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1 Introduction

Modelling and simulation of complex processes in key technologies are the
main issues of the DFG Research Center. Being able to efficiently deal with
the complex models established and having the corresponding mathematical
basis available, engineers and practitioners are interested in optimizing these
models according to some objective. This is reflected by several scientific
projects in the Center. They cover various fields of optimization ranging
from discrete, nonlinear, or stochastic optimization to optimal control of
ordinary or partial differential equations. In some of the projects, different
fields interact and grow together.

Traditionally, Berlin is a good place to deal with optimization. All fields
mentioned above are covered by well known mathematicians working at one
of the scientific institutions in Berlin.

In this paper, we first introduce some basic ideas of nonlinear optimiza-
tion, aiming at guiding the reader from the calculus of variations started in
1696 to necessary optimality conditions for nonlinear optimization problems
in Banach spaces. Finally, we arrive at specific applied optimization prob-
lems which shall be the subject of study in the DFG Center. A detailed
presentation of all aspects of optimization that shall be treated in the Cen-
ter would go beyond the scope of this contribution. Therefore, we will only
shed light on a few selected projects contributing to the fields of stochastic
optimization and optimal control of partial differential equations, where the
two authors are engaged.
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Nonlinear optimization developed as an independent field of applied math-
ematics in the early fifties of the 20th century. It grew out of linear program-
ming, which had posed new questions in the field of extremal problems during
world war II, and had invented the simplex method. Over a long time this
method was the most successful numerical technique to solve optimization
problems. For a long period before, nonlinear optimization – in the sense
of extremal problems with equality constraints – has been part of calculus.
Each mathematician knows the well known Lagrange multipier rule for ex-
trema of differentiable functions subject to finitely many equality constraints.
This theorem is a compulsory part of each curriculum in calculus.

The situation becomes more difficult if more general constraints (e.g.,
inequalities) are given. Let us consider the nonlinear optimization problem
in finite-dimensional spaces,

(P1) minimize f0(x) subject to x ∈ C,

where f0 : IRm → IR is differentiable and C is a closed subset of IRm. Clearly,
the properties of the boundary of C can be crucial when characterizing a
solution to (P1). The boundary may have all kinds of curvilinear facets,
edges and corners. Hence, an approach to geometry that can cope with
such a lack of smoothness is needed. Such an approach, sometimes called
variational geometry, was developed by associating certain cones with each
point of C instead of the classical subspaces, [4, 37].

To characterize optimality for (P1) one makes use of the concepts of
tangent and normal cones to a set and of the regularity of a set. The sets

TC(x̄) :=
{

w ∈ IRm : w = lim
n→∞

xn − x̄

τn

for some sequences xn
C

−→ x̄, τn ց 0
}

NC(x̄) :=
{

v ∈ IRm : lim sup
x

C
−→x̄
x 6=x̄

〈v, x − x̄〉

‖x − x̄‖
≤ 0

}

are called the tangent cone and the normal cone, respectively, to C at some
element x̄ ∈ C. Indeed, the sets TC(x̄) and NC(x̄) are closed cones at every x̄
in C. In addition, the normal cone is convex and polar to the tangent cone,
i.e., NC(x̄) = {v ∈ IRm : 〈v, w〉 ≤ 0 for all w ∈ TC(x̄)}. The set C is said
to be regular at x̄ ∈ C, if for every v ∈ NC(x̄), there exist sequences (xn) in
C and (vn) with vn ∈ NC(xn) that converge to x̄ and v, respectively. If C
is regular at x̄, the cones NC(x̄) and TC(x̄) are polar to each other and the
tangent cone is convex, too. If C is convex, it is regular at any x̄ ∈ C and the
normal cone is of the form NC(x̄) = {v ∈ IRm : 〈v, x− x̄〉 ≤ 0 for all x ∈ C}.
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Now, a necessary condition for x̄ ∈ C to be a local minimizer of (P1) reads

0 ∈ ∇f0(x̄) + NC(x̄) . (1)

If x̄ is an interior point of C, it holds NC(x̄) = {0} and, hence, condition (1)
reduces to the classical Fermat’s rule ∇f0(x̄) = 0. If C is convex, condition
(1) is equivalent to the well known variational inequality

〈∇f0(x̄), x − x̄〉 ≥ 0 for all x ∈ C.

