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1 Introduction

In this paper, we consider the finite-element discretization of the optimal control
problem

(P ) min J(u) =
1

2

∫

Ω

{ (y(x) − yd(x))2 + νu(x)2 } dx,

subject to (y, u) ∈ (C(Ω) ∩ H1(Ω)) × L∞(Ω),

A y + f(y) = u in Ω, y = 0 on Γ, (1.1)

u ∈ Uad = {u ∈ L∞(Ω) | α ≤ u(x) ≤ β for a.a. x ∈ Ω},

where Ω ⊂ R
n is a convex bounded domain, Γ is the boundary of Ω, and A

denotes a second-order elliptic operator of the form

Ay(x) = −
n∑

i,j=1

Dj(aij(x)Diy(x)).



Here, Di denotes the partial derivative with respect to xi, u is the control, and
y = y(u) is said to be the associated state. The function yd is given in L∞(Ω),
and α < β, ν > 0 are real constants.

Based on a standard finite-element approximation, we set up an approximate
optimal control problem (Ph). Our main aim is to estimate the error ‖ū− ūh‖ in
the maximum norm, where ū stands for a fixed locally optimal control of (P ) and
ūh is an associated one of (Ph). Error estimates for optimal controls certainly
cannot improve those known for the solutions of elliptic equations. However, one
should expect that they reflect the order of the associated estimates for equa-
tions. Due to the non-convexity of (P ) and the presence of control-constraints,
this is not an easy task. Optimal L2-estimates are known since long time for
linear-quadratic elliptic control problems, Falk (1973), Geveci (1979). Recently,
L∞-error estimates being optimal in that sense have been derived for the case
of nonlinear equations in Arada, Casas and Tröltzsch (2001).

Moreover, we mention two further papers related to the semilinear elliptic
case. Recently, Arnautu and Neittaanmäki (1998) contributed error estimates
to this class of problems. Their technique, however, slightly overestimates the
order of the error. We also mention the paper by Casas and Mateos (2001), who
carefully study error estimates for semilinear elliptic equations. In contrast to
the elliptic case, quite a number of papers was devoted to parabolic problems,
although the associated theory is far from being complete. We refer to the
references in Arada et al. (2001).

Our paper complements the theory presented in Arada et al. (2001), where
error estimates have been derived for a subsequence (ūh)h of globally optimal
controls for (Ph) that converges to an optimal control ū of (P ) as h ↓ 0. The
existence of this sequence has been obtained by weak compactness arguments.

The main difference of our paper to this former one concerns the existence
part. Here, we concentrate on locally optimal controls, since they are the natural
result of numerical optimization algorithms. Suppose that a locally optimal
control ū of (P ) is given. Then we expect to have a sequence (ūh)h of locally
optimal controls for (Ph) converging to ū. This should be true for each fixed
local solution ū. We prove that each locally optimal control of (P ) can be
approximated by locally optimal controls of (Ph), while Arada et al. (2001)
only guarantee that the computed global solutions contain a subsequence that
converges to a certain globally optimal control.

Therefore, we start from a fixed reference control ū being locally optimal for
(P ). Next we prove the existence of a sequence (ūh)h of locally optimal controls
for (Ph) converging to ū. We do not use compactness arguments. Finally, the
order of convergence is quantified by estimating the error ūh − ū. The error
analysis is similar to that of our paper Arada et al. (2001).

However, our problem (P) is simplified to shorten the presentation. In our
former paper, the objective functional and the nonlinearity f are more general.
Following the lines of Arada et al. (2001), the results of this paper can be
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extended to the more general setting.

2 Assumptions and notation

The domain Ω is assumed to be a convex, bounded, and open subset in R
n,

where n = 2 or n = 3. We also assume that Ω has a boundary Γ of class C1,1.
The coefficients aij of the operator A are assumed to be in C0,1(Ω), and to
satisfy the ellipticity condition

m0|ξ|
2 ≤

n∑

i,j=1

aij(x)ξiξj ∀ (ξ, x) ∈ R
n × Ω, m0 > 0.

On f , we impose the assumption

(A1) The function f : R → R is of class C2 and its first derivative f ′ is
nonnegative. For all M > 0, there exists CM > 0 such that

|f ′′(y1) − f ′′(y2)| ≤ CM |y1 − y2|

for all (y1, y2) ∈ [−M, +M ]2.

Assumption (A1) permits to deal with highly nonlinear functions. For in-
stance, f(y) = exp(y) satisfies (A1).

Theorem 2.1 (Bonnans and Casas (1995)) Let u in L∞(Ω) satisfy ‖u‖∞,Ω ≤
M . Then, for every p > n, equation (1.1) admits a unique solution y = y(u) ∈
H1

0 (Ω)∩W 2,p(Ω). There exists a positive constant C = C(Ω, n, p, M), indepen-
dent of u, such that

‖y(u)‖W 2,p(Ω) ≤ C.

In what follows, ‖ ·‖2 and ‖ ·‖∞ denote the natural norms in L2(Ω) and L∞(Ω),
respectively, and c is a generic constant.

3 Optimality conditions for local solutions of (P )

The existence of a (global) solution to (P ) can be proved by classical arguments.
However, we concentrate on local solutions. Therefore, we just assume that a
locally optimal reference control ū is given for (P ) that satisfies the standard
first-order necessary and second-order sufficient optimality conditions.

A control ū ∈ Uad is said to be locally optimal or a local solution of (P ), if
there is an r > 0 such that

J(u) ≥ J(ū) ∀u ∈ Uad with ‖u − ū‖∞ ≤ r.
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In what follows, we denote by y(u) the solution y of (1.1) that is associated with
u. Let ȳ be the state corresponding to ū, i.e. ȳ = y(ū).

Next we recall the known first-order necessary optimality conditions for (P ).
To this aim, we introduce the adjoint equation. Let u be in L∞(Ω) with state
y(u). The adjoint equation has the following form:

A∗ϕ + f ′(y(u))ϕ = y(u) − yd in Ω, ϕ = 0 on Γ. (3.1)

Here, A∗ is the formal adjoint operator of A. The solution ϕ = ϕ(u) is the
adjoint state associated with u.

Theorem 3.1 If ū is a local solution of (P ), then there exists an adjoint state
ϕ̄ = ϕ(ū) ∈ H1

0 (Ω) ∩ W 2,p(Ω) such that

A∗ϕ̄ + f ′(ȳ)ϕ̄ = ȳ − yd in Ω, (3.2)

∫

Ω

(ϕ̄ + ν ū)(u − ū) dx ≥ 0 ∀ u ∈ Uad. (3.3)

The classical proof is omitted. By a further discussion, the variational inequality
(3.3) is seen to be equivalent to the following known relation:

ū(x) = Proj[α,β](−
1

ν
ϕ(ū)(x)), (3.4)

where Proj[α,β] denotes the projection from R onto [α, β]. Since (P ) is non-
convex, the optimality conditions above are not sufficient for (local) optimality.
To have this, in addition the following second-order sufficient optimality condi-
tion is assumed:

(SSC) There are δ > 0 and τ > 0 such that

J ′′(ū)v2 ≥ δ ‖v‖2
2 (3.5)

holds for all v ∈ L∞(Ω) satisfying

v(x)





≥ 0 if ū(x) = α,

≤ 0 if ū(x) = β,

= 0 if |ϕ̄(x) + νū(x)| ≥ τ > 0.

(3.6)

All functions v satisfying the conditions of (3.6) form a cone that we shall call
the τ -critical cone. The set

Aτ = {x ∈ Ω | |ϕ̄(x) + νū(x)| ≥ τ}
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is the set of all points where the control constraints are strongly active. This
notion was introduced by Dontchev, Hager, Poore and Yang (1995).

Notice that J is defined as a functional on L∞(Ω). It is this space, where
the derivatives J ′ and J ′′ are defined. The concrete expression for the second
derivative can be formulated by the Lagrange function

L(y, u, ϕ) = 1
2

∫
Ω
{ (y(x)− yd(x))2 + νu(x)2 } dx−

∫
Ω
(−∆y + f(y)−u) ϕ dx,

which is here only formally defined (in our setting, ∆y is not a function; selecting
a slightly different state space for y, this can be made precise). Then, see Casas
and Tröltzsch (2000),

J ′′(u)(u1, u2) = DyyL(y, u, ϕ)(y1, y2) + DuuL(y, u, ϕ)(u1, u2)

=
∫
Ω
(1 − f ′′(y)ϕ(u)) y1y2 dx + ν

∫
Ω

u1u2 dx,

where yi ∈ H1
0 (Ω) solve the linearized equation −∆yi + f ′(y)yi = ui. Therefore,

(SSC) requires the coercivity of L′′ on the cone defined by the controls u of the
τ -critical cone and the associated solutions y(u) of the linearized equation.

4 Finite-element approximation of (P ): Basic re-

sults

4.1 The approximate problem (Ph)

Here we define a finite-element based approximation of the optimal control prob-
lem (P ). To this aim, we consider a family of triangulations (Th)h>0 of Ω. With
each element T ∈ Th, we associate two parameters ρ(T ) and σ(T ), where ρ(T )
denotes the diameter of the set T and σ(T ) is the diameter of the largest ball
contained in T . Define the mesh size of the grid by h = maxT∈Th

ρ(T ). We
suppose that the following regularity assumptions are satisfied.

(A2) There exist two positive constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0.

Let us take Ωh = ∪T∈Th
T , and let Ωh and Γh denote its interior and its

boundary, respectively. We assume that Ωh is convex and that the vertices of
Th placed on the boundary of Γh are points of Γ. It is known that

|Ω \ Ωh| ≤ Ch2. (4.1)
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Now, to every boundary triangle T of Th, we associate another triangle T̂ ⊂ Ω
with curved boundary as follows: The edge between the two boundary nodes
of T is substituted by the part of Γ connecting these nodes and forming a
triangle with the remaining interior sides of T . We denote by T̂h the union of
these curved boundary triangles with the interior triangles to Ω of Th, so that
Ω = ∪

T̂∈T̂h
T̂ . Let us set

Uh = {u ∈ L∞(Ω) | u|T̂ is constant on all T̂ ∈ T̂h}, Uad
h = Uh ∩ Uad,

Vh = {yh ∈ C(Ω) | yh|T ∈ P1, for all T ∈ Th, and yh = 0 on Ω \ Ωh},

where P1 is the space of polynomials of degree less or equal than 1. For each
uh ∈ Uh, we denote by yh = yh(uh) the unique element of Vh that satisfies

a(yh, ηh) =

∫

Ω

(uh − f(yh))ηh dx ∀ ηh ∈ Vh, (4.2)

where a : Vh × Vh −→ R is the bilinear form defined by

a(y, η) =

∫

Ω

(

n∑

i,j=1

aij(x)Diy(x)Djη(x)) dx.

In other words, yh(uh) is the approximate state associated with uh. In the two
integrals above, the test function ηh vanishes outside Ωh so that there is no
difference between integration on Ω and Ωh. Existence and uniqueness of this
solution yh(uh) can be shown under our assumption (A1), cf. Casas and Mateos
(2001) and Mateos (2000). The finite-dimensional approximate optimal control
problem (Ph) is defined by

(Ph) min Jh(uh) =
1

2

∫

Ωh

{ (yh(uh) − yd)
2 + ν u2

h } dx, uh ∈ Uad
h .

The existence of at least one global solution for (Ph) follows from the continuity
of Jh and the compactness of Uad

h . However, this global solution need not be
unique. Moreover, it can be far from the reference solution ū. Therefore, we
do not concentrate on global solutions of (Ph). Again, we consider certain local
solutions.

Remark: We tacitly assume that we are able to evaluate the integrals in
(4.2) and (Ph) exactly. In general, numerical integration has to be used, which
generates another sort of errors. We do not include them in our analysis.

4.2 Characterization of local solutions of (Ph)

Local solutions of the approximate problem (Ph) are defined analogously to (P ):
A control ūh ∈ Uad

h is a local solution of (Ph), if

Jh(uh) ≥ Jh(ūh) ∀uh ∈ Uad
h with ‖uh − ū‖∞ ≤ r
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holds for a certain r > 0. Associated necessary optimality conditions are similar
to those for (P ) in Section 3: With the solution ūh we associate the discrete
adjoint equation for ϕh ∈ Vh

∫

Ω

n∑

i,j=1

aijDjϕhDiηh dx +

∫

Ω

f ′(yh(ūh))ϕh ηh dx

=

∫

Ω

(yh(ūh) − yd) ηh dx ∀ ηh ∈ Vh.

(4.3)

Theorem 4.1 Suppose that assumption (A1) is satisfied. If ūh is a local solu-
tion of (Ph), then there exists a unique solution ϕ̄h = ϕh(ūh) ∈ H1

0 (Ω)∩C0,1(Ω)
of the discrete adjoint equation (4.3) such that the variational inequality

∫

Ωh

(ϕ̄h + ν ūh)(u − ūh) dx ≥ 0 ∀ u ∈ Uad
h (4.4)

is satisfied.

The standard proof of this result is omitted. Throughout the sequel, for v
fixed in L∞(Ω), we denote by yh(v) and ϕh(v) the solutions of (4.2) and (4.3),
respectively, associated with v. The next result is the discrete counterpart of
(3.4). The discrete local solution ūh satisfies

ūh |T = Proj[α,β]

(
−

1

ν|T |

∫

T

ϕh(ūh)(x) dx
)

∀ T ∈ Th. (4.5)

In this paper, we frequently use an interpolation operator Πh : L2(Ω) → Uh

that assigns piecewise constant functions on Ω to functions of L2(Ω). To define
Πh, we first introduce the interpolation operator πh : L2(Ω) → L2(Ωh) by

(πh v) |T =
1

|T |

∫

T

v(x) dx.

We extend πh to Πh by

(Πhv)(x) =

{
(πh v)(x) if x ∈ T

(πh v)(xo) if x ∈ T̂ \ T.

Here, xo is the projection of x onto the boundary of the triangle T that is
covered by T̂ . Let us mention an important property of Πh : If v is a Lipschitz
function, then

‖v − Πhv‖∞ ≤ c h.

This is seen as follows: On triangles T ∈ Th we have maxx∈T |v(x)−(Πhv)(x)| =
maxx∈T |v(x) − (πhv)(x)| ≤ c h by the known properties of the interpolation
operator πh and the Lipschitz property of v. If x ∈ T̂ \ T , then

|v(x) − (Πhv)(x)| ≤ |v(x) − v(xo)| + |v(xo) − (Πhv)(x)|
≤ c h + |v(xo) − (πhv)(xo)| ≤ c h.
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Here, we have used that dist(xo, T ) ≤ c h. The same estimate follows for the
L2-norm on using (4.1). With this interpolation operator, (4.5) admits the form

ūh = Proj[α,β](−
1

ν
Πhϕh(ūh)), (4.6)

since the extension of (4.5) from boundary triangles T to T̂ is the same on the
left and right hand side of (4.6).

4.3 Error-estimates for the state and the adjoint state

Here we provide some known results on the finite element approximation of
the state equation (1.1) and its adjoint equation (3.1). They are basic for
the convergence analysis below and for the error estimates in the next section.
Recall that y(v) and yh(vh) are the solutions of (1.1) and (4.2) corresponding
to v and vh. Analogously, ϕ(v) and ϕh(vh) are the solutions of (3.1) and (4.3)
corresponding to v and vh.

In all what follows we tacitly assume that (A1) and (A2) are satisfied. More-
over, we fix once and for all a local reference solution ū for (P) that satisfies
(SSC). Therefore, we do not mention (A1), (A2), and (SSC) in the further
statements.

All controls u, v, uh, vh etc. used below are contained in Uad. Therefore,
they are uniformly bounded, and the same holds true for all associated states
and adjoint states so that all y, ϕ, yh, ϕh are bounded by the same constant
M .

Theorem 4.2 Let v and vh belong to Uad. Then the estimates

‖y(v) − yh(vh)‖H1(Ω) + ‖ϕ(v) − ϕh(vh)‖H1(Ω) ≤ C (h + ‖v − vh‖2), (4.7)

‖y(v) − yh(vh)‖2 + ‖ϕ(v) − ϕh(vh)‖2 ≤ C (h2 + ‖v − vh‖2), (4.8)

‖y(v) − yh(vh)‖∞ + ‖ϕ(v) − ϕh(vh)‖∞ ≤ C (hλ + ‖v − vh‖2), (4.9)

hold, where C = C(Ω, n) is a positive constant independent of h, and λ =
2 − n/2. Moreover, if the triangulation is of nonnegative type, then

‖y(v) − yh(vh)‖∞ + ‖ϕ(v) − ϕh(vh)‖∞ ≤ C (h + ‖v − vh‖2), (4.10)

holds independently of h.

For the proof of this theorem the reader is referred to Arada et al. (2001). In
all what follows, let us fix

λ =

{
2 − n/2 for regular triangulations

1 for triangulations of nonnegative type.
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4.4 Convergence results

Aiming to derive error estimates, we have to find a sequence (ūh)h of local
solutions of (Ph) tending to ū as h ↓ 0. To solve this nontrivial problem, we
proceed as follows: For ε > 0 we consider the auxiliary control problem

(P ε
h) min Jh(uh) =

1

2

∫

Ωh

{ (yh(uh) − yd)
2 + ν u2

h } dx, uh ∈ Uad
h,ε,

where

Uad
h,ε = {u ∈ Uad

h | (Πhū)(x) − ε ≤ u(x) ≤ (Πhū)(x) + ε in Ω}.

The interpolate Πhū belongs to Uad
h,ε, therefore the admissible set of (P ε

h) is not
empty. This problem has a global solution uε

h, hence it is also a local solution
for (P ε

h). We show that this solution is even a local solution of (Ph) and tends
to ū as h ↓ 0, provided that ε was taken sufficiently small.

It is known that the second-order condition (SSC) implies the existence of
positive constants κ and r such that the quadratic growth condition

J(u) ≥ J(ū) + κ ‖u− ū‖2
2 (4.11)

is satisfied for all u ∈ Uad with ‖u − ū‖∞ ≤ r, cf. Casas, Tröltzsch and Unger
(2000). Now take ε̄ := r/2. Then for all ε ≤ ε̄ and all sufficiently small h, say
0 < h ≤ h̄,

u ∈ Uad
h,ε ⇒ ‖u − ū‖∞ ≤ r, (4.12)

because ‖u − ū‖∞ ≤ ‖u − Πhū‖∞ + ‖Πhū − ū‖∞, the first term is not greater
than r/2 by the definition of Uad

h,ε, and the second term tends to zero as h ↓ 0.
Notice that (4.11) and (4.12) imply

J(u) ≥ J(ū) + κ ‖u− ū‖2
2 ∀u ∈ Uad

h,ε̄. (4.13)

Lemma 4.1 For all ε ≤ ε̄, the objective values Jh(uε
h) converge to J(ū), i.e.

lim
h↓0

Jh(uε
h) = J(ū).

Proof. We have

Jh(uε
h) = J(uε

h) + (Jh(uε
h) − J(uε

h)) ≥ J(ū) − c h,

since ‖uε
h‖∞ is uniformly bounded, hence |Jh(uε

h) − J(uε
h)| ≤ c h. Moreover,

J(uε
h) ≥ J(ū) follows from (4.13). On the other hand, we know Πhū ∈ Uad

h,ε,
and the optimality of uε

h for (P ε
h) gives

Jh(uε
h) ≤ Jh(Πhū) = J(ū) + (J(Πhū) − J(ū)) + (Jh(Πhū) − J(Πhū))

≤ J(ū) + c h,
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since ‖Πhū−ū‖∞ ≤ c h and |Jh(v)−J(v)| ≤ c h for all v ∈ Uad. Both inequalities
imply the statement of the Lemma.

Lemma 4.2 There are 0 < ετ ≤ ε̄ and 0 < hτ ≤ h̄ such that

|ϕh(uε
h)(x) + νuε

h(x)| ≥ τ/4 (4.14)

uε
h(x) = ū(x) (4.15)

hold for all ε ≤ ετ , all h ≤ hτ , and all x ∈ T , if the triangle T has a non-empty
intersection with Aτ .

Proof. On Aτ we know that either ϕ(ū)(x) + νū(x) ≥ τ , where ū(x) = α or
ϕ(ū)(x)+νū(x) ≤ −τ , where ū(x) = β. Now take an arbitrary but fixed triangle
T having a non-empty intersection with Aτ . If h is sufficiently small, then we
can assume that one of these two cases holds for all x ∈ Aτ ∩ T , since the
function ϕ(ū) + νū is Lipschitz continuous. We consider the case

ϕ(ū)(x) + νū(x) ≥ τ,

where ū(x) ≡ α on Aτ ∩ T . The arguments for ū(x) ≡ β are analogous. There-
fore, if h is sufficiently small, then

ϕ(ū)(x) + νū(x) ≥ 3τ/4 ∀x ∈ T,

thus also ū(x) ≡ α on T . If ε is sufficiently small, say ε ≤ ετ , then ‖uε
h − ū‖∞

is so small such that

ϕh(uε
h) + νuε

h = ϕ(ū) + νū + (ϕ(uε
h) − ϕ(ū)) + ν(uε

h − ū)
+(ϕh(uε

h) − ϕ(uε
h))

≥ 2/4τ − c hλ ≥ τ/4

holds on T for all sufficiently small h ≤ hτ . On T , the variational inequality for
uε

h reads

∫

T

(ϕh(uε
h) + νuε

h|T )(u − uε
h|T ) dx ≥ 0

for all u ∈ R such that u ∈ [α, β] ∩ [Πhū|T − ε, Πhū|T + ε]. On T , we know
ū(x) ≡ α, hence Πhū|T = α, and therefore u varies in [α, α + ε]. The positivity
of ϕh(uε

h)+νuε
h|T in the variational inequality above implies that uε

h must admit

the left end of [α, α + ε], i.e. uε
h|T = α = ū(x).

By our construction, this Lemma is also true for boundary triangles T̂ .

Lemma 4.3 If ε ≤ ε̄, then limh↓0 ‖uε
h − ū‖2 = 0.
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Proof. By uε
h ∈ Uad

h,ε, ε ≤ ε̄, h ↓ 0, and (4.12) we know ‖uε
h − ū‖∞ ≤ r, hence

(4.11) applies,

J(uε
h) ≥ J(ū) + κ ‖uε

h − ū‖2
2,

thus

Jh(uε
h) = J(uε

h) + (Jh(uε
h) − J(uε

h)) ≥ J(ū) + κ ‖uε
h − ū‖2

2 − c hλ

and therefore

Jh(uε
h) − J(ū) + c hλ ≥ κ ‖uε

h − ū‖2
2.

Lemma 4.1 yields Jh(uε
h) → J(ū) as h ↓ 0 and the assertion of Lemma 4.3

follows immediately.

Theorem 4.3 If ε ≤ ε̄, then

lim
h↓0

‖uε
h − ū‖∞ = 0. (4.16)

Proof. We start with the result of Lemma 4.3. From Theorem 4.2, (4.9), we
deduce that uε

h → ū in L2(Ω) implies ‖ϕh(uε
h) − ϕ(ū)‖∞ → 0. We have the

projection formulas

ū(x) = Proj[α,β](−
1

ν
ϕ̄(x)) (4.17)

uε
h(x) = Proj[αε

h
(x),βε

h
(x)](−

1

ν
Πhϕh(uε

h(x))), (4.18)

where

αε
h(x) = max(α, Πhū(x) − ε), βε

h(x) = min(β, Πhū(x) + ε).

Notice that αε
h and βε

h are step functions on Ω. Define analogously

αε(x) = max(α, ū(x) − ε), βε(x) = min(β, ū(x) + ε).

It is quite obvious that ū also satisfies the projection formula

ū(x) = Proj[αε(x),βε(x)](−
1

ν
ϕ̄(x)). (4.19)

Indeed, ū solves (P ) with the additional restrictions u(x) ≤ ū(x) + ε, u(x) ≥
ū(x) − ε, and both of these inequalities are not active at ū. Therefore the
equations (4.17) and (4.19) are equivalent. Of course, