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Abstract. In this paper, optimal control problems for semilinear parabolic equations with
distributed and boundary controls are considered. Pointwise constraints on the control and on
the state are given. Main emphasis is laid on the discussion of second order sufficient optimality
conditions. Sufficiency for local optimality is verified under different assumptions imposed on the
dimension of the domain and on the smoothness of the given data.
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1. Introduction. This paper is a further contribution to the theory of second
order sufficient optimality conditions for optimal control problems governed by non-
linear partial differential equations. We consider the control of semilinear parabolic
equations with pointwise constraints on the control and the state. Recently, Casas,
Troltzsch and Unger [6] have discussed second order sufficient conditions for the
boundary control of semilinear elliptic equations with pointwise state-constraints. It
is convenient, to formulate this class of constraints in spaces of continuous functions,
hence the associated Lagrange multipliers are Borel measures. The presence of mea-
sures in the adjoint equation causes a low regularity of the adjoint state. This fact is
crucial in the analysis of second order sufficient optimality conditions. In particular,
restrictions on the dimension of the domain had to be imposed in the elliptic case, if
pointwise state constraints are given in the whole domain.

In the parabolic case, the situation is even more complicated. If pointwise state-
constraints are formulated on the whole domain, then the sufficiency of second order
conditions can be proved only for distributed controls appearing linearly in domains
of dimension one. Therefore, we also investigate special types of controls, where the
regularity of the control-state mapping is better. Moreover, other types of integral
state-constraints are discussed. In this way, we are able to deal with problems in
domains of higher dimension, although the basic difficulty of low regularity cannot be
entirely solved.

The theory for parabolic equations differs from the elliptic case mainly in the
regularity of the solutions, while many other aspects are identical. In view of this,
we shall heavily rely on the results presented in [6]. Some proofs can be adopted
word for word from associated theorems stated therein. Hence we will concentrate
on specific features of parabolic problems rather than to repeat lengthy constructions
being analogous to [6].
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Second order optimality conditions for control problems governed by semilinear el-
liptic and parabolic equations have received a good deal of attention in the past years.
We refer to Goldberg and Troltzsch, who deal with the one-dimensional parabolic case
without state constraints in [9], and admit in [10] a particular type of state-constraints
in higher dimensions. Moreover, we mention Casas, Troltzsch, and Unger [5] and Bon-
nans [2], who investigate different aspects of the elliptic case subject to constraints on
the control. We also refer to a recent paper by Bonnans and Zidani [3], where elliptic
control problems with state-constraints are considered. The extension of sufficient
conditions to state-constraints was discussed in [6], while [4] is concerned with the
problem of second order necessary conditions for state-constrained elliptic problems.

Our paper is organized as follows: After formulating the control problem and
stating assumptions in section 2, corresponding first order necessary optimality con-
ditions are recalled, which are known from the literature. Next, the regularity of
states and adjoint states is discussed in detail. Then we deal with the important
problem of constraint qualifications in connection with certain linearizations of the
problem. The main results on second order sufficient conditions are formulated in
section 6. In the last part of the paper, we investigate different choices of functionals,
state-constraints and dimensions, where we are able to verify the sufficiency of our
second order optimality conditions.

2. The optimal control problem. We consider the problem (P)
min J(y, v, u) fF t,y(z,t)) du(z,t) -|-ffm Jy(z, 1), v(2, 1)) dedt

+£g Jy(e,t), u(x, b)) dS( ) di

subject to
(y+ + Ay)(z,t) + d(z, ¢, y(z,t),v(2,t)) =0 inQ
(2.1) Ovay(z,t) + bz, t,y(z,t),u(z,t))=0 onX
y(z,0) —yo(x) =0 in Q,
(22) v € Vad; uc Uad)
(2.3) E(y) € K.

In this setting, Q C R" is a bounded domain with sufficiently smooth boundary T,
Q=0x%x(0,7), L =T x (0,7). The mapping F : Q x [0,7] x R — R™ and the
measure g € M(Q;R™) express different types of observations.

Some cases of interest are specified below. The operator A is a second order elliptic
operator, @, stands for the conormal derivative with respect to A, d : Q x R? - R

and b : ¥ x R? 5 R define the nonlinearities of the state-equation, and y, € C(Q) is
a given fixed initial state.

The control set V4 (respectively Uaq) is supposed to be nonempty, convex, closed
and bounded in L (@) (respectively L°°(X)). They will be specified below. E denotes
a regular mapping from C(Q) into a real Banach space 7, while K is a nonempty
closed convex subset K in 7.

The following choice of F' fits into this setting:

F = (Fi)i<i<m, #=(fi)i<i<m
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where F; are continuous function on @ x R, u; = 5(317“) for 1 < ¢ < ky (with

(@i, ;) EQ), i = 0p, @dt for k1 +1<i<m-—1 (with z; € Q), pm = dz ® ép. This

choice corresponds to

toy(e, 1)) dp(e,t) = S0 Fy(eq, ti,y(zi b +ka+1 (2, y(xi, 1)) dt

+ [ Fn(2, T y(2z,T)) dz.
Q

‘0|H

To formulate second order optimality conditions, with the control set V4 (resp.
Uaa), we associate a space V' D L®(Q) (resp. U D L*(X)) whose structure depends
on Vaq (resp. Usd). The control sets Voq and Uaq are assumed to have one of the
following forms.

(i) Vaa = {v € L®(Q) |va < v < wp ace. on Oy, suppv C Oy}, V = L2(0,),
Usa = {u € L () |ug < u < up ace. on @, suppu C O,}, U= L2(0,),

where O, is an open subset in @, and O, is an open subset in X, functions v, < v
are given in L°(Q), functions u, < up are given in L°°(X). The space LZ(0,) (resp.
L2(0y)) is the subspace of functions in L%(Q) (resp. L*(X)) with support in O, (resp.

0. |L2(x))-

Ou), endowed with the norm || - ||L2(¢g) (resp. | -
An important particular case of (i) is given by
(ii) Vaa = {v € L=(Q) |va < v < wvp ace. on Q} and V = L2(Q),
Usg={u € L®(E)|ug <v<upae onX}and U= LQ(E).
Another meaningful control set is

(iii) Vaa = {v € L=(Q) | v(z,t) = >, v'(t) es(2), vl < v’ < vl ae. on (0,7)},
and V = L%(0,T; L°°(Q)). The functions e; € L°(Q), and v} < vi € L=(0,7),i =
1,..,£4, are given. For instance, Ufilﬁi C Q, ¢; = xq,, where yq, is the charac-
teristic function of €;, 1s meaningful for certain practical applications. Analogous
constructions work for U,q and its associated space U.