The latter condition is sufficient for x̄ to be globally optimal, if also f0 is
convex. In general, optimality conditions represent generalized equations.
If C is a set with constraint structure, it is possible to obtain explicit forms
for their normal cones at points where C is regular. This leads to Lagrange
multiplier formulations of optimality conditions. Let C be of the form

C = {x ∈ D : F (x) ∈ K},

where the sets D ⊆ IRm, K ⊆ IRd are closed and F = (f1, . . . , fd) : IRm → IRd

is continuously differentiable. Then one has

NC(x̄) ⊇
{

d
∑

i=1

yi∇fi(x̄) + z : y = (y1, . . . , yd) ∈ NK(F (x̄)), z ∈ ND(x̄)
}

(2)

at any x̄ ∈ C. The set C is regular at x̄ and equality holds in (2) if the
sets D and K are regular at x̄ and F (x̄), respectively, and the constraint

qualification

[

y ∈ NK(F (x̄)), −
d

∑

i=1

yi∇fi(x̄) ∈ ND(x̄)
]

=⇒ y = 0 (3)

or, equivalently,
TK(F (x̄)) + ∇F (x̄)TD(x̄) = IRd (4)

is satisfied, [37, 6.14 and 6.39]. In many applications the sets D and K are
convex and, hence, regular at any of their elements. D is often polyhedral,
containing simple constraints (e.g., bounds), and K is a polyhedral cone
given by finitely many inequalities and equations. In such cases the tangent
and normal cones are polyhedral and allow explicit representations.
If the above regularity conditions are satisfied at a local minimizer x̄ of (P1),
the optimality condition (1) implies the existence of ȳ ∈ NK(F (x̄)) such that

−
(

∇f0(x̄) +
d

∑

i=1

ȳi∇fi(x̄)
)

∈ ND(x̄). (5)
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If K is a convex cone, the condition ȳ ∈ NK(F (x̄)) is equivalent to F (x̄) ∈ K,
ȳ ∈ K− with K− denoting the polar cone to K and 〈ȳ, F (x̄)〉 = 0.
The latter result is known as the Karush-Kuhn-Tucker theorem [21, 24] or as
the Lagrange multiplier rule. The crucial conditions (3) and (4), respectively,
are usually referred to as (generalized) Mangasarian-Fromovitz constraint

qualifications.

Many real world or scientific extremal problems cannot be posed in finite
dimensional spaces. Often, functions x = x(t) of a certain variable t are
unknown rather than vectors x. One of the oldest examples of this type
is the famous Brachistochrone problem posed by Johann Bernoulli in 1696.
It considers a bead sliding frictionless under gravity along a smooth curve
joining two points A and B and asks what shape the wire should be such
that the bead, when released from rest in A, should slide to B in minimum
time. In this problem, now viewed as the starting point of the calculus of

variations, an optimal function has to be found, see [1] or [16]. Although
this first mathematical problem in function spaces was posed more than 300
years ago, nonlinear optimization in function spaces or – more general – in
Banach spaces came up only after the beginning of nonlinear optimization.
This theory investigates problems of the type

(P2) minimize f(x) subject to x ∈ C,F (x) ∈ K

where f : X → IR are F : X → Y are Fréchet differentiable mappings, X, Y
are Banach spaces, and C and K are closed convex subsets of X and Y ,
respectively. Today, the abstract theory of necessary optimality conditions
for optimization problems of the type (P2) is well developed. In particular,
the Lagrange multiplier rule

−∇xL(x, λ) ∈ NC(x̄), λ ∈ NK(F (x̄))

holds at a regular local minimizer x̄ of (P2) that is analogous to (5) for (P1),
[26, 8]. Here, L(x, λ) := f(x) + 〈λ, F (x)〉, for (x, λ) ∈ X × Y ∗, with Y ∗

denoting the dual to Y , is the Lagrangian of (P2).

This general class of problems covers many important mathematical opti-
mization problems. In particular, the fields of optimal control and stochastic

optimization belong to this class. Nevertheless, people working in optimal
control theory have experienced that a direct application of the abstract op-
timality conditions does often not provide satisfactory results. The reason
is that the dual spaces of Lagrange multipliers are not useful in many ap-
plications. Therefore, each class of optimization problems needs a special
theoretical treatment, guided by the abstract theory.

