Flow control with regularized state constraints
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Summary

We consider the distributed optimal control of the Naviewkes equations in pres-
ence of pointwise state constraints. A Lavrentiev rega#ion of the constraints is
proposed and a first order optimality system is derived. Egelarity of the mixed
constraint multiplier is investigated and second ordefigaht optimality condi-
tions are studied. In the last part of the paper, a semi-gmgewton method is ap-
plied for the numerical solution of the control problem andrerical experiments
are carried out.

1 Introduction

In the recent past, optimal control of fluid flow has becomettmaetive multidisci-
plinary research field with a wide range of ongoing and pramgiapplications. The
optimization problems in this context consist in minimgiar maximizing an ob-
jective functional (e.g. drag, lift, etc.) subject to thenstitutive fluid flow equations
and additional control and/or state constraints.

The controls involved are usually considered in distriddtem on a sub-domain
or as boundary condition acting on some wall sectors. Whigedesign of bound-
ary controls is technically posible, the implementatioraddistributed control ac-
tion presents important difficulties. Lately, an incregsattention has been paid to
this kind of controls, mainly within the field of magneto-hgedynamics (MHD).
Weakly conductive fluids are controlled through the actibh.arentz forces, in-
duced by magnetic fields (see [17, 25]).

Let us briefly comment on the literature. The distributedropt control problem
of the Navier-Stokes equations has been mathematicallyzathand numerically
studied in many research papers, see for example [1, 3, 106143]. In these arti-
cles optimality conditions and/or numerical methods fa $lution of the control
problem were discussed. The same topics were consideretheftooundary opti-
mal control problem, in [6,10, 12,13]. In [6, 12, 13] Diriehicontrols were studied,



while in [10] the action of Neumann boundary conditions waktigated. In pres-

ence of pointwise control constraints, optimality coratis and numerical methods
have been treated in [4, 15, 24]. In particular semi-smoawvtdn methods have

been applied in this context (see [6, 15, 24]).

In presence of pointwise state constraints the problem dé@eved much less
attention. The mathematical analysis of the optimal cdmroblem has been con-
sidered in [5] and [9] for the stationary and time dependeablems, respectively.
In [7] the numerical solution utilizing a penalized probléogether with a semi-
smooth Newton method has been studied.

In this paper we consider a bounded two-dimensional domaix R? and
pointwise state constraints of box type

alw) < y(x) < b(z), (1.1)

wherey = (y1,y2) stands for the velocity vector field. These constraints iare i
posed in order to reduce backward flow and, consequentlynsimrecirculations.

Among other applications, such restrictions can have awitapt effect in avoiding

flow separation or reducing the drag of a body.

For the numerical solution of the control problem we propamsavrentiev reg-
ularization of the pointwise state constraints, i.e. wesider the modified box con-
straints

a(z) <y(z) +eu(z) <blz), e>0. (1.2)

Due to the mixed nature of the pointwise constraints (1/8,dorresponding
Lagrange multiplier is expected to be more regular thanérstate constrained case
(cf. [5]). It is also expected that, astends to zero, the solutions converge to the
optimal solution of the state constrained problem (see€)[18]

Based on the methodology developed in [19] for semilinelgstEl equations,
we locally reformulate the mixed problem as a control cais#d control problem
in a new variable. After that, necessary and sufficient aiovs for optimality are
studied. Also, thanks to the efficiency of semi-smooth Newteethods for nonlin-
ear control constrained optimal control problems (cf. fg) lwe apply a method of
this type for the numerical solution of the control problem.

The outline of the paper is as follows. In Section 2, the optioontrol prob-
lem is stated and existence of a global optimal solution igied. In Section 3, the
problem is reformulated as a control constrained optimatrod problem and first
order necessary optimality conditions are obtained. Sefftcconditions of second
order type are the topic of Section 4. In Section 5, a semiegimblewton algo-
rithm for the solution of the problem is stated. Reports omarical experiments
are summarized in Section 6.