The following state constraints fit in our setting:
(iv) e(z,t,y(z, 1)) <0 on Q, with 7 = C(Q,),
where @), C @ (in particular, @, = @ is possible in some cases).
(v) e(zi,t,y(xi, 1)) <0,i=1,..,1, Z = C([0, T|; RY,
(vi) e(z, Z,y(m“ ) <0,i=1,..,1, 7 =R,
(vii) [ e(z,t,y(z,t))dz <0 on [0,7], Z = C([0,T]),
(viii) IQ a:,t, y(z,t))dzdt <0, Z = R.
Combinations of these types are possible as well.

In all what follows, D denotes gradients with respect to (y,v) or (y, u), respectively.
For instance, Dd = (dy,d,), Db = (by,b,). Hessian matrices w.r. to (y,v) or (y,u)
are denoted by D?. For example, we write

dyy(x,1,y,v) dyy (2,1, y,v)
2 _ yy\Ly & Y, y s U Yy
D d(l';t;y; ’l)) — <dyy(1',t,y, 1}) dfufu(.’lf,t,y, ’l)) .

We need the following General Assumptions.
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(A1) The boundary T is of class C2. The elliptic operator A is defined by

N

Ay(z) = = > D; (aij(x) Djy(x)),

i,j=1
where the a;; € C17(Q) satisfy, for some positive m,,

N

Z azj(x)&:& > m, €)%,

i,j=1

(A2) (i) The function d = d(z,t,y,v) : Q x R? = R is a Carathéodory function. Tt
is supposed to satisfy the following assumptions of smoothness:

— For almost all (z,t) € Q, d is of class C? with respect to (y, v).

— For all M > 0 there is a constant ¢3; > 0 and a continuous monotone nonde-
creasing function 7 : [0,00) = R¥ with 5(0) = 0 (not depending on M) such that

|D?d(-, y1,v1) — D*d(-, ya, va) || Lo (@srax2) < eamr n(lyr — ya| + |v1 — va))
for all (y;,v;) € R? with |y;| < M, |v;| < M, i =1,2. Moreover,
||D2d('a 0, O)HL""(Q;RE“) +{|Dd(-, 0, O)HL""(Q;RE) +[ld(-, -, OaO)HL"(Q) <c¢B

holds with some constant c¢g and some ¢ > N/2 + 1.

(i) The function f = f(z,t,y,v) is supposed to satisfy the above conditions with
the same constants cps and cp.

(iii) Analogous conditions are imposed on b = b(z,t,y,u) and g = g(z,t,y,u)
on ¥ x R? with the same constants, where L*(X) is substituted for L¢(Q) with some
s>N+1.

Let us fix ¢ > N/2+ 1 and s > N + 1 throughout this paper.

(iv) The mapping F and all entries of DF, D?F are assumed to be continuous
on @ x R. Moreover, F is supposed to satisfy Lipschitz conditions analogous to those
imposed on d.

(A3) (Monotonicity) Let ¢mar denote a common L®-bound for all controls in V,4
and Ugq. We assume the existence of a real constant ¢, and of functions di € L(Q),
by € L*(X) such that

dy(z,t,y,v) <emdi(z,t) ae on @

co <
co < by(z,t,y,u) <cpbi(z,t) ae onl

holds for all real v, u satisfying maz{|v|, |u|} < emaz-

Before defining the mapping F, let us introduce the spaces

d
W(O,T) = {y € L2(0, 75 H'(Q)| 7 € L2(0, 75 (' (@)},
(see Lions and Magenes [12]) and

YV ={y e W(0,7) |y + Ay € L(Q), dr,y € L' (%), y(0) € C(Q)}
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endowed with the norm

llly = llyllw o7y + llye + Aylla(@) + 10v2¥llze(z) + [[9(0)ll ¢y

Since ¢ > % + 1 and s > N + 1, the embedding of Y into C(Q) is continuous. We
refer to [7] and [15].
For each pair of admissible controls the state system (2.1) admits a unique weak

solution y € C(Q) N L?(0,7; H'(Q)). Tt belongs to Y [15]. To formulate the next

general assumption, we need a special second order space and its corresponding norm:

Yo={yeW(O0,T)|ys+Aye€V, d,,yc U, y(0) =0}

lllv. = llye + Ayllv + 10,4yl

(A5) The mapping F : C(Q) — 7 is of class C%. For a fixed reference state § we
assume the existence of a positive constant c¢g such that

IE"(9) yllz < cE l|ylly,
IE"(9)[y, wll|lz < ce lyllyv, [|w]ly,
|E" (y1) y — E'(y2) yllz <ewm |y — v2llv. [|yllv.
1" 1
H(E" (y1) = E"(y2) [y, wlllz < ear n(|ly1 = v2llze= (@) [1¥llvz [[w]ly,

for all y, w € C(Q) N Y2, and all y; € C(Q) N Y2 with ||yi||c(§) <M,i=1,2

We should mention at this point that (A5) is a very hard restriction. This point
is addressed in section 7.

3. First order necessary optimality conditions. Let us write our control
problem as a problem of differentiable optimization in Banach spaces. To do so, we
introduce the control-state mapping G: (v, u) — y from L*®(Q) x L (X) to Y. Then
problem (P) admits the form

(3.1) min J(G(u,v),u,v) subject to (v,u) € Vaq x U, E(G(v,u)) € K.

Second order sufficient optimality conditions should be applicable to locally optimal
solutions of the problem that are not necessarily globally optimal. Therefore, we
do not discuss the existence of optimal controls by standard techniques, since this
problem is concerned with the existence of global optima. We just assume once and
for all that a fixed (y,v,u) € Y X Vaq X Uaq is a local solution for (P).

The mapping G is Fréchet differentiable from L*°(Q) x L*(X) into Y. Its deriva-
tive y = G'(v, u)(v, u) is obtained by solving the linearized equation

yr + Ay +dy(y,v) y+ do(y,9) v =0
(3.2) Oyay+by(y,u) y+bu(y,u) u=0
y(0) = 0.

The linearized cone of Vyq X Uyq at (T, ) is the set

C(, ) = {(v,u) € L (Q) x L°(S) | (v,u) = p (i — 3, ii — ),
(ﬁ EVdXUadap>O}:U2 ( dXUdd_{(vaﬂ)})'
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In the same way, the conical hull of K — E(§) is introduced by
KEG)= |J rlk-E@)})
p>0,kEK
In our abstract setting, the feasible set M of (P) has the form
M=A{(y,v,u) |y =G(v,u), E(y) € K, (v,u) € Vag X Uaa}.
Its linearized cone at @ = (§, T, @) is defined by
LM, 3) = {(y,v,u) | (v,u) € C(7, ), E'(§)y € K(E(y)) where y solves (3.2)}.

It is well known that a regularity condition is needed to derive first order necessary
optimality conditions in a qualified form. We shall work with the following regularity
condition (R), adopted from Zowe and Kurcyusz [19],

(R) E'(y)G'(v,u)C(v,u) — K(E(y)) = Z.
If (g, 7, ) obeys the regularity condition (R), then there exists a Lagrange multi-
plier A € 7* fulfilling the complementary slackness condition

(33) <H—E(g),)\>zxz* <0 VekeK
and the variational inequalities
(3.4 [ (@9 - pu@ o= D) dedi 20 o€ Vi
Q
(35) / (gu (ga ﬂ) - ﬁbu(g; ﬂ))(u - ﬂ) dS(I)dt > 0 Vue Uad;
b

where the associated adjoint state p is the weak solution of

—pi+ A p+dy(y,0)p = (F, ()" n+ F'(9)" Nlg + fy(y,0)  inQ
(3.6) Oy +by(y, ) p = (Fy(y)" u+ E'(9)"N)[c + gy (y,u) on X
B(T) = (Fy(@) n+ E'(G)* Vg, in Q.

The terms (Fy(g)*p+E’(g)*5\)|Q, (Fy(y

) u+E' ()" Nls, and (Fy (9)* n+E' ()" Vg,
respectively denote the restriction of the measure F, (y)*p + E'(§)*X to @, ¥, and
to Qp = Q x {T}. The measure F,(§)*u + E'(§)* X is defined by (z, Fy(9) p +

E'(g)*A>C(§)XM(5) =(Fy(9)z, ”>C(§)><M(§) + (E"(§)z, A)zxz~ for every z € C(Q).

The adjoint state p belongs to LS(O, T; Wh(Q)) for every § > 1,6 > 1 satisfying
% + 15 < év—é + %, see Theorem 4.3. Therefore p belongs to L? (@) and p|s belongs to
L (%),

The adjoint equation (3.6) and the variational inequalities (3.4), (3.5) may be
expressed by means of a Lagrange function

L(y,v,u,p, 5\) =J(y,v,u) — f(yt + Ay +d(y,v)) pdadt

—J(&,Ay +C;))(y, u))pdSdt + (E(y), Nzxz-.

More precisely, the adjoint equation (3.6) is equivalent to £, (y, 7, 4
y € Y satisfying y(0) = 0, and the variational inequalities (3.4), (3

to

(3.7 Lwu)(y,v,4,p, ) ((v,u) — (5,3)) >0 for all (v,u) € Vaa X Uga.

y Uy )

) are equivalent

.7, A) y = 0 for all
%)
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4. Regularity results for the state and the adjoint equations. The conti-
nuity in Y5 x V x U of the quadratic form £"(g, 9, @, p, A)[(y1, v1, 1), (Y2, va, ua)] plays
a crucial role in the second order analysis (see section 6). This continuity property
depends on regularity results for the adjoint state p and for solutions of the linearized
state equation with source terms belonging to V' and U. In order to deal with dif-
ferent choices of state-constraints, state-observation, and control sets (see section T),
here recall some regularity results for the adjoint equation and the linearized state
equation. Consider the linear equation

wtAy+tay=v

(4.1) dvay+Py=mu
y(0) =0,

where a belongs to L= (@) and § belongs to L™ (X).

THEOREM 4.1. Let y be the weak solution of 4.1. (i) Distributed control. Suppose
that v € L3(Q) and u = 0. Then the mapping v b—) y 18 continuous from L2(Q) to
L7(0,T5 L7 () for every 7 > 2, r > 2 satzsfymg + < 2r + 2 L + 1. Moreover, the
mapping v — y|s is continuous from L%(Q) to L"(O T L"( )) for every o > 2, 0 > 2
satisfying % .
If v belongs to L%(0,T; L>(Q)) and if u = 0, then the mapping v — y is continuous
from L2(0,T; L>=(Q)) to C(Q).

(ii) Boundary control. Suppose that v = 0 and u belongs to L*(X). Then the mapping
u > y is continuous from L%(X) to L7 (0,T; L"(Q)) for every ¥ > 2, r > 2 satisfying
Nol <« X4 L. The mapping u — yly, is continuous from L?(X) to L%(0,T; L°(T))
for every & > 2, o > 2 satisfying % < % + %

If v = 0 and u belongs to L?*(0,T; L>°(X)), then the mapping u — y is continuous
from L2(0,7T; L°°(X)) to L7(0,7T; L°(Q)) for every ¥ < co. Moreover, the mapping
u > yls is continuous from L2(0,T; L°°(X)) to L7(0,7; L>=(I")) for every & < co.

Proof. The above regularity results for y may be obtained as in Propositions 3.1
and 3.2 of [17] (see also [11]). Using the same method as in [17], regularity results
for y|s in L?(0,7; L°(T')) may be obtained with classical trace theorems, by proving
regularity results in L°(0,7; W*°(I')), for some k > % a

Next, we analyse the regularity of the adjoint state. The adjoint equation is of
the form

—-p+A'ptap=jqg in@Q
(4.2) OysuptPp=py onX
p(T) = fir in QJ

with 0 = 4(5,0) € 17(Q), ) =h(3) € L¥(3). o ~ (R0 + B0 Vo +
My(Q), ps € Mb( , BT € M(Q x {T}). The regularlty of p clearly depends on
the regularity of fig, fixz and fir. In the cases we consider here, the term f, (7, 7) is
always more regular than fig, and the term g, (¥, u) is always more regular than fx.
For the simplicity of the analysis, we suppose that either [Fy(y)*ulq and E'(y)* /_\|Q
belong to the same Lebesgue space or that both the terms are measures. The same
simplifications are assumed for boundary and conditions.

