ds(x) = 0 although ‖u−ū‖L1(A2) > 0

hold simultaneously.
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To overcome this difficulty, we represent u in the form u = u1 + u2. For the u1-
part we can prove an estimate similar to (3.17). The u2-part stands for the additional
margin of freedom that is caused by differing values of u and ū outside of A2. This
splitting is performed by

u1 = ū, u2 = u− ū on Γ \A2,
u2 = −γ(S′u2 + r1), u1 = u− u2 on A2.

(3.18)

The functions u1 and u2 are well defined. To see this, we write u2 in the form

u2 =

{

φ on Γ \A2,
φ− γS′u2 on A2,

where φ = u− ū on Γ \ A2, φ = γr1 on A2. Then u2 is well defined by Lemma 3.4.
Note that S′(ū)u2 = S′(ū)(χΓ\A2

(u − ū) + χA2u2). From (3.12) and (3.18) we get
easily

‖u2‖L∞(Γ) ≤ c3(‖u− ū‖L∞(Γ) + ‖r1‖L∞(Γ)).

The Fréchet differentiability of S in L∞(Γ) implies

‖r1‖L∞(Γ) ≤ ‖u− ū‖L∞(Γ)

for a sufficiently small ε.
Therefore, it holds by u1 = u− u2

‖u1 − ū‖L∞(A2) ≤ ‖u− ū‖L∞(A2) + ‖u2‖L∞(A2)

≤ c4‖u− ū‖L∞(Γ). (3.19)

Lemma 3.5. Assume that (ȳ, ū, p̄, µ̄1, µ̄2) fulfils the first-order optimality system
(FON) and the regularity condition (R) holds. Then there exists a positive constant
cA such that, for all ε > 0 the estimates

∫

Γ

(u− ū)µ̄1 ds(x) ≥
δ1
ε
‖u− ū‖2

L2(A1(δ1))
, (3.20)

∫

Γ

(u− ū+ γ(y − ȳ))µ̄2 ds(x) ≥ cA ·
δ2
ε
‖u1 − ū‖2

L2(A2(δ2))
(3.21)

are valid for all admissible pairs (u, y) satisfying ‖u− ū‖L∞(Γ) < ε.
Proof. (i) Because of (FON), µ̄1(x) > 0 can only hold where ū(x) = 0. If

ū(x) > 0, then µ̄1(x) = 0. Moreover, u is admissible, hence u ≥ 0 and we have almost
everywhere

(u− ū)µ̄1 ≥ 0.

Therefore we get by (2.6)
∫

Γ

(u− ū)µ̄1 ds(x) ≥

∫

A1

(u− ū)µ̄1 ds(x) ≥ δ1‖u− ū‖L1(A1).

By our assumption, we have ‖u− ū‖L∞(Γ) < ε. In particular, this inequality includes
‖u− ū‖L∞(A1) < ε. Consequently,

∫

Γ

(u− ū)µ̄1 ds(x) ≥ δ1‖u− ū‖L1(A1)

‖u− ū‖L∞(A1)

ε
≥
δ1
ε
‖u− ū‖2

L2(A1)
,
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and (3.20) is proven.
(ii) Next, we discuss the integral in (3.21). Because of (FON), µ̄2(x) > 0 can

only hold where ū(x) + γ(x)ȳ(x) = c(x). In addition, (y, u) is admissible, hence in
particular c(x) ≤ u(x) + γ(x)y(x). Therefore, we obtain almost everywhere

(u− ū+ γ(y − ȳ))µ̄2 ≥ 0

and
∫

Γ

(u− ū+ γ(y − ȳ))µ̄2 ds(x) ≥

∫

A2

(u− ū+ γ(y − ȳ))µ̄2 ds(x)

≥ δ2‖u− ū+ γ(y − ȳ)‖L1(A2) (3.22)

by definition (2.7). Let us discuss this integral more detailed. Expressing y − ȳ in
terms of the controls by (3.16),

u− ū+ γ(y − ȳ) = u− ū+ γ(S ′(ū)(u− ū) + r1) (3.23)

is found. Since u = u1 +u2 and u2 + γS′u2 + γr1 = 0 on A2 hold by definition (3.18),
we find

u+ γ(S′u+ r1) = u1 + u2 + γS′u1 + γS′u2 + γr1 = u1 + γS′u1. (3.24)