4



2 Nonlinear Optimization

2.1 Optimal Control

In optimal control, the unknown element x is a vector of two functions y
and u, x = (y, u). The function u denotes the control that must be chosen
optimally. For instance, think of the engines of a space craft that must be
fired such that the vehicle moves optimally. The function y stands for the
state of the physical system that is influenced by u. In optimal control,
except in discrete control systems, y is obtained as the solution of a system
of differential or integral equations.

Let us consider a simple academic example to explain the situation: An
oscillating pendulum should be stopped by a controllable force in minimum
time, see [27]. In mathematical terms, the problem reads

(P3) min T

y′′(t) = −c1 sin(y(t)) + c2 u(t)

y(0) = y0 y(T ) = 0

y′(0) = y1 y′(T ) = 0

|u(t)| ≤ umax.

Here, y is the deflection angle of the pendulum, t ∈ [0, T ] denotes the time,
c1, c2 are certain constants, and y0, y1 are the initial values for the angle
and the angular velocity. This is a characteristic example of optimal control
of ordinary differential equations, and it is formally clear how this problem
is related to the optimization problem in Banach spaces defined above: The
function f corresponds to T , the mapping F with the cone K = {0} covers
the differential equation together with the initial- and terminal conditions,
while C is formed by the functions u with maximum absolute value umax.

Today, it is no challenge to solve this simple problem numerically. A
linearized version, where sin(y) is approximated by y, can be solved even
analytically. The associated theoretical basis is the Pontryagin Maximum

Principle, a fundamental result belonging to the greatest achievements of
applied mathematics in the 20th century, [30].

In some sense it is a generalization of the Lagrange multiplier rule for
optimization problems in Banach spaces and provides an optimality system

containing the equations of (P3) for y, an adjoint differential equation for an
adjoint state w, and the so-called maximum condition for u, all being mutu-
ally coupled. This optimality system is the basis of direct methods to solve
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optimal control problems numerically. The optimal control of ordinary differ-
ential equations has many applications, for instance in space flight, aviation,
robotics, chemical processes or in the generation of electrical power.

There were so many phenomena that could not be appropriately modelled
by ordinary differential equations that the investigation of optimal control
problems for partial differential equations soon came into play. The associ-
ated theory is more difficult, and the numerical solution of such problems is
still a challenge for practitioners and mathematicians. One of the most im-
portant monographs on this subject is the well-known book [25]. It did not
take long and interesting applications were discussed. We refer, for instance,
to [10], where several industrial problems were considered.

Let us explain the situation by an academic problem again. Consider a
3-dimensional bounded domain Ω ⊂ IR3 standing for a body of metal that
should be heated in an optimal way. We assume that the energy is produced
by induction heating so that the controlled heat source u appears in the body
Ω. The temperature at a point x ∈ Ω is denoted by y(x), while yd = yd(x)
stands for a desired steady-state temperature in Ω to be generated. This
problem is modelled by the following optimal control problem for the Poisson
equation:

(P4) min
∫

Ω

(y(x) − yd(x))2dx

subject to

−∆y(x) = u(x) in Ω

y(x) = yΓ(x) on Γ

and
0 ≤ u(x) ≤ umax.

Here, yΓ is the temperature at the boundary Γ of Ω, which is assumed to be
known.

Although this problem is very simple and yet academic, from a mathe-
matical point of view it covers main aspects of the problems posed in some
projects of the DFG-Center. Among other states, in these projects the tem-
perature plays the most significant role too, and it is obtained as the solution
of a heat equation. The control appears as a source term in the right-hand
side of the heat equation. Moreover, inequalities are given as additional
constraints.

Real-world equations are more difficult to handle than the simple Pois-
son equation in (P4). In the projects of the DFG-Center they form nonlin-
ear systems for different state functions, hence the theory of existence and
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uniqueness is more difficult. Also, their numerical solution is a real challenge.
Consequently, associated optimal control problems are not easy to handle.
Their discretization leads to very large scale optimization problems which
require special algorithms to be solved. Another specific difficulty arises
from the presence of so-called pointwise state-constraints, i.e. of inequality
constraints imposed on the state function y.