TuroreM 4.2. (Integrable data) (i) Let jig be in L7 (0,7 L7(Q)), is = 0 and
fir = 0. Then the weak solution p of 4.2 belongs to L%(0,T; L%(Q)) for every & > 7,
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a > r satisfying év—r—{—l: < %—{—%—{—1, Moreover, the trace p|x; belongs to Lé(O, T; LP(T))
for every B > r, B> r satisfying % + i: < NQ—El + % + 1.
(ii) If ig = 0, jix belongs to L7 (0,T; L7(T)) and jir = 0, then the weak solution p of
4.215in L%(0,T; L*(Q)) for every & > &, a > o satisfying Nz;1 —{—%—{—% < %—Fé—{—l,
Moreover, its trace p|s is in LP(0,T; LP(T)) for every B > & f > o satisfying
el <83 +2+44

20 G 20 8 2 )
(iii) Suppose that ig =0, fix = 0 and fip € L"(Q). Then p belongs to L*(0,T; L*(Q))
for every & < oo, a > r satisfying % < % + é Moreover, the trace p|s is contained
in LP(0,T; LP(T)) for every B > F, B > r satisfying % < Nz—? + %

Proof. The proof is similar to the one of Theorem 4.1. O

TuroreM 4.3. (Measures as data) Let fig + fix + fir be in My(Q \ Q x {0}).
Then the weak solution p of 4.2 is contained in L%(0,T; L*(Q)) for every & > 1,
a > 1 satisfying % < % + % Moreover, the trace p|s belongs to LP(0,T; LP(T')) for
every B > 1, B> 1 satisfying % < NQ—,_Bl + —év

Proof. The first part of the theorem is stated in [14]. The regularity result for
the trace may be obtained by combining the techniques in [14] and [17]. O

5. Regularity condition and linearization. Since our control problem is
written as a problem of differentiable optimization in Banach spaces, we can take
advantage of the results stated in [6]. Due to Theorem 4.1, the operator G'(v, u) is
continuous from L?(Q) x L*(X) to Y, and from V x U to Ya, that is

1G"(@, @) (v, u)lly, < e([lv

v+ [[uflo).

As before, we regard our fixed reference triplet w = (y, ¥, i) satisfying together

with (p, A) the first order necessary optimality system and the regularity condition
(R). Further, we define the norms

(v, w)[|oe = [[v]|zoe @) + [Jullnoe(my,
(v, w)llr= = [Jvllv + [|uflv-

The next result is completely analogous to Theorem 4.2 in [6].

TuEOREM bH.1. If the regularity condition (R) is satisfied, then for all triplets
(y,0,u) € M there is a triplet (y,v,u) € L(M,w) such that the difference r =
(r¥,r,r%) = (y,0,u) — (§,0,u) — (y,v,u) fulfils the estimates

(61) Iy sreigyerecs) < Cull(E @) = (7, D)llue (16 = llzag) + i — )
and
(5.2) I 1l + 11", r)lee < Cr(0, @) — (v, @)||pee [|(0, ) — (v, 1)z

Proof: The proof is almost identical with that of Theorem 4.2 in [6], which was
performed for an elliptic optimal control problem in the abstract form (3.1). The
only difference to our setting appears in the concrete meaning of the mapping G. In
[6], G : u s y is the solution operator associated to the elliptic problem

—-Ay+y=0, Ov,y = by, u).
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It is continuous from L*(T) to H'(Q) N C(). Moreover, G'(#) is continuous from
LP(T) to HY(Q) N C(Q) for p > N — 1. Comparing this setting with our problem, we
have the following relations: v «— (v,u),p> N —1—q¢> N/24+1Ar> N+ 1,
L®(T) «— L=(Q)x L= (), LP(T) +— LUQ)x L*(X), H'(Q)NC(Q) +— W(0,T)x
C(Q). By this equivalence, due to regularity results for parabolic equations (see e.g.
[7], [15]) the proof in [6] can be transferred to obtain the statement of our theorem.
O

6. Second order conditions.

6.1. Space and time dependent controls. In this section, we discuss the
second order sufficient conditions for the choices (i) and (ii) for V4 and U,q, defined
section 2. The simplest, and at the same time strongest, second order assumption is
the coercivity condition

(6.1) £"(5,7,1,5,N)(y, v, u), (y,v,w)] > 8 (lyll3 + 0[5 + [|ullZ)

required for all y € Y2, v € L=(Q), v € L (X), where J is a certain positive constant.
Here and below £” stands for the second order Fréchet derivative of £ with respect
to (y,v,u), that is, £ = @71)7“). However, we shall omit the subscript (y, v, u) for
convenience. To write £” in a compact form, let us introduce the ”Hamiltonians”

Hg(l‘)t’yﬁ U’p) = f(]:,t,y, IU) _pd(l‘)t’yﬁ U)
H=(z,t,y,u,p) = g(z,t,y,u) —pb(z,t,y,u)

having the following second order derivatives with respect to (y,v) and (y, u), respec-
tively,

HQ HC HE HE
217Q y yo 27 u
o= (i e) o= (5 ).

These Hessian matrices depend on (z,t,y,v,u,p). Then we have

L' (g,v,4,p,N(y,v,u), (y,v,u)] = [(y,v) D?H@ (v, U)Tdmdt-i-
Q

+ [(y,u) D2H® (y,u)TdSdt + [ Fyy y>dp+ (E"(§)[y, y], \) zx 2+,
J J
Q

where the bar in H?, H?, ¢,,, Fy, indicates that these derivatives are taken at the
reference point (g, v, @, p, A).

To tighten the gap between necessary and sufficient second order conditions, we
shall shrink the subspace of ¥ x L®(Q) x L*(X), where the coercivity property
(6.1) is assumed. A first and most natural step is to assume (6.1) only on the set
L(M, (y,v,u)), that is on the linearized cone. Then the function y is connected with
(v,u) through the linearized equation (5.1). Tt holds ||y|ly, < e(||v]lv + ||ullz), and
therefore (6.1) is equivalent to

(6-2) L£(5, 9,1, 5, \)(y, v, u), (y, v, u)] 2 6 (|0l + [lullF),

for all (y,v,u) € L(M, (y,v,u)). Here, § > 0 is possibly different from that in (6.1).
Although being much weaker, this condition is still too far from the associated neces-
sary conditions, since the coercivity of £” has to hold also for all active constraints,
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independently on how ”positive” the associated Lagrange multiplier is. Therefore,
following an idea by Dontchev, Hager, Poore and Yang [8], we consider also strongly
active control constraints . The control @(z,t) achieves its lower or upper bound in
the points (z,1), where

|fo(5,9)(2,1) = Py (5, 5) (=, £)| = [H? (,1)] > 0.

To make this property stable with respect to perturbations of the reference point
in L for arbitrarily small 7 > 0 we introduce the sets of strongly active control
constraints by
19 = {(2,0) € QAL | > 7}, ¥ = {(0,1) € S| AZ(w, )] > 7).

Roughly speaking, the coercivity condition (6.2) has to be assumed only for those
(y,v,u) € L(M,(y,7,1)) having the additional property v(z,t) = 0 on I9 and
u(z,t) = 0 on IF. In view of the complicated structure of L(M, (¥, %, 1)) we shall
formulate this more precisely below.

Let us first mention that the idea to weaken second order sufficient conditions
by strongly active control constraints can be extended to the state constraints as
well. This can be done by considering first order sufficient optimality conditions
introduced by Maurer and Zowe [13]. We refer to Casas, Troltzsch, and Unger [6] for
the elliptic case with state-constraints. Their approach can be directly transferred to
our parabolic case. However, it was pointed out in [6] that this further weakening of
the second order conditions is only of limited value. Therefore, we concentrate here
only on strongly active control constraints.

While the regularity condition (R) is very useful to show the existence of Lagrange
multipliers, we need the following stronger constraint qualification to work with a
second order condition, which is closer to conditions known from the optimization
theory in R"™. Define

Cr(v,u) = {(v,u) € C(v,u) |v=0ae. on I¢ and u =0 a.e. on I>}.

The stronger regularity condition is
(R),  FGEC(0C (5,0 - K(E@) = 7.

Now let us establish the second order sufficient optimality condition as follows:

T

(SSC), There are positive constants § and T such that the coercivity condition (6.1)
is satisfied for all (y,v,u) € L(M, (y,v,u)) satisfying (v,u) € Cr(v, u).

To verify that (SSC), implies local optimality, we have to approximate differences
of the form (g, ¢, %) — (§, v, ) by associated elements (y,v,u) of L(M, (g,v,u)) with
controls (v, u) belonging to C (¥, #). First of all, we need the regularity condition (R),
for this purpose. Moreover, and this is crucial in the whole analysis, the quadratic
form £ (y, v, 4, p, \)[(y1,v1,u1), (y2, va, us)] has to depend continuously on (y;, v;, u;)
in the L2-norm (we need this to estimate £” for remainder terms). Therefore, we
must assume the continuity estimate

(A6) E“(ga 737 ﬂapa 5‘)[(:% , U1, Ul), (yZJ V3, UZ)] S Cce H?:l(”ylnyz + ”(vi’ UZ)HLZ)

for all (y;, us, v;) of YNYy x L (Q) x L°°(X). Unfortunately, (A6) is a hard restriction.
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To see this, regard the concrete expression for £
L5, 0,1, 5, M(y1, v1,w), (g2, v2,u2)] = [ Fyy (-, D)yrya dp — (E" (@) w1, 9], A)
+f (7,9)(y2, v2) Tdedt + f(Z)Ql, u1) D?g(-, §, ) (ya, ua) T dSdt
Cj (y1,v1)D?d(-,5,%)(y2, va) " p dadt ’

Q
f ylaul D b ;ya )(yQaUQ)TI_)det'
x

The difficulties to estimate this expression arise from the presence of state-constraints.
In general we cannot assume that p is a bounded function. Therefore, the last two
terms in (6.3) require additional assumptions, while the term containing £ is handled
by (A5). We shall discuss these points in section 7.

Moreover, this assumption allows us to estimate the second order remainder term
of £. The remainder term r£ is defined by the second order Taylor expansion

_ 1 _
L(w,\,p)—L(w, A, p) = ,C’(LD,A,ﬁ)(w—w)+§£"(w,)\,ﬁ)[w W, W—w] 415 (W, W—w).

2 =
G4 conllly = dll e + 16.) — (@, 0)llz=) (15— 713, + 15, 8) — (5,)]2.).

THEOREM 6.1. Let the feasible triplet w = (§, v, u) satisfy together the regularity
condition (R)., the first order necessary optimality conditions (3.3)-(3.6), and the
second order sufficient optimality condition (SSC),. Suppose further that the general
assumptions (A1)-(A6) are satisfied. Then there are constants ¢ > 0 and o > 0
such that

(6.5) J(,0,8) 2 J(5,9,8) + 0|9, 8) — (¥, 9)]|75
holds for all feasible 1w = (y, v, u) such that
(6.6) (%, @) — (7, B)]|l~ < e

Proof. Tet an arbitrary feasible triplet w = (y,9,u) be given. We introduce
for short the Lagrange multiplier [ = (p, A) appearing in the first order necessary
optimality conditions. Then

(6.7) J(w) — J(w) = L(w,]) = L(w,]) = (X E(9) — E@))

follows from the state equation. The complementary slackness condition implies
~(\E@) = BE@) 20,

After deleating this term, a second order Taylor expansion yields

J(w) = J(®) > L(w, 1) — L(w,1)

/HQ v — 1) /FIUE (i —u) + %E”(w,i)[w—w]2+r§(w,m—w)
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with S = f,(4,9) — pdy(-,4,%), HY = gu(-, ¥, 1) — pby(-, 7, 4). Here and below
we shall omit for short the differentials in integrals. Using the variational inequalities

(3.4), (3.5), and the definition of I® and 7, we find

(6.8)J(w) — J(w) > 7-(/ |6 — 9| + / o —al) + %ﬁ”(m,i)[w — a)? -|—7°§(1D,1D — ).

In the following, ¢ will denote a generic constant. Let us introduce for convenience the

bilinear form B = £"(w,!). Next we approximate & — w by w = (y,v,u) € L(M, o),
according to Theorem 5.1. In this way we get the remainder r = (#¥,r?, r*) satisfying
W — w = w + r and the estimate

(6.9) 7l < Crli(o, @) = (v, @) [|Le|(8, ) — (v, w2,
where
(= {11 ) .
Tt follows that B[w — @)% = B[w]? + 2B[r, w]+ B[r]?. We are looking for an estimate

from below for B[w — w]%. For this, we separately estimate the three terms.

Step 1. Estimate of Blw]?. To use (SSC), we set (v,u) = (vi,u1) + (va, us),
where vy = X7QU, U1 = XpU. This yields v3 = 0 on IQ and us = 0 on IZ. Let y;,
for 1 = 1,2, be the solutions to the linearized equation (3.2) associated with (v;, u;).
Observe that (va, us) belongs to Cr (v, 4) and

EI(Q)GI(@ a)(UQa u2) € [{(E(g)) - El(g)Gl(aa ﬂ)(v1,u1).

Since in general E'(y)G'(v,u)(v1,u1) is non zero, the triplet ws = (y2,v2, uz) does
not belong to the linearized cone L(M,®). The regularity condition (R), permits to
apply a theorem by Robinson (see Theorem 1 in [18]). Thus, there exist an element
(ver,ug) in Cr(9,u), and a constant ¢y such that

(6.10) E'(§)G' (v, u)(ver, umr) € K(E(y))
and
(6.11) (v, u2) = (vir, um)|loe < crllel|z.

From assumption (A5) and continuous imbeddings, it follows that

(6.12) [|[(v2, u2) — (ver, um)||p2 < clle]|lz < el|(v1, u1)||Lz.

Define yg = G'(9, @)(vy,ug). By (6.10), wyg = (yu, vy, un) belongs to L(M, @)).
With (SSC), we obtain Blwy]* > 6||(vy,un)||3.. If we set wy = (yr, v, ur) =
w — wy, then, with (6.12), we have

yrllv, = llv1 + y2 —yrllvy < llyilly, + lly2 — volly,
< e(ll(vr,wa)llze +ell(va, uz) — (v, um)llrz) < ef|(vi, u1)||re

and

(6.13) [[(vr, ur)lle2 < [[(vr, un)llze + [I(vz, u2) = (var, um)llee < cfl(vr, ui)lle2,
(6.14) lwrll = llyrllyz + [l (vr, ur)llz= < efl(vr, ur)l|z2.
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With the above estimates and with (A6) we deduce
Blw]? = Blwg)* 4+ 2Blwg, wi] + Blwr)?
> 8|(ve, um)l|72 = 2ecllwal| lwrll = ec Jwil)?
(6.15) > d|(vm, um)llz2 — 2cclyrlly, + 1(vr, ur)ll=) (lymllvs + 1 (va, wm)|lz2)
—ce(llyrllv, + ll(vr, ur)|lr2)?

> 8[/(ve, w72 — ell(vr, wa)l|n2l|(ver, wm)|lz2 — el (v1, ua)|1 72

We apply the Young inequality to obtain

)
Blu]® 2 Sll(vm, um)iz= — ell(vr, un)]l72

=50 [ i [am—e(fars [

Q\I? \I7 3 7

By definition, it holds vy = o — % —v; — ¥ and vy = © — & — ¥ on I9 (notice
that v5 = 0 holds on [9) Analogous representations are found for ugy and u;. We
substitute these expressions in the integrals above and expand the squares. Moreover,
the Young inequality is applied in the form |6 —v||vr| < gl —v|* +c |vr|?, |6 —v]|r?] <
gl — v]? 4+ ¢|r?|?, where € > 0 can be chosen arbitrarily small. Then

d d
5 [ e [izGca [a-or—cl [ o+ fe-0r+ [
Q\IP 172 Q\IP Q\I? 2 Q@

follows for the terms associated with v. According to (6.13), the integral containing
v? can be estimated by the L?-norm of vy on @, which is handled as follows

[o=[u=[o-verpzefo-02+ [0,
Q 1% ) Q

e

p

Therefore, we find
é 1)2—6 2>§_ ) A_-)?_ S~ =2 1))2)
5 I vl_(Z ce (0—7o c(f(@w=0v)"+ [ (*")).
Q\I? 2 Q\I? 12 Q
An analogous estimation works for the parts associated with u. Finally, we arrive at
)
Bl > (G-col [ -7+ [ (-2
Qurg siry
(6.10) {0+ fa-wr+ oo+ [y
19 = Q )
Step 2. The treatment of B[r,w] and B[r]? is simpler. For instance, by (6.9) we find
|Blr, wl| < ellr(l[[(v, )2 = ellr(l[[(8, @) = (7, a) + (7, )| 2
<ell(v,a) = (@, @)lp< (0, 4) = (@, 8) + (7, 7)]|7
< coll(i i) — (5, )12



14 J-P. RAYMOND AND F. TROLTZSCH

The same type of estimate applies to B[r]?. Altogether, it follows that

Qe m\rs
—eo([ 1o+ [1a=a) - el ) - @D
2 I

(here, terms of the type Hﬁ_EHiE(IQ

) are estimated by g||1")—f)||L2(IQ)). By substituting
this result in (6.8), we obtain

J@) = I@) 2 (r=co) [ ool + [la—ah+G-ca [ (@-a+

1?2 I Q\I7?
+ [l - cell6,0) - (o 0l - Irf (0,0 - w)
T\ID
d
>5[l [la-ay+ 5 [ @-7+ [ @-m?
I8 Iz Q\IQ Z\IZ

_CQH(ﬁa ﬂ) - (ﬁ: ﬁ)”%z - |7°2£(1I}, w— 17))|,
if ¢ and p are chosen sufficiently small. Let us assume ¢ = ||(¢, %) — (7, @)||p~ < 1.
Then it holds |@ — ii| > |4 — @|? and |6 — #| > |9 — ©|? almost everywhere. Using this

in the first integral, setting 6’ = min{r/2,6/2}, and substituting the estimate (6.4)
for 75, we complete our estimation by

for sufficiently small ¢ > 0. O

6.2. Time dependent controls. We now discuss how to adapt the results of
the previous section to the case where controls are only depending on the time variable.
This corresponds to case (iii) in section 2, for V,q and Uaq. Let us recall the structure
of the control sets

Vaa = {v € L2(Q) | v(x,1) = Tit, v (D) ei(a), vk <v' <o ae. on (0,7)}

Ugg = {u € L®(Z) | u(z,t) = Zf”zl ul(t)mi(z), ul <u' <ulae on(0,7)},

where vi v ul, ul are given constants in L>(0, 7). Let us introduce integral forms

of Hamiltonian derivatives

ﬁq?,i(ta Y, v,p) = fn(fv (z,1,9,0) — pdy(z,t,7,V)ei(2))dx

ﬁE,z(ta g; ﬂ,f)) = fr(gu(m; ta ga ﬂ) - pbu(ma ta ga ﬂ)nZ(I))dS(I)
For 7 > 0, the sets of strongly active control constraints are now defined by

Zi={te0, Tl ALy 0|27}, IZi={te0, T |ty u)] =1}
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Let us set

Cr(v,1) = {(v,u) = (Tivle;, Siuly;) € C(v, u)|v =0 a.e. on[ ; for 1 <i < Yy,
and u* = 0 a.e. on[v for1<z<£b}

Now, the stronger regularity condition is
(R) E'(y)G'(v,0)Cr(v,u) — K(E(y)) = 4,

and the second order sufficient optimality condition is formulated as follows:

T

(SFSVC)T There are positive constants § and T such that the coercivity condition (6.1)
is satisfied for all (y,v,u) € L(M, (g, 9, )) satisfying (v,u) € C;(7, ).

By substituting (f{)T and (SEE)T to (R), and (SSC), in the statement of The-
orem 6.1, we obtain the version corresponding to time dependent controls.

7. Some applications. In this section we want to exhibit examples for which
the regularity condition for E’(y), stated in Assumption (A5), and the continuity
condition for £(y, ¥, 1, p, A), assumed in (A6), are satisfied. Let us first examine the
simplest case in which state constraints and controls are separately supported.

7.1. Constraints and controls with disjoint supports. We here suppose
that

Vaa = {v € L®(Q) |va < v < vy ace. on Oy, suppv C O, }, V = L2(0,),

Usa = {u € L*®(X) |ug <u< upae on @y, suppu C Oy}, U= L2(O),
where O, is an open subset in @, and O, is an open subset in X (see the definition
of spaces L? in section 2). State constraints and state observations are supposed to
satisfy supp(Fy,(§)*u) C O, supp(F' ()" ) C 0,, and (0,U0,)N(0,U0,) =10,
where Oy and @, are open subsets in . Observe that f,(y,¥) and g, (g, u) are
bounded functions. Thus, by using cut-off functions and a bootstrap argument, we
can prove as in Prop051t10n 3.2 of [1], that there exist compact subsets Q; C @,
@, C @ with the following properties. Tt holds @, U@, = @, @; D (0, UO,),
@2 D (0L, UQO,). Moreover, g, belongs to C'(Q;), y(u, 1))@ is continuous on @,
and ||y(u,v)||c @) S < C||(u, v)||r=2 holds for all u € U and all v € V. Here and below,

y(u, v) denotes the solution to (3.2) associated with (u,v). Due to these regularity
results, we can easily check Assumption (A6). Assumption (A5) can be verified for

many examples with the estimate [|y(u, v)||c 2, S C||(u,v)||r,2. For instance, if e is

a real function of class C*!, we can set E(y )(r,t) e(y(z,t)) and Z = C(Q,).

7.2. Distributed controls with V = L?(Q). We suppose that there is no
boundary control, in other words b = b(x,%,y) and g = g(x,%,y). Denote by y(v) the
solution of (3.2) corresponding to v (notice that b, = 0 in the boundary condition).
In this case, due to Theorem 4.1, the mapping v — (y(v), y(v)|s) is continuous from
V to L7(0,T; L"(Q)) x L?(0,T; L°(T)), where

N 1 N 1 N 1 N-1 1
7.1 —F < —4+=+4+1,2<r2<7, —AF-<—+=-4+1,2<07 2<07.
T Trg<gtpthisnisih JHg<—-tg+l 250257
Suppose that (Fy(y)*p + E'(§ )*)\)|Q + fy(9,7) belongs to X7 (Q), (Fy(y)*p +
E'(5)*A)|s + gy (y) belongs to X7 (%), (Fy(y)'p+ E'(y )*A)|ar belongs to XVT (Q),
with the convention that X7 (Q) = L7(Q) if 1 < 74 < oo, and X" (Q) = My(Q),
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if v4 = 1. Analogous conventions are adopted for the spaces X7 (X) and X 7 (Q).
Clearly, the exponents 74, 75 and yp depend on the nature of state constraints and of
observations (i.e. of the cost functional). Due to Theorem 4.2, the solution p to (3.6)

belongs to L¥(0,T; L*(2)), and its trace on X belongs to Lﬁ(O, T; LA (1)), if

N +2 1 N+1 N 1 1 -
—+ +1, 7a<a va<a, <og-t+=z+5 o wa,
274 Za 2vp 20 a2
N N 1 -
—<_+T;7TS05;1§04;
2r 2a @&
N+2 N-1 N+1 N-1 ~
P +1 i<B v<p —<—"4= + 5 < B, < B,
274 286 p ! ! 27 28 B ! !
N N-1 1
— < ———+ =, w<B 1P

257 20 B

7.2.1. We first examine the case when d = d(,t,y)+v. Here, we have dy, = dyy = 0.
Th?refore, the only terms appearing with p in £"(y,v,u,p, A) are fQ dyyy1y2p and
f): byyy1y2P. Thus, to verify Assumption (A6) we are looking for conditions on 74, s,
~7 ensuring

(7.2) Py (v1)y(va)llz @) + 1PY(v1)y(va)llLr (s
Due to the previous estimates on p and y(v;), condition (7.2) holds when

N +2 N+1 N
(73) T+<7da T+<717a and §<7T~

Let us briefly explain how to do such calculations. We know that y(v1)|s and y(v2)|s
belongs to L‘i(O,T;L"(F)) with % + % N-1 S , Dz
belongs to L7 (0,T; LP(T)) with % < % + —év + 1,94 < B, 74 < 3. In view of these

inequalities, we find

~ 41
7 Pt o, 2

N N 4+ 2 N—-1)2 2 N
T2 W-n2 =R N
o 20 ﬁ

<1

Qz|w

Due to Holder inequa]ity’q (Py(v1)y(v2))|s is in LY(X) if L + <1land % +

(v
This leads to & + 1+ ]\27;:2 < N Ly 3, that is to w < vd- The other calculatlons

are done in the same way.

We have found conditions on 74, 73, and yp for which assumption (A6) holds
when d = d(x,t,y) + v. Now we are looking for additional conditions on 74, 73, and
yr so that (A5) be satisfied. For this, we separately study the case of pointwise state
constraints and of integral state constraints. We next analyse the role of the cost
functional.

Problems with pointwise state constraints. For a problem with pointwise state

constraints on @, the associated multiplier is a measure on @. In this case we must set
¥a = v = yr = 1. Therefore, according to (7.3), pointwise state constraints can be
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considered only for N < 3. But this condition is not yet sufficient. Indeed, we must
verify Assumption (A5). The mapping E’(3) has to be continuous from (C(Q), || -|lv,)
(i.e. the space C(Q) endowed with the norm || - [|y,) into Z (see (A5)). Thus, in the
case of pointwise state constraints on ), we require that the identity mapping be
continuous from (C(Q),]| - ||v,) into (C(Q), ]| - ||C(§)). This continuity condition is
satisfied if (7.1) holds for r = # = co. The only possible case is N = 1. If N = 1
and if e is a mapping from R to IR of class C*', then assumption (A5) is satisfied for

state constraints of the form E(y) € K defined by F(y)(z,t) = e(y(z,t)) (where K is

a closed convex subset in C'(Q)).

Problems with integral state constraints. Now, consider integral state constraints
of the form

er(x, z,t)dzdt < c, es(z, z,t)dS(z)dt <e, es(z)y(z, T)dx < c,
|ewovenaase [aenvenis@ase [ @ des

with e1 € LY (Q), es € L2(X), e3 € L*(Q). Since e1, €5, and e3 appear in the adjoint
equation, according to (7.3), assumption (A6) is satisfied for % < va <ty % <
b < L, % < 7 < £3. To check assumption (Ab5) we are looking for conditions so that
the mapping v — (y, y;ss, y(T')) be continuous from V to L*'(Q) x L*2(T) x L**(Q),
with Ay > €, Xa > £, A3 > ¢;. Due to Theorem 4.1, we must have max(2, £])<
A < (%4?’ max(2,£5)< Ay < Z%JZT’ max(2, £5)< Az < ZNL_A;F More generally,
for state constraints of the form y € C C L4 (@), where C is a closed convex subset of

Ll'l(Q), we must choose Y2 < 44 < £1 and max(2,£))< Ay < (12\,1\:—"2'%.

For simplicity in the analysis we have supposed that (F,(y)*u + E'(y)*N)|q +
Jy(y,7) belongs to L74(Q) or to M;(Q). But for constraints of the form

/ e(z)y(z,t)dz <c for every ¢ € [0, 7],
Q

the term E'(§)*A|q belongs to the space M([0, T; L*(2)) if the function e belongs to
Lf(Q). The previous analysis can also be carried out for this kind of constraint.

The role of the cost functional. The exponents v4, v, and ~p are also related to
the cost functional. A functional of the form y — [, [y(z, T) — ya|*dx leads to the
term £)y(z, T) —ya|*~2(y(z, T) — ya) in the terminal condition of the adjoint equation.
If yq belongs to L*(Q), then |y(x, T) — ya|*~' belongs to Lk/(l_l)(Q). Thus we must
choose % <Ar < %. The other possibilities can be analysed in the same way. In
particular a functional of the form y — (y(zo,%0)—70)?, with (zo,%0) € @, corresponds
to yq = 1.

7.2.2. The second case corresponds to a function d of the form d = d(x,t, y)v.
Here the terms fQ dyy1vap and fQ dyyav1p appear in L"(y,v,4,p,A). Hence, in ad-
dition to condition (7.2) we must have [|py(v)||Lz(q) < C|lv|lv. It will be realised
if

N+2 N+1 N

W<'7d; = <", 3/—2

5/2 <7r.

Therefore pointwise state constraints on ) may be still considered for N = 1.

7.2.3. The last case corresponds to a function d of the form d = d(z,1,y,v).
Then the terms fQ dy,v1v2p also appears in £”(y, 0,4, , A). In this case, Assumption
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(A6) is satisfied when p belongs to L®(Q). Due to regularity results for 5, we must
have
N+2
2

<7va, N4+1<vm, ~r=o.

Therefore, in this case, we cannot consider pointwise state constraints on Q. An
integral state constraint of the form fn es(x) y(x, T) de < ¢ may be considered only
for e3 € L (Q) (since we must have yp = 00).

7.3. Boundary controls with U = L?(X). Suppose that there is no distributed
control (d = d(x,t,y) and f = f(x,t,y)). Denote by y(u) the solution of (3.2) cor-
responding to u. We perform the same kind of analysis as above. Due to Theo-
rem 4.1, the mapping u — (y(u),y(u)|s) is continuous from U to L7(0,7; L™(Q)) x
L%(0,T; L°(1)) if

N—1<N+1 9<p o< N—1<N—1
S S Bt r Fooo_
4 2r 7= T = 4 20

1
+-,2<0 2< 5.
o

From these regularity results, we see that pointwise state constraints (up to the bound-
ary) cannot be considered in this case. Indeed, we cannot set r = F = 0 = 6 = o
in the above inequality. When b is of the form b = b(x,?,y) + u, due to the terms
f):: byupyiuj in L, the estimate

Py (u1)y(uz)llrr (@) + 1Py(u1)y(ua)lli(s) < Clluallu||uzllv
must be checked. Tt holds if

N +2 N+1

T<7d; T<76; 7<7T
The second case corresponds to a function b of the form b = b(x, ¢, y)u. Assumption
(A6) is satisfied when the estimate [|py(u)||L2(x) < ClJul|o holds. This leads to

N +2 N +1
T<7d; T<76; N<7T

The last case corresponds to a function b of the form b = b(z,¢,y, u). As above p|xg

belongs to L (X) if N2+2<7d, N+1<7, 1 =occ.

7.4. Distributed controls with V = L%(0,T; L°(Q)). We suppose that there
is no boundary control (b = b(z,t,y) and ¢ = g(z,t,y)). We adopt the notation

of section 7.2. The mapping v — y(v) is continuous from V to C(Q). Therefore
assumption (A5) can be easily verified in classical situations, even for pointwise state
constraints. Moreover, when d is of the form d = d(z,t,y) + v, Assumption (A6) is
satisfied. The second case corresponds to a function d of the form d = d(z,t,y)v. Due
to the structure of the control set, we have to check the estimate ||py(v)||L2(0,7,21(n2)) <
C||v|lv. This holds for every v4 > 1, every 75 > 1, and every yp > 1. In the case
when d of the form d = d(x,t,y,v), Assumption (A6) is fulfilled, if p belongs to
L%°(0,7T; L'()). This result is true even if v4 = 4 = 47 = 1. This regularity
property does not follow from Theorem 4.3, but it is proved in Proposition 4.4 of [14].
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7.5. Boundary controls with U = L%(0,7;L°(T)). Suppose that there is
no distributed control, in other words d = d(z,t,y) and f = f(z,t,y). We adopt
the notation of section 7.3. The mapping u — (y(u), y(u)|x) is continuous from U to
L7(0,7T; L>=(Q)) x L7 (0,T; L°°(T)) for any & < co. Therefore assumption (A5) can be
verified for integral state constraints. However, we cannot consider neither pointwise
state constraints on @, nor constraints of the form Jre(@)y(x,t)dS(x) < ¢, because
the mapping u — y(u)|s is not continuous from U to L°°(0,7; L'(T')). When b is of
the form b = b(x,1, y) + u, Assumption (A6) is satisfied. The second case corresponds
to a function b of the form b = b(x,t, y)u. The estimate ||py(u)||L2(0,7;1(r)) < C|lullo
must be checked. This holds when 1 <74, 1< 7, and 1 < ~vp. In the case when
b of the form b = b(z,,y, u), we have to verify that  belongs to L>(0,T; L}(T)). Tt
holds if % <~g, 2<7, and yp = 0.
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