2 Problem statement and existence of solution

Consider a bounded regular doma&@nc R2. Our objective is to find the optimal
controlu™ and its associated stagé, solution of the following problem:

min J(y,u) =1 [ |y — za|* dv + & [ |u|? dx
7 2
subject to
—vAy+(y-V)y+Vp=u (2.1)
divy=20
ylr =g
a<eu+y<ba.e,

wherea > 0, ¢ > 0 is the Lavrentiev regularization parametey,is the desired
state,g is a hon-homogeneous Dirichlet boundary condition atd, b(-), with
a(z) < b(z), are the lower and upper constraint functions, respegtiidle con-
stanty > 0 stands for the viscosity coefficient of the fluid aRd := 1/v for its
Reynolds number.

It is well known that there exists a solution for the statign@vo-dimensional
Navier-Stokes system (cf. [21]). Moreoveryifis sufficiently large o, sufficiently
small, an appropriate estimate and uniqueness of the @olate obtained.

Next, we verify the existence of an optimal solution for oantrol problem. For
that purpose let us define the set of admissible solutions

7.4 = {(y, u) which satisfy the restrictions in (2.3})
Theorem 1 If 7,4 is non-empty, then there exists an optimal solution for (2.1).

Proof. We refer to [8, p. 3].

In the previous result the existence of a feasible solutias wssumed. This
hypothesis makes sense, since no pure control constraiitsvalved. In presence
of control constraints the admissible set could possiblgrety.

3 First-order necessary optimality conditions

Once the existence of an optimal solution is verified, it ipartant to derive con-
ditions that characterize any local solution of the optatian problem. To this aim
a necessary condition involving first order derivativestiamed. This condition
takes the form of a system of partial differential equatifavier-Stokes and ad-
joint equations) coupled with a nonlinear complementarigblem.

Let us consider the interior of the set of controls for whichréque associated
Navier-Stokes solution exists and let us denote this sét.bgtroducing the control-
to-state operato€; : u — y(u) that assigns to each € U the corresponding



Navier-Stokes solutiop(u), problem (2.1) can equivalently be expressed in reduced
form as

mingey J(u) = 3 [|G(u) — zq)* dz + £ [ |ul? do
o) 2 (P)

subjecttoa < eu + G(u) < ba.e. inf2.

Let us introduce the constamt(y) := sup W
veV I8 vl de

space of divergence free square integrable functions, sgttare integrable weak
derivatives, that vanish at the bounddrylf v > M (y(u)), it can be verified that
the control to state operatGtis twice Fréchet differentiable atand its derivatives
w := G'(u)h andz := G"(u)[h)? are given by the unique solutions of the systems:

, whereV is the

—vAw+ (w-V)y+ (y-Vw+Vr=h
divw =0 (3.1)
w|p :O

and

Az + (2 V)y + (y- V)2 + Vo= —2(w- V)uw
divz =0 (3.2)
Z|F =0.

The idea now consists in reformulating proble®) (in a new variabley :=
eu+ G(u) and treat it as a control-constrained optimal control peoblin order to
express: as a function ob we consider the operator

F:(v,u) —eu+Gu) —v

and the solvability of the equatiafi(v, u) = 0.
It can be verified (see [8]), that there are constanis > 0 such that for

eachv with ([, [v — v*|? d:c)l/2 < 79, there exists a unique := K (v) with
([ lu—u*]? dx)1/2 < r such that

eK(v) + G(K(v)) =wv. (3.3)

Moreover, sincé" is twice continuously Fréchet differentiable, the imfilfanction
theorem also implies thak is twice continuously Fréchet differentiable. Let us
denote byK" (v)[¢, ] the second derivative df in directions¢ andn and introduce
K" (v)[€]? := K" (v)[¢, £]. Taking the first and second derivatives on both sides of
(3.3) in directiore yields

(e + G (K () K (v)§ = ¢, (3.4)
(e + G'(K ()K" (v)[¢]* = —G" (K (v))[K' (v)¢]*, (3.5)



which implies that
K'(v) = (e + G'(K(v)))™

and
K"()[g]* = —(e + G'(K(v))) "' G" (K (v))[K' (v)&]*.
Locally aroundu™*, our control problem can therefore be formulated as:
min 7 (v) =: J(y(K(v)), K (v))

subjectto a < v < ba.e. (Pr)
v € By, (v*).

Next an optimality system which characterizes the solsttor(P) is stated. The
proof is given in the Appendix.

Theorem 2 Let v* be a local optimal solution of (P) with v > M (y(u*)). Then
there exist adjoint variables \, ¢ and Lagrange multipliers ., w such that

—vAY* + (y*-V)y* 4+ Vp=u”
divy* =0 (3.6)
y'lr =g,

—VAXN— (4 VAN (VYN + Vg = 24 —y* + pta — 1

div\* =0 (3.7)
N =0,
A —au® = e(up — pa), (3.8)

a<eut+y* <b,
Ha s ,UbZOa

/,uai(ai—su;‘—yf)d:vz/ubi(bi—su;‘—yf)d:v:O, fori=1,2.
0 0

(3.9)

Optimality systems are important to understand the regylef the control,
state and adjoint variables and to apply a wide variety of enical methods for
the solution of the optimization problem. If no inequalitgnstraints are present,
the system can be solved as a system of partial differerdist@ons. In general,
however, it is constituted by the state equations, the atggjuations and a nonlin-
ear complementarity system and, in this case, additiontioas for the solution of
complementarity problems have to be considered.



4 Second order sufficient condition

Next, we turn to second order sufficient optimality condigdor problemP). This
type of conditions allows the identification of a stationpoint (a solution to opti-
mality system (3.6)-(3.9)) as a minimum for the optimal cohproblem. Addition-
ally, they are of importance in the convergence analysis @ftdn type methods
applied to the optimization problem.

Following [19], the idea consists in utilizing the secondarsufficient optimal-
ity properties of the pure control constrained problét)(and translate them to the
original setting. By introducing the Lagrangian

E(y,u,/\):J(y,u)—i—l// V/\:Vydm—i—/(y-V)y-/\dm—/)\-uda:,
2 2 2

the equivalence of its second derivative with the one of #tuced functional?
can be verified. The second derivative of the reduced costifumal in directiont
therefore satisfies” (v*)[¢]? = L£" (y*, u*, \)(w, h)?, whereh = K'(v*)¢ andw
is the solution to (3.1) wittk on the right hand side.
Let us now introduce the set of strongly active constraiits := {z € 2 :
|i ()| > 7} and the critical cone
vi(z) =0ifx € A,
Cr =S vel?Q): v(x) >0ifvj(z) = anz & A,
vi(x) <0if v (z) = b, o & Ars
For the investigation of optimality for a given stationasj(y*, u*) let us hereafter

assume that for some> 0 the following second order condition holds: there exist
7> 0,0 > 0 such that

L (y* u*, ) (w, h)? > 6/ |n|? da, (SSCQ)
Q

for all (w,h) € C-, whereC consists of all pair¢w, h) such that system (3.1) is
satisfied andh +w € C,.

Theorem 3 If »* is a stationary point of (7) and (SSC) holds for some § > 0,
7 > 0, then there exist constants p > 0 and o > 0 such that

Jyu) > Iy ") + o / i — P da @.1)
(9]

for all (y,u) suchthaty = G(u),a < ecu+y <band ([, |u— u*|2dm)l/2 <p.
Proof. See [8, p. 10]

Remark 4 For the analysis of second order numerical methods, a stronger condi-
tion is needed: there exist constants ~ > 0, § > 0 such that

L (y* u*, N (w, h)? > (5/9 |h|? da (SSC)

for all pairs (w, h) that solve (3.1)and satisfy ¢h; +w; =0on A, ;, fori =1,2.



5 Semi-smooth Newton method

In this section we propose a semi-smooth Newton method éomtimerical solution
of (P). These generalized Newton methods for nonsmooth equsatienbased on
the notion of Newton differentiability, which, differegtfrom othe differentiability
concepts, allows to prove local superlinear convergentieeimethod (cf. [14]).

For the application of the method to the optimality systen®)-83.9) we intro-
duce the variable = (y,u, A, ¢, u), with o := pp — p,. The system can then be
reformulated as an operator equatibf) = 0 and a semi-smooth Newton step is
given byG(z)dx = —T'(z1), where G is the Newton derivative @f.

In our case the difficulty is given by the complementarityteys(3.9). Using the
max andmin functions, this problem can be reformulated as the opeeafoation

= max(0, u + c(v — b)) + min(0, u + c¢(v — a)) (5.1)

for all ¢ > 0. The Newton differentiability of thenaxz andmin function then imply
the Newton differentiability of the whole system. The dative candidates

1if y(z) >0

ity <o
0if y(z) < 0 Gmin(y)(2) = { >0, (5.2)

Gmaz(y)(2) = { 0if y(z)

constitute Newton derivatives afax (0, y) andmin(0,y), respectively (cf. [14]).

By choosinge := «/£? in (5.1) and considering the derivatives (5.2), the com-
plete algorithm can be formulated as an active set strategugh the following
steps.

Algorithm 5

1. Initialize the variables wug, v, po=0 and set k=1.
2. Until a stopping criterion is satisfied, set for i=1,2

Ay = o™ G (e g = ) > 0,
Ap = Sl g — ) <0},
TP = O\(A}, UAL).
and find the solution (y,p,\ ¢q) of:

—vAy; + Yl Oy + s Oayi + 101y T+ y20ayl

%(bz - yi) on .AZT
+0p = yp oy s Oyl T+ A on 10
%(ai — %) on Agl

di v y; =0
yi|F:g



1
—VvAN + =\ — ylal)\?_l — 9232/\?_1—?/?_131)\1' —yn T N + MOyt
€
X0y NI 01 + AT Oiya+0iq = za — yi — Yy AT
- (bz — yz) on Ag‘l

=2
—yy T AT NPT Oy N T oy L on 77
S(a;—y;) on Ay
div )\ =
)\i|p =0

Set (y",p",A",q") = (y,p, A\ @), ui =% on I, pu"=
(A" —au™), and goto step 2.

Note that the system to be solved in step (2) correspondsetmphimality
system of a quadratic control problem with affine constrmibinder the satisfac-

tion of the second order conditio'6C) and if ([, [V(y" ' — y*)|? dac)l/2 and

(o VA= =) dac)l/2 are sufficiently small, convexity of the optimization
problem can be argued. Therefore, under these conditibass exists a unique
solution for the system in step (2). Sufficient conditionsléxal superlinear con-
vergence of the semi-smooth Newton method applie@®)cefe investigated in [8].

6 Numerical results

For the numerical tests, a "forward facing step channel” widized (see Figure 1).
The fluid flows from left to right with parabolic inflow condith and "do nothing”
output condition. In the remaining boundary parts an homegas Dirichlet con-
dition was imposed. The geometry was discretized usingggstad grid and an
upwinding finite differences scheme was applied. The bemafithe uncontrolled
fluid flow with Reynolds numbeRe = 1000 is depicted in Figure 2. Two main re-
circulation zones, which increase their size together thighReynolds number, can
be clearly identified from the graphic. These results candséied experimentally
(see [2, 20]).

The target of our control problem is to properly diminish tieeirculations of
interest by considering, together with the tracking typstdanctional, adequate
pointwise control-state constraints.

For the solution of the optimality system, Algorithm 5 wasizéd. The semi-
smooth Newton algorithm stops when the state increment iolower than1 0.
Unless otherwise specified, the mesh step 1/240 was considered. For the solu-
tion of the linear systems, Matlab’s exact solver was gdiz



0.5

0 0.5 1

Figurel Forward facing step channel.

Figure2 Streamlines of the uncontrolled state.

6.1 Examplel

In this first experiment we consider the elimination of bugsbin the channel by
imposing the constraint; + su; > —10~7. Fore sufficiently small, this constraint
avoids backward flow in the channel and thus possible rdeaitions. Additionally,
the tracking type component of the cost functional is resgma for a more linear
behavior of the flow field. The remaining parameter dataagtiliareh = 1/240,
Re = 1000, = 10~* anda = 0.1. The semi-smooth Newton method (SSN) stops
after 9 iterations, with the final active set containing 2&l gmoints. The cost func-
tional takes the final valué(y*, v*) = 0.00445224 and the NCP function residuum
the value2.2737 x 10~?. The optimal control field is depicted in Figure 3, where the
concentration of the control action on the recirculatione®can be observed. The
desired recirculation diminishing effect of the controhdae visualized from the
plot of the reached controlled state streamlines in Figuile Zable 1 the number
of SSN iterations, the final cost functional value and the sizthe active set are
registered for different values. It can be observed thatsatends to 0, the problem
becomes harder to solve and more SSN iterations are required

Subsequently we consider the limit case where the trackipgpart of the cost
functional is dismissed. We aim to find the control of minimaorm that allows
the satisfaction of the state constrajnt+- cu; > 10~7 over the domain of interest.
As before, the constraint takes care that no important baakWow arises. By
considering the constraint on the whole domain, §2e. = {2, both recirculations
before and after the step are diminished (see Figure 5). Figure 5 it can also be



Figure3 Example 1: control vector field with tracking component.

Figure4 Example 1: streamlines of the controlled state with tragkiomponent.

Table 1 Example 1: h=1/2400l = 10~".

e [SSNiter] J(y*,u") []A“ U A |
1071 5 0.00399972 33
107%] 6 |0.00410360 42
10°°] 8 |0.00438278 29
10°* 9 0.00445224 28
107° 9 0.00445989 32




observed that the behavior of the fluid flow, mainly beforedtep, is not as closer
to a Stokes flow as in the case where the tracking type comp@present (see
Figure 4). From the control vector plot (see Figure 6) it canobserved that the
control action in this case is even more concentrated ondbieculations zones.
The parameter values for this case &e = 1000, = 10~* anda = 0.1. The
number of SSN iterations needed is 29 and the cost functiakes the final value
8.99816 x 10~

Figure5 Example 1: streamlines of the controlled state withoutkirag component.

Figure6 Example 1: control vector field without tracking component.

In many practical cases, the recirculations reductioniorieation on the whole
domain is not necessary, if not undesirable. In such casestéte constraint may
be imposed in the sectors where the bubble to be diminish&xtédized. In the
case of our geometry the essential recirculation to be dééd is the one after
the step. By considering the state constraint on the subitiofha:= [0.5,0.75] x
[0.25,0.5], this elimination is attached with the cost functional es8LH8898 x 10—+
in 6 SSN iterations. The final controlled state is shown iruFég7, where it can be
observed that the recirculation after the step is numdyietiminated, although the
one before the step becomes bigger than in the uncontraks ¢



Figure7 Example 1: streamlines of the controlled state withoutkiregz component; state
constraint subdomain.

6.2 Example 2

As an alternative strategy for the reduction of the recatioh after the step, we

consider in this example a state constraint that guaraateesmogeneous outgoing
velocity. The constraint imposed is + cu; < 1.7 and the remaining parameter
values areRe = 1000, ¢ = 1072 anda = 0.01. In this case, the SSN algorithm
stops after 15 iterations and the resulting active set am 2283 grid points. The

cost functional takes the final valugy*, «*) = 0.003470768. The controlled state

is depicted in Figure 8, where an important reduction of #xrculations can be

visualized.

Figure8 Example 2: streamlines of the controlled state

Since the outgoing velocity is the quantity of interestsinhatural to consider
the case where the constraint is imposed only in the lastgigtie channel. By
considering the domaif?s := [0.5,0.75] x[0.25, 0.5], the recirculation diminishing
effect does also take place (see Figure 9), but with a lowal ¢wst functional value
J(y*,u*) =0.0031112131. The SSN algorithm stops after 10 iterations with a final
active set containing 906 active points. The remainingipater values are the same
as in the cas€g = (2.



Figure9 Example 2: streamlines of the controlled state; state cainstsubdomain.

7 Conclusion

In this paper the optimal control problem of the Navier-&®lkquations with reg-
ularized pointwise state constraints of box type was camsidl The problem was
mathematically analyzed, yielding optimality conditicofsfirst and second order.
A semi-smooth Newton method for the solution of the probleas wroposed. For
the numerical realization a forward facing step channelemasidered and a finite
differences scheme was utilized for the partial differ@rgquations involved.