2.2 Stochastic Optimization

Stochastic optimization is concerned with models that require an optimal
decision on the basis of given probabilistic information on random data. We
refer to [31, 7] for introductory textbooks and to [45] for a recent state-of-
the-art volume. To give an idea of such models, let {ξt}T

t=1 be a discrete-time
stochastic data process on some probability space (Ω,F , IP) with ξt : Ω →
IRst . The stochastic decision xt : Ω → IRmt at period t is assumed to be
nonanticipative, i.e., to depend only on ξt := (ξ1, . . . , ξt). With Ft ⊆ F
denoting the σ-algebra generated by ξt, we have Ft ⊆ Ft+1 for t = 1, . . . , T −
1. Furthermore, we assume that F1 = {∅,Ω}, i.e., that the data ξ1 at t = 1 is
deterministic, and that FT = F . We assume that ξt ∈ L1(Ω,F , IP; IRst) and
xt ∈ L∞(Ω,F , IP; IRmt) for each t = 1, . . . , T . Then the nonanticipativity
condition may be expressed by the subspace

Nna = {x ∈ ×T
t=1L∞(Ω,F , P ; IRmt) : xt = IE[xt|Ft] , t = 1, . . . , T}

using the conditional expectation IE[·|Ft] with respect to the σ-algebra Ft.
We consider the stochastic optimization model

(P5) min IE
[

T
∑

t=1

ct(ξt, xt)
]

s.t. x ∈ Nna, xt ∈ Xt(ξt), gt(ξt, xt, xt−1) ≤ 0,

where the sets Xt(ξt) are nonempty and compact, ct and gt are affine linear
functions in each variable, and IE denotes expectation w.r.t. IP.

(P5) represents an infinite-dimensional optimization problem. It becomes
finite-dimensional if Ω is finite, i.e., Ω = {ωs}S

s=1 and F is the power set of Ω.
Let ξs

t := ξt(ωs) be the data scenario s at time t, xs
t the decision scenario s at t,

and ps := IP({ωs}) the probability of scenario s. Then the nonanticipativity
condition x ∈ Nna can be expressed by a finite number of linear equality
constraints for the decision variables xs

t (e.g. using finite partitions Et of Ω
that generate Ft). Then the stochastic program (P5) takes the scenario form

min
S

∑

s=1

T
∑

t=1

psct(ξ
s
t , x

s
t ) s.t. x ∈ Nna, xs

t ∈ Xt(ξ
s
t ), gt(ξ

s
t , x

s
t , x

s
t−1) ≤ 0.

7



Such optimization models contain ST vectorial decisions, about 3ST con-
straints and, hence, are large scale. The number S is typically large as it
comes from an approximation or sampling procedure, and, thus, the model
is extremely huge in most cases and requires specific solution approaches.
As Ft is contained in Ft+1, each element of Et can be represented as the
union of certain elements of Et+1. Representing the elements of Et by nodes

and the above set relations by arcs leads to a tree that is called scenario

tree. It is based on a finite set N ⊂ IN of nodes, where n = 1 stands for
the root node at period t = 1. We denote by n− the unique predecessor of
node n, by path(n):={1, . . . , n−, n} the path from the root node to node n
with length t(n) := |path(n)|, by Nt := {n : t(n) = t} the nodes at time t
and by N+(n) the set of successors to node n. By {πn}n∈NT

:= {ps}S
s=1 and

πn :=
∑

n+∈N+(n) πn+
, n ∈ N , we assign probabilities to each node.

s
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s

s

q

t = 1

q

t1

q

t(n)

q

T

Scenario tree with t1 = 2, T = 5, |N | = 23 and 11 leaves

Let {ξn}n∈Nt
and {xn}n∈Nt

denote the realizations of ξt and xt, respectively.
Then the scenario tree form of the stochastic program (P5) reads

min
∑

n∈N

πnct(n)(ξ
n, xn) s.t. xn ∈ Xt(n)(ξ

n), gt(n)(ξ
n, xn, xn−) ≤ 0.

The dimensions of the scenario tree form are considerably smaller than in the
previous formulation, as the number |N | of nodes is much smaller than TS
and the nonanticipativity constraints are incorporated into the tree struc-
ture. The models exhibit special structures, but are still of enormous size.
The standard algorithmic approach in stochastic programming is, conse-
quently, decomposition, [6, 43]. While primal decomposition approaches need

8



convexity to become efficient for reasonably large models, dualization tech-
niques seem to work well in large scale nonconvex situations, too. Dual de-
composition approaches circle around duality results for stochastic programs
(see [36] for classical work in this direction). They are based on Lagrangian
relaxation of certain groups of constraints and on solving the corresponding
Lagrangian dual by subgradient-type methods. For instance, relaxing the
nonanticipativity constraints leads to scenario decomposition, and relaxing
component coupling constraints to component or geographic decomposition
(see [41] for details). Hence, the specific decomposition strategy depends
on the model structure and, in the nonconvex case, on the size of the rel-
evant duality gaps, [11]. By means of the recursive dynamic programming

construction

fT (y1, . . . , yT , ξ(ω)) :=
T

∑

t=1

ct(ξt(ω), yt),

ϕt(y1, . . . , yt, ω) := IEr[ft(y1, . . . , yt, ξ(·))|Ft](ω),

ft−1(y1, . . . , yt−1, ξ(ω)) := inf
y

ϕt(y1, . . . , yt−1, y, ω),

for t = T, . . . , 2 and for each ω ∈ Ω and feasible yτ , τ = 1, . . . , T , the original
stochastic program can be shown to be equivalent to the nonlinear program

(P6) min IE[f1(x1, ξ)] s.t. x1 ∈ X1(ξ1)

for determining the (deterministic) decision x1 ∈ IRm1 at t = 1. Here, IEr[·|Ft]
denotes the regular conditional expectation, which represents a version of
IE[·|Ft] satisfying special measurability properties. This procedure works un-
der quite weak measurability and boundedness assumptions, [14].
The nonlinear program (P6) serves as a basis for stability studies of the orig-
inal stochastic program (P5). It is called stable at the underlying probability
distribution P of ξ if the optimal values and solution sets of the latter program
behave continuously for small perturbations of P in some spaces of measures
equipped with some probability metric. The corresponding analysis is based
on general perturbation results of optimization problems [5, 8, 37]. We refer
to [40] for bibliographical notes on the stability of stochastic programs and
to [32] for a systematic theory of probability metrics. Stability properties
justify the approximation or estimation of P by simpler (e.g. finitely dis-
crete) measures. In [33, 40] certain ideal probability metrics for stability are
associated with specific classes of stochastic programs. They may be used
directly or as a guide for constructing scenario tree approximations to P .
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3 Optimal Control of PDEs and Stochastic

Optimization in the DFG-Center

3.1 Production of silicon carbide bulk single crystals

The control of PDEs plays a role in a number of projects of the DFG-Center.
In particular, this concerns the application of optimization methods in re-
gional hyperthermia, methods of model reduction for various kinds of PDEs,
and the optimization in crystal growth. To give the reader an impression,
we concentrate here on the latter project.

Silicon carbide (SiC) bulk single crystals have important applications in
key technologies (MESFETs, thyristors, LEDs, lasers, sensors, etc.), espe-
cially in high power, high frequency, high temperature, or intensive radiation
environments. The main procedure for their production, the Physical Vapor

Transport method, employs an induction-heated graphite crucible containing
polycrystalline SiC source powder and an SiC single crystal seed cooled by
means of a blind hole. The system is kept in a low pressure inert gas at-
mosphere and is heated up to temperatures between 2000 and 3000 K by an
induction coil located around the crucible (see Figure below).
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�����������SiC Soure Powder�1

Blind Hole for Coolingand MeasuringGraphite Cruible
Indution Heating

Gas Mixture�3 SiCseed �2
High temperature and low pressure let the SiC powder sublimate, adding

species such as Si, Si2C, and SiC2 to the gas phase. The crystallization
occurs at the cooled seed, which thereby grows into the reaction chamber.
Quality and growth rate of the crystal strongly depend on the evolution of
temperature distribution, mass transport, and species concentrations. The
research group of Prof. S. Sprekels (WIAS) has a long standing cooperation
in modelling and simulation of these processes with the Institute of Crystal
Growth (IKZ) Adlershof .

It is a challenging technological aim to optimize quality and growth rate
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of the crystals by adjusting the control parameters. In the DFG-Center, this
issue will be considered in research groups headed by O. Klein, J. Sprekels
(WIAS) and A. Rösch, F. Tröltzsch (TUB).

We explain the situation for a simplified model where the optimization
aims at generating a radially constant temperature profile in the growth
chamber Ωg, i.e., ∂θ/∂r = 0 should hold in Ωg. This gives rise to the problem

(P6) min
∫

Ωg

T
∫

0

H(θ(x, t) − θmin, crystal)
(∂θ

∂r
(x, t)

)2

dx dt

(H: Heaviside function) subject to

ρ c(θ)
∂θ

∂t
= div (k(θ) grad θ) + u in Ω × [0, T ],

k(θ)
∂θ

∂n
= σ (θ4

a − θ4) on Γo × [0, T ],
(

(k(θ)∇θ)gas − (k(θ)∇θ)solid

)

· n = R − J on Γi × [0, T ],

θ(x, 0) = θ0 in Ω

and

θ(x, t) ≤ θ(x′, t) ∀x ∈ Γ1, ∀x′ ∈ Γ2, ∀t ∈ [0, T ],

θmin ≤ θ(x, t) ≤ θmax ∀x ∈ Ω, ∀t ∈ [0, T ],

θmin, crystal ≤ θ(x, T ) ≤ θmax, crystal ∀x ∈ Γ2,

δ + θ(x, T ) ≤ θ(x′, T ) ∀x ∈ Ωsource, ∀x′ ∈ Γ2,

0 ≤ P (t) ≤ Pmax ∀t ∈ [0, T ].

In this setting, the following quantities are used: The domain Ω (covering
crucible and growth chamber Ωg), the domain Ωsource of the SiC source, the
boundary Γi = Γ1 + Γ2 + Γ3 of Ωg including the surface of the SiC source Γ1

and the surface of the SiC seed crystal Γ2 (Figure xx), the outer boundary Γo

of the crucible, outer temperature θa, initial temperature θ0, and the average
power P (t) of the induction coil. The number δ is a temperature difference
to be established between SiC source and seed, and [θmin, crystal, θmax, crystal]
constitutes the temperature range leading to the growth of the desired SiC
polytype. Moreover, the so-called radiosity R and the irradiation J occur.
Both quantities depend on integrals containing θ and other quantities. There-
fore, the heat equation is given with a non-local boundary condition.

In a more realistic setting, the boundary conditions in the blind holes are
different from those posed at the other parts of the crucible. Moreover, the
heat equation is oversimplified. Being more precise, it admits different forms
in Ωg and Ω \ Ωg.
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The function u = u(x, t;P ) stands for the heat source generated by in-
duction heating. It depends on a scalar magnetic potential Φ that is obtained
from Maxwell’s equations, where the average power P (t) plays the role of the
actual control. We do not specify all these equations and associated bound-
ary conditions here. We only state that a mapping P 7→ Φ 7→ u is provided
by the solution of Maxwell’s equations. Under more realistic assumptions,
the heat equation and Maxwell’s equations are mutually coupled. In the sim-
plified case of decoupling, all functions u form a set of admissible auxiliary
controls which, in some sense, can be precomputed.

Compared with the optimization in regional hyperthermia, we see some
similarities, but also additional difficulties. The state equations are quasi-
linear too, but now we have a coupled system of PDEs consisting of the
instationary heat equation for θ and Maxwell’s equations for induction heat-
ing. Moreover, certain diffusion equations modelling the transport of chem-
ical substrates and equations for chemical reactions have to be considered
additionally. Nonlocal boundary conditions are given. Altogether, the phys-
ical behaviour of the process is modelled by a highly nonlinear system of
equations. Their analysis is a challenge in itself. The numerical analysis
including all aspects of optimization is even more complicated, since also
pointwise state constraints are given.

It is clear that the analysis of this problem must begin with simplified
models. The same concerns the numerical optimization. Having solved the
simplified problems, more difficulties can be included to finally approach the
problem in its full generality.

The investigations do not have to start from scratch. We refer to [9, 22, 23,
29] (modelling and simulation of crystal growth), [35] (Pontryagin principle
for the control of semilinear parabolic equations with state-contraints), [34]
(associated second order sufficient optimality conditions), and [2, 17, 44, 42],
(numerical analysis and application of the SQP Method).

4 Stochastic Optimization in the DFG-Center

4.1 Electricity portfolio management under risk

Traditional models in stochastic programming and in stochastic power man-
agement are based on minimizing costs or maximizing expected revenues.
Typically, such models do not reflect the risk of decisions. In power utilities,
portfolio and risk management are often considered separate tasks. Recently,
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it was proposed to unify earlier approaches to risk modelling, to identify rea-
sonable properties of risk (e.g. coherence, convexity), to develop a theory of
risk measures, [3, 15], and to incorporate risk functionals into stochastic pro-
gramming models, [38]. Incorporating risk into the objective or constraints
of stochastic programs may change their structural and stability properties
and algorithmic approaches, [39, 40]. Accordingly, the first challenge consists
in identifying favourable properties of risk functionals for the stability and
computations of/in mean-risk stochastic programming models. Here, mean-

risk stands for models containing expectation and risk terms in the objective
or constraints.
Let us consider a German power utility that
owns a hydro-thermal generation system and
acts in the liberalized electricity market. The
utility aims at decisions on production and
trading electricity such that its profit is maxi-
mized and all operational constraints are met.
Corresponding (deterministic) optimization
models were regularly solved for short- and
mid-term time horizons in the past. Dur-
ing the last years the utilities were confronted
with new challenges. The former mostly bi-
lateral power contracts are now supplemented
by a variety of electricity contracts at power
exchanges. Due to the increasing role of com-
petition and trading, the stochasticity of data
(e.g. electricity prices and electrical load) be-
comes more and more important.

Thermal power plant

Let I be the set of power generation units and contracts (also called units in
the following), respectively, and T be the number of time periods in the time
horizon (day, week or year). Let ξ = {ξt}

T
t=1 be the multivariate stochastic

data process, pit the stochastic decision (vector) for unit i at time t and Si(ξ)
the set of constraints for the decision of the single unit i. The vector pit may
contain a {0, 1}-component to model an on/off-decision (e.g. in the case of
thermal generation units). The sets Si(ξ) may depend on the data process e.g.
in the case of a hydraulic unit with stochastic inflow. They typically contain
bounds for each period and dynamic constraints (e.g. for the operation of
reservoirs of hydraulic units and minimum up/down conditions for thermal
units). In addition, there is a set C(ξ) describing equilibrium, reserve and
group constraints that couple the output of different power units. With
ri(ξt, pit) denoting the (stochastic) revenue of the decision pit at unit i and
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time t, the electricity portfolio management model is of the form

(P9) max IE
[

∑

it

ri(ξt, pit)
]

subject to pi ∈ Si(ξ), p ∈ C(ξ),

when the expected total revenue is to be maximized. As such an objective
may lead to decisions with enormous risk, one might be led to replacing
the objective function by some other risk measure IF (instead of IE) of the
stochastic total revenue

∑

it ri(ξt, pit) or to introducing additional risk con-
straints.
If the functions ri(ξt, ·) are piecewise linear concave (which can be assumed
in most practical cases), the portfolio management model (P9) represents a
large scale linear mixed-integer stochastic program. It can be solved by a
Lagrangian relaxation strategy for the constraints in C(ξ), which leads to a
decomposition into single unit subproblems, and by a subsequent Lagrangian
heuristic [18, 19]. If, however, risk terms enter the model, this decomposition
technique has to be modified or may even fail.

Furthermore, the methods for constructing scenario trees for such mean-
risk models that have to be developed must be adapted to the structural
properties of the optimization model and of the risk term(s). Recent stability
studies in [33, 40] offer certain ideal probability metrics that may be used
for such constructions. Extending the work in [19], this methodology will be
used to construct multivariate load, spot price and inflow trees.

The project on mean-risk models in electricity portfolio management in
the DFG-Center will be directed by W. Römisch (HUB) and R. Henrion
(WIAS). All algorithms mentioned above will be implemented and tested on
real-life data of power exchanges and of the hydro-thermal generation system
of the cooperation partner E.ON Sales & Trading GmbH.

4.2 OD optimization in airline revenue management

Revenue management aims at controlling the sale of inventory under uncer-
tainty such that the (expected) profit is maximized, [28, 46]. Since its foun-
dation, airline revenue management has concentrated on optimizing booking
control parameters on a single flight (leg) level. However, many character-
istics are not leg-specific (e.g. the uncertain passenger demand), but de-
pend on origin-destination itineraries. Hence, the performance of leg-based
approaches is limited and optimization methods that work on the origin-
destination (OD) level are needed. But, the presently available OD opti-
mization methods [46] have some shortcomings in common (e.g. unrealistic
assumptions, ignoring the integer nature of the model, separation of related
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tasks).

A new stochastic programming approach for OD optimization that applies
to general stochastic passenger demand processes, i.e., without restrictive
assumptions on the underlying probability distribution, shall be developed.

Let us consider an airline network at a specific
day consisting of sets I of origins, J of destina-
tions and L of legs. For each leg l ∈ L we have
Kl booking classes. Let fi,j,k denote the fare
associated with a passenger in the OD mar-
ket from the origin i to destination j in book-
ing class k. The airline wishes to select the
booking limits (i.e., the maximum number of
available seats) for all booking classes and legs
such that the expected profit is maximized.

Hence, stochastic programming models for static OD optimization are of the
form

(P10) max IE
[

∑

i,j,k

fi,j,kxi,j,k

]

subject to 0 ≤ xi,j,k ≤ di,j,k ,
∑

k

xi,j,k ≤ cli,j ,

where xi,j,k and di,j,k are the booking limit and the demand, respectively,
from i to j in booking class k. By cl we denote the capacity of leg l ∈ L and
li,j denotes the leg in L that is relevant for the OD market from i to j.
Dynamic OD optimization models are of particular importance in the airline
industry as they take into account that the customer’s willingness to pay
tends to increase if t gets closer to T and, thus, discount fares are made
available for those who make reservations early. In such models the revenues,
the demand processes and the booking limits also depend on the booking
time t, starting at the initial time t = 0 and ending at t = T , i.e., the day
of departure. As a result of dynamic models the airline obtains answers on
the optimal booking limits at the initial time and on their change over time
until t = T . Clearly, such models are large scale linear stochastic integer
programs.

The mathematical challenges for solving OD optimization models con-
sist in the design of solution algorithms and in the approximation of the
multivariate stochastic booking demand process {di,j,k,t}k,t for each OD pair
(i, j) ∈ I × J . Due to the huge size of the models, algorithms have to be
based on suitable decomposition strategies. The choice of a decomposition
method depends on the model structure, the subproblem complexity, and
also on duality gap estimates, [11, 41]. The construction of scenario tree
approximations of the stochastic processes {di,j,k,t}k,t is based on historical
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data of the OD network at relevant days. Many approaches for constructing
scenario trees use ideas from cluster analysis [12]. The approach described in
[19] combines the clustering of scenarios and scenario reduction techniques
[13, 20], where both components are based on a probability metric measuring
the distance of multivariate probability distributions. This approach leads to
(almost) optimal tree constructions, i.e., to best approximations with respect
to the probability metric. An important requirement for such constructions
is, in particular, that the procedure works without assuming independence
of the demand for different booking classes and time periods, respectively.

The project on OD optimization in airline revenue management will be
directed by W. Römisch (HUB). The whole solution method will be im-
plemented and tested on real-life data of the company Lufthansa Systems
Berlin. The stochastic programming model will also be compared with ear-
lier approaches in airline revenue management.

References

[1] N.I. Akhiezer. The Calculus of Variations, Ginn (Blaisdell), Boston, 1962.

[2] N. Arada, J.-P. Raymond, and F. Tröltzsch. On an augmented Lagrangian
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[18] N. Gröwe-Kuska, K.C. Kiwiel, M.P. Nowak, W. Römisch and I. Wegner.
Power management in a hydro-thermal system under uncertainty by La-
grangian relaxation, in: Decision Making under Uncertainty: Energy and
Power (C. Greengard and A. Ruszczyński eds.), IMA Volumes in Mathemat-
ics and its Applications Vol. 128, Springer, New York, 2002, 39-70.
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