Consequently, (3.22) and (3.23) yield
∫

Γ

(u− ū+ γ(y − ȳ))µ̄2 ds(x) ≥ δ2‖u1 − ū+ γS′(ū)(u1 − ū)‖L1(A2)

= δ2‖w + γS′w‖L1(A2) (3.25)

with w := u1 − ū. Notice, that w = 0 on Γ \A2. Moreover we set v = G′w and

z =

{

0 on Γ \A2,
w + γv|Γ on A2.

By this definition, we have

‖w + γS′w‖L1(A2) = ‖z‖L1(A2)

and therefore
∫

Γ

(u− ū+ γ(y − ȳ))µ̄2 ds(x) ≥ δ2‖z‖L1(A2). (3.26)

Then we find

Av + v = 0 in Ω

∂nA
v − b̄yv = b̄uw on Γ. (3.27)

On A2 we have

b̄uw = b̄u(z − γv|Γ) = b̄uz − χA2 b̄uγv|Γ.

Because of z = w = 0 on Γ\A2, this equation is also correct on Γ\A2 and consequently
it holds

Av + v = 0 in Ω

∂nA
v + (−b̄y + χA2 b̄uγ)v = b̄uz on Γ. (3.28)
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Applying Lemma 3.3, we obtain

‖v‖L1(Γ) ≤ c‖z‖L1(Γ) = c‖z‖L1(A2). (3.29)

Setting γ̄ = ‖γ‖C(Γ), we get

‖w‖L1(A2) = ‖z − γv‖L1(A2)

≤ ‖z‖L1(A2) + γ̄‖v‖L1(A2)

≤ ‖z‖L1(A2) + γ̄c‖z‖L1(A2)

or

‖z‖L1(A2) ≥
1

1 + γ̄c
‖w‖L1(A2). (3.30)

Combining (3.26) and (3.30), we find

∫

Γ

(u− ū+ γ(y − ȳ))µ̄2 ds(x) ≥
δ2

1 + γ̄c
‖w‖L1(A2) =

δ2
1 + γ̄c

‖u1 − ū‖L1(A2). (3.31)

Invoking again ‖u− ū‖L∞(Γ) < ε and (3.31), we obtain

∫

A2

(u− ū+ γ(y − ȳ))µ̄2 ds(x) ≥
δ2

1 + γ̄c
‖u1 − ū‖L1(A2) ·

‖u− ū‖L∞(A2)

ε

≥
δ2

c4ε(1 + γ̄c)
‖u1 − ū‖2

L2(A2)
,

implying inequality (3.21) with cA = 1
c4(1+γ̄c) .

If A1∪A2 = Γ, then the critical subspace contains only the function (y, u) = (0, 0).
Then the assumptions of Theorem 5.3 are trivially fulfilled. In this case, (3.20) and
(3.21) imply the so-called first-order sufficient optimality conditions.

4. Second-order sufficient optimality condition. Here, we outline the proof
of the sufficiency Theorem 5.3. This part is very similar to the discussion in [18].
Nevertheless, we confine ourselves to the main arguments but shorten the proof for
convenience of the reader.

We select from an arbitrary admissible control u in a sufficiently small L∞-
neighborhood of ū and have to show that F (y, u) ≥ F (ȳ, ū). Let us introduce the
increments δu := u− ū and δy := G′(ū)δu. We split δu = u0 + u+, where

u0 = 0, u+ = δu on A1,
u0 = δu, u+ = 0 on Γ \ (A1 ∪ A2),
u0 = −γS′(ū)u0, u+ = δu− u0 on A2.

Notice that u0 + γS′(ū)u0 = 0 on A2. This setting is justified again by Lemma 3.4:
It holds

u0 =

{

φ on Γ \A2,
φ− γS′u0 on A2

where φ is defined by

φ =

{

0 on A1 ∪ A2,
δu on Γ \ (A2 ∪A1).
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The part u0 belongs to the critical subspace, while u+ is the part of δu that accounts
for the effects of first-order sufficiency. Furthermore, we define y0 := G′u0 and y+ :=
G′u+. By the linearity of G′, we have δy = y0 + y+.

Below, we estimate the difference L(y, u, p̄, µ̄1, µ̄2)−L(ȳ, ū, p̄, µ̄1, µ̄2). Let us write
for short L(y, u)−L(ȳ, ū), since (p̄, µ̄1, µ̄2) remains fixed in all the next considerations.
We also do not explicitely indicate the point (ȳ, ū, p̄, µ̄1, µ̄2) where all derivatives are
taken, i.e. we write Luu instead of DuL(ȳ, ū, p̄, µ̄1, µ̄2)u.

Lemma 4.1. Under the assumptions of Theorem 5.3,

L(y, u) − L(ȳ, ū) ≥
δ

4
‖u0‖

2
L2(Γ) −

cs
2
‖u+‖

2
L2(Γ) + r2 + r̃2 (4.1)

holds, where r2, r̃2 are second-order remainder terms with

|ri|

‖u− ū‖2
L2(Γ)

→ 0 if ‖u− ū‖L∞(Γ) → 0.

Proof. Using a Taylor expansion, in view of (FON) we get

L(y, u) − L(ȳ, ū) = Lu[u− ū] + Ly[y − ȳ] +
1

2
(Luu[u− ū]2

+2Luy[u− ū, y − ȳ] + Lyy[y − ȳ]2) + r2

=
1

2
(Luu[u− ū]2 + 2Luy[u− ū, y − ȳ] + Lyy[y − ȳ]2) + r2. (4.2)

The following property of the remainder is known

|r2(ū, h)|

‖h‖2
L2(Γ)

→ 0 as ‖h‖L∞(Γ) → 0.

For the proof we refer to [22]. According to the notation of Lemma 3.4, we get
y− ȳ = δy+ r1. Replacing y− ȳ by δy in (4.2), another second order remainder term
is needed

r̃2 :=
1

2
(Luu[u− ū]2 + 2Luy[u− ū, y − ȳ] + Lyy[y − ȳ]2)

−
1

2
(Luu[δu]2 + 2Luy[δu, δy] + Lyy[δy]2).

It is easy to show that

|r̃2|

‖u− ū‖2
L2(Γ)

→ 0 as ‖u− ū‖L∞(Γ) → 0.

With these notations, (4.2) admits the form

L(y, u) − L(ȳ, ū) =
1

2
(Luu[δu]2 + 2Luy[δu, δy] + Lyy[δy]

2) + r2 + r̃2. (4.3)

We continue by splitting the Lagrange functional in terms of u0 and u+,

Luu[δu]2 + 2Luy[δu, δy] + Lyy[δy]
2 = Luu[u0]

2 + 2Luy[u0, y0] + Lyy[y0]
2

+Luu[u+]2 + 2Luy[u+, y+] + Lyy[y+]2

+2Luu[u0, u+] + 2Luy[u0, y+]

+2Luy[u+, y0] + 2Lyy[y0, y+].
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As u0 belongs to the critical subspace, the second-order condition (SSC) yields

L′′[u0, y0]
2 = Luu[u0]

2 + 2Luy[u0, y0] + Lyy[y0]
2 ≥ δ‖u0‖

2
L2(Γ).

The other terms are easily estimated by ‖y0‖
2
L2(Γ) ≤ ‖S′‖2‖u0‖

2
L2(Γ), ‖y+‖

2
L2(Γ) ≤

‖S′‖2‖u+‖
2
L2(Γ), and by means of Young’s inequality,

|Luu[u+]2 + 2Luy[u+, y+] + Lyy[y+]2

+2Luu[u0, u+] + 2Luy[u0, y+]

+2Luy[u+, y0] + 2Lyy[y0, y+]| ≤
δ

2
‖u0‖

2
L2(Γ) + cs‖u+‖

2
L2(Γ).

In this setting, cs is a certain (large) constant. Combining the last two results, we
arrive at

Luu[δu]2 + 2Luy[δu, δy] + Lyy[δy]
2 ≥

δ

2
‖u0‖

2
L2(Γ) − cs‖u+‖

2
L2(Γ).

Returning to (4.3), we end up with

L(y, u)− L(ȳ, ū) ≥
δ

4
‖u0‖

2
L2(Γ) −

cs
2
‖u+‖

2
L2(Γ) + r2 + r̃2,

which is exactly the assertion.
In the next lemma, the term ‖u+‖

2
L2(Γ) in (4.1) is estimated.

Lemma 4.2. Under the assumptions of Theorem 5.3,

(

cs
2

+
δ

4

)

‖u+‖
2
L2(Γ) ≤ c5‖u1 − ū‖2

L2(A2)
+ c6‖r1‖

2
L2(Γ) + c7‖u− ū‖2

L2(A1)
(4.4)

holds with certain positive constants c5, c6, and c7.
Proof. First, we get on A1

‖u+‖L2(A1) = ‖δu‖L2(A1) = ‖u− ū‖L2(A1). (4.5)

On the whole set Γ we have

u+ + u0 = δu = u− ū.

We apply the operator I + γS ′ to this equation and consider the image only on the
set A2. Using u0 = −γS′u0 on A2, we find

u+ + γS′u+ = u+ γS′u− (ū+ γS′ū) on A2.

Now, u is again replaced by u1 + u2, see (3.18), to obtain on A2

u+ + γS′u+ = u1 + γS′u1 + u2 + γS′u2 − (ū− γS′ū).

On A2, by definition, the equation u2 + γS′u2 = −r1 is satisfied. Therefore, here we
are able to continue by

u+ + γS′u+ = u1 − ū+ (γS′(ū)(u1 − ū)) − r1 on A2.
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Due to our definitions, u+ = δu = u − ū holds on A1. In addition, u+ vanishes on
Γ \ (A1 ∪ A2). Therefore, we find

u+ =







u1 − ū− γS′(ū)(u+ − u1 + ū) − r1 on A2

u− ū on A1

0 on Γ \ (A1 ∪ A2).

Again we have a construction that was investigated in Lemma 3.4. Applying (3.11),
we get the inequality

‖u+‖L2(Γ) ≤ c2‖φ‖L2(Γ),

where φ is defined by

φ =







−r1 + (u1 − ū) + γS′(ū)(u1 − ū) on A2

u− ū on A1

0 on Γ \ (A1 ∪ A2).

Therefore, we obtain

‖u+‖L2(Γ) ≤ c2(‖u− ū‖L2(A1) + c8‖u1 − ū‖L2(Γ) + ‖r1‖L2(A2)),

where the positive constant c8 is related to ‖S′‖. Using ‖u1−ū‖L2(Γ) = ‖u1−ū‖L2(A2),

‖u+‖L2(Γ) ≤ c9‖u1 − ū‖L2(A2) + c2‖r1‖L2(A2) + c2‖u− ū‖L2(A1)

is found. Young’s inequality yields

‖u+‖
2
L2(Γ) ≤ 3c9‖u1 − ū‖2

L2(A2)
+ 3c2‖r1‖

2
L2(Γ) + 3c2‖u− ū‖2

L2(A1)
.

A multiplication by ( cs

2 + δ
4 )

(

cs
2

+
δ

4

)

‖u+‖
2
L2(Γ) ≤ c5‖u1 − ū‖2

L2(A2)
+ c6‖r1‖

2
L2(Γ) + c7‖u− ū‖2

L2(A1)

concludes the proof of the lemma.
Now we are able to prove our main result Theorem 5.3.
Proof. (Theorem 5.3) Inserting (4.4) in (4.1),

L(y, u)− L(ȳ, ū) ≥
δ

4
(‖u0‖

2
L2(Γ) + ‖u+‖

2
L2(Γ)) + r2 + r̃2

−c7‖u− ū‖2
L2(A1) − c5‖u1 − ū‖2

L2(A2) − c6‖r1‖
2
L2(Γ)

is obtained. Next, we return to the objective F ,

L(y, u)−L(ȳ, ū) = F (y, u)−F (ȳ, ū)−

∫

Γ

µ̄1(u−ū) ds(x)−

∫

Γ

(u−ū+γ(y−ȳ))µ̄2 ds(x).