The results show that the state constrained approach siest@ereducing the
recirculations of interest. This happened in the case wtiereonstraint held all
over the domain and also in the more realistic case, whenstrestricted to a sub-
domain. Both limiting backward flow and imposing a more hoergpus outgoing
velocity profile showed a positive effect with respect tamadation reduction

Distributed controls are currently applied in magneto+ioydynamic problems,
where the results obtained here can be used. It seems alsiblpds extend the
analysis to the case of boundary optimal control problentis state constraints.

Appendix: Proof of Theorem 2

We consider the space of square integrable function@,arenoted by.?(£2), and
introduce the bold notation for the product of spaces. Weotiehy (-, -) the inner
product inL?(£2) and by||-|| the associated norm. Sineg& is a locally optimal
solution of (P), we get for some: > 0 that J(y*,u*) < J(y(u),u), for all u €
B, (u*) with a < eu + y(u) < b. Equivalently, sinces = K (v) holds locally,
Jw*) < J(), forall v € B,,(v*) with a < v < b, and for an appropriate
constanty > 0. Therefore, the following first order necessary conditidiofes

T ) (v—2")>0,Va<v<bh (7.1)
Applying the chain rule, the derivative gf(v*) in direction¢ € L2(£2) is given by

(J'(v),8) = (" = za, &' (u") K" (v")€) + (™, K’ (v7)§), (7.2)



which, by h := K'(v*)¢, yields (J'(v*),€) = (y* — zq4, G'(u*)h) + a(u*, h).
Denoting byu € L2(£2) the Riesz representative ef7’(v*) and using explicitly
the derivative ofl” we obtain(u, £) = (i, (e+G' (u*))h) = e(p, h)+(u, G'(u*)h).
Therefore, equation (7.2) is equivalent to

(y" = za+ p, G'(u")h) + (au” +ep, h) = 0. (7.3)

We now consider the adjoint equations (3.7). Since, by Hyggisy > M (y*),
the ellipticity of the adjoint operator can be easily vedfand, therefore for; —
y* — u € L2(02), there exists a unique solution € V for the adjoint system.
Consequently, equation (7.3) can be rewritteh asau® = ep.

Utilizing the decompositiop = i, —fta, With p == py = 3 (p+|p|) and pg :=
pi— = 2(—p + |pl), where|u| = (|ual,|p2|)”, the optimality condition (7.1) can
be rewritten ag.J’(v*),v*) = ming<y<p{(fta.1,v1) — (o1, v1) + (Ha,2,v2) —
(ub,2,v2)}. By fixing the second component of the new control variable= v
and considering the mutual disjoint s€ts : p, 1(x) > 0} and{z : pp1(z) > 0},
we obtain that 7’ (v*), v*) = (pa,1,a1) — (b1, 01) + (fa,2,v5) — (p2,v5) and,
consequently(iq 1, a1 —eui —yi) — (t,1, b1 —eut —yi) = 0. Fixing now the first
component o and proceeding in a similar manner we get that s, ax — eub —
y3) — (o,2, b2 —eud —y3) = 0. Taking into account that, by definitiop,,, 1, > 0
componentwise, the complementarity system (3.9) follows.

References

[1] F. Abergel and R. Temam: On some control problems in flusthanicsTheoretical
and Computational Fluid Mechanics, 303-325, 1990.

[2] T. Ando and T. Shakouchi: Flow characteristics over fard/facing step and through
abrupt contraction pipe and drag reducti®es. Rep. Fac. Eng. Mie Univ., Vol. 29,
1-8, 2004.

[3] E. Casas: Optimality conditions for some control prabéeof turbulent flowsFlow
control (Minneapolis, MN, 1992), IMA Vol. Math. Appl., 68, 127-147, Springer
Verlag, New York, 1995.

[4] J.C. delos Reyes: A primal-dual active set method fatkilally control constrained
optimal control of the Navier-Stokes equatioNsimerical Functional Analysis and
Optimization, Vol. 25, 657-683, 2005.

[5] J. C. de los Reyes and R. Griesse: State constrained aptiontrol of the station-
ary Navier-Stokes equations. Preprint 22-2005, Instibfitdathematics, TU-Berlin,
2005.