Using Lemma 3.5 we find

F (y, u) − F (ȳ, ū) ≥
δ

4
(‖u0‖

2
L2(Γ) + ‖u+‖

2
L2(Γ)) + r2 + r̃2

+(
δ1
ε

− c7)‖u− ū‖2
L2(A1)

+ (cA
δ2
ε

− c5)‖u1 − ū‖2
L2(A2)

−c6‖r1‖
2
L2(Γ). (4.6)
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Next, ‖δu‖L2(Γ) = ‖u0 + u+‖
2
L2(Γ) ≤ 2‖u0‖

2
L2(Γ) + 2‖u+‖

2
L2(Γ) is applied to continue

by

F (y, u) − F (ȳ, ū) ≥
δ

8
‖δu‖2

L2(Γ) + r2 + r̃2

+(
δ1
ε

− c7)‖u− ū‖2
L2(A1)

+ (cA
δ2
ε

− c5)‖u1 − ū‖2
L2(A2)

−c6‖r1‖
2
L2(Γ). (4.7)

Take now ε sufficiently small, such that

δ1
ε

− c7 ≥ 0 and cA
δ2
ε

− c5 ≥ 0.

Then we can omit the associated terms in (4.7),

F (y, u) − F (ȳ, ū) ≥
δ

8
‖δu‖2

L2(Γ) + r2 + r̃2 − c6‖r1‖
2
L2(Γ). (4.8)

Due to the discussions during the proof, all terms of the right-hand side (except the
first one) are small with respect to ‖u− ū‖2

L2(Γ). Therefore

F (y, u) − F (ȳ, ū) ≥
δ

16
‖u− ū‖2

L2(Γ) (4.9)

holds if ‖u− ū‖L∞(Γ) < ε and ε is sufficiently small. The quadratic growth condition
is proven. We can choose δs = δ/16.

5. Generalizations. In this section, we discuss weaker assumption and possible
generalization. The second-order sufficient optimality condition can be weakened: Let
us define the weakly active control constraints:

Aweak
1 := {x ∈ Γ \ (A1 ∪ A2) : µ̄1(x) > 0}.

On Aweak
1 we have almost everywhere ū(x) = 0. The control constraints imply u(x)−

ū(x) ≥ 0 a.e. on Aweak
1 for all admissible controls u. Therefore, the critical subspace

can be reduced by the requirement

u(x) ≥ 0 ∀x ∈ Aweak
1 .

The situation is more complicated for the weakly active control-state constraints:

Aweak
2 := {x ∈ Γ \ (A1 ∪ A2 ∪A

weak
1 ) : µ̄2(x) > 0}.

On Aweak
2 , we have ū(x)+γ(x)ȳ(x) = c(x). Moreover, it holds u(x)+γ(x)y(x) ≥ c(x)

for all admissible controls u with corresponding state y. This implies u−ū+γ(y−ȳ) ≥
0 or

u− ū+ γ(x)S′(ū)(u− ū) + r1 ≥ 0

on Aweak
2 . Now, the remainder part r1 has to be considered in the cone associated with

the weakly active control-state constraints. Therefore, we abstain from an additional
requirement on Aweak

2 .
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Corollary 5.1. Suppose that the following weakened second-order sufficient
optimality condition is satisfied: The condition (SSC) is only required for elements
(y, u) belonging to the critical subspace (defined in Definition 2.2) fulfilling in addition

u ≥ 0 on Aweak
1 .

This weaker assumption ensures the result of Theorem 5.3, too.
The presented techniques can be extended to derive sufficient second-order opti-

mality conditions for other types of optimal control problems. For instance, it applies
to distributed elliptic control problems with mixed control constraints considered in
Ω. Moreover, it works for two-sided constraints on the control, where we minimize
(1.1) subject to (1.2),

ua ≤ u(x) ≤ ub for x ∈ Γ, (5.1)

together mixed control-state constraints

c(x) ≤ u(x) + γ(x)y(x) for x ∈ Γ. (5.2)

In this case, the Lagrange functional is

L(y, u, p, µ1, µ2, µ3) = F (y, u) +

∫

Ω

(

m
∑

i,j=1

aijDjyDip+ yp) dx−

∫

Γ

b p ds(x)

−

∫

Γ

µ1(u− ua) ds(x) +

∫

Γ

µ3(u− ub) ds(x) −

∫

Γ

(u+ γy − c)µ2 ds(x).

In this definition, we tacitly assume that the Lagrange multiplier µ2 for the constraint
(5.2) is a bounded and measurable function. In contrast to the former sections, we
have not been able to show this. Then, the necessary first-order optimality conditions
are

(FONBOX)



















































































DyL(ȳ, ū, p̄, µ̄1, µ̄2, µ̄3) = 0

DuL(ȳ, ū, p̄, µ̄1, µ̄2, µ̄3) = 0

and for almost all x ∈ Γ

µ̄1(x) ≥ 0

µ̄3(x) ≥ 0

µ̄2(x) ≥ 0

(ū(x) − ua)µ̄1(x) = 0

(ū(x) − ub)µ̄3(x) = 0

(ū(x) + γ(x)ȳ(x) − c(x))µ̄2(x) = 0.

Definition 5.2. The strongly active sets for problem (1.1), (1.2), (5.1), (5.2)
are

A1(δ1) := {x ∈ Γ : µ̄1(x) ≥ δ1}, (5.3)

A3(δ3) := {x ∈ Γ : µ̄3(x) ≥ δ3}, (5.4)

A2(δ2) := {x ∈ Γ \ (A1(δ1) ∪ A3(δ3)) : µ̄2(x) ≥ δ2}. (5.5)
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A pair (y, u) ∈ C(Ω̄) × L∞(Γ) belongs to the critical subspace, if

u = 0 on A1(δ1) ∪ A3(δ3), (5.6)

u+ γy|Γ = 0 on A2(δ2), (5.7)

and

Ay + y = 0 in Ω

∂nA
y − b̄y y = b̄u u in Γ. (5.8)

Again, (5.8) implies y|Γ = S′(ū)u.
(SSCBOX): There exist positive numbers δ, δ1, δ2, δ3 such that the definiteness

condition

L′′
(u,y)(ȳ, ū, p̄, µ̄1, µ̄2)[hy, hu]2 ≥ δ‖hu‖

2
L2(Γ) (5.9)

holds true for all (hy, hu) belonging to the critical subspace defined upon δ1, δ2, δ3.
Theorem 5.3. (Second-order sufficiency for box constraints and mixed con-

straints) Assume that (ȳ, ū, p̄, µ̄1, µ̄2, µ̄3) fulfils the first-order optimality system (FON-
BOX) and the regularity condition (R) is satisfied. If the second-order condition (SS-
CBOX) is satisfied, then there exist δs > 0 and ε > 0 such that the quadratic growth
condition

F (y, u) − F (ȳ, ū) ≥ δs‖u− ū‖2
L2(Γ) (5.10)

holds for all admissible pairs (y, u) with ‖u− ū‖L∞(Γ) < ε. Therefore, ū is a locally
optimal control in the norm of L∞(Γ).

This result can be shown along the lines of the Sections 3 and 4 with minor
modifications: For the upper control constraint, we find another estimate of the type
(3.20). In Section 4, A1 has to be replaced by A1 ∪ A3 and δ1 by min(δ1, δ3).
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[9] E. Casas, F. Tröltzsch, and A. Unger, Second order sufficient optimality conditions for

a nonlinear elliptic control problem, Z. für Analysis und ihre Anwendungen (ZAA), 15
(1996), pp. 687–707.

18



[10] , Second order sufficient optimality conditions for some state-constrained control prob-

lems of semilinear elliptic equations, SIAM J. Control and Optimization, 38 (2000),
pp. 1369–1391.

[11] A. L. Dontchev, W. W. Hager, A. B. Poore, and B. Yang, Optimality, stability, and

convergence in nonlinear control, Applied Math. and Optimization, 31 (1995), pp. 297–
326.
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