[6] J. C. de los Reyes and K. Kunisch: A semi-smooth Newtorhoefor control con-
strained boundary optimal control of the Navier-Stokesagigns,Nonlinear Analy-
sis: Theory, Methods and Applications, Vol. 62, 1289-1316, 2005.

[7] J. C. de los Reyes and K. Kunisch: A semi-smooth Newtorhoafor regularized
state constrained optimal control of the Navier-Stokesaggqos, Computing, Vol.
78, 287-309, 2006.

[8] J. C. de los Reyes and F. Troltzsch: Optimal control ef $kationary Navier-Stokes
equations with mixed control-state constraints. Pref@22005, Institute of Mathe-
matics, TU-Berlin, 2005.



9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

H. O. Fattoriniand S. S. Sritharan: Optimal control deshs with state constraints in
fluid mechanics and combustiofypplied Math. and Optim., Vol. 38, 159-192, 1998.
M. D. Gunzburger, L. Hou, and T. P. Svobodny: Analysigl dimite element ap-
proximation of optimal control problems for the station&tgvier-Stokes equations
with distributed and Neumann controldathematics of Computation, Vol. 57, 195,
123-151, 1991.

M. D. Gunzburger and S. Manservisi: Analysis and appnation of the velocity
tracking problem for Navier-Stokes flows with distributeshtrol, SSAM Journal on
Numerical Analysis, Vol. 37, 1481-1512, 2000.

M. D. Gunzburger and S. Manservisi: Analysis and appnation of the velocity
tracking problem for Navier-Stokes flows with boundary cohtSIAM Journal on
Control and Optimization, Vol. 39, 594-634, 2000.

M. Heinkenschloss: Formulation and analysis of setjpequadratic programming
method for the optimal Dirichlet boundary control of Navi&tokes flow,Optimal
Control (Gainesville, FL, 1997), Kleuver Acad. Publ., 178-203, Dordrecht, 1998.
M. Hintermiller, K. Ito, and K. Kunisch: The primal duactive set strategy as a
semi-smooth Newton metho8,AM Journal on Optimization, Vol. 13, pp. 865-888,
2003.

M. Hintermuller and M. Hinze: A SQP-semi-smooth Newttype algorithm applied
to control of the instationary Navier-Stokes system suhfeaontrol constraints,
submitted.

M. Hinze and K. Kunisch: Second order methods for optig@ntrol of time de-
pendent fluid flow,SSAM Journal on Control and Optimization, Vol. 40, 925-946,
2002.

M. Hinze: Control of weakly conductive fluids by near Wabrentz forces, SFB609-
Preprint-19-2004, Sonderforschungsbereich 609, TechaidJniversitt Dresden,
2004.

C. Meyer, A. Rosch and F. Troltzsch: Optimal contrélRDEs with regularized
pointwise state constraints. Preprint 14-2003, Instiaft®athematics, TU-Berlin,
2003.

C. Meyer and F. Trdltzsch: On an elliptic optimal casitproblem with pointwise
mixed control-state constrainfRecent Advancesin Optimization. Proceedings of the
12th French-German-Spanish Conference on Optimization, Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 563, pp. 187-204n§er-Verlag, 2006.

H. Stuer:Investigation of Separation on a Forward Facing Sep, Ph. D. Thesis, ETH
Zurich, 1999.

R. Temam:Navier Sokes Equations. Theory and Numerical Analysis, North Hol-
land, 1979.

F. Troltzsch:Optimalsteuerung bei partiellen Differentialgleichungen, Vieweg Ver-
lag, 2005.

F. Troltzsch and D. Wachsmuth: Second order sufficitimality conditions for the
optimal control of Navier-Stokes equations, to apped3AlM: Control, Optimisa-
tion and Calculus of Variations.

M. Ulbrich: Constrained optimal control of Navier-&&s flow by semismooth New-
ton Methods Systems and Control Letters, Vol. 48, 297-311, 2003.

T. Weier, G. Gerbeth, G. Mutschke, O. Lielausis, G. Laansn Separation control by
stationary and time periodic Lorentz forces, SFB-Pre[8FB609-03-2004, Sonder-
forschungsbereich 609, Technische Universitt Dresde®4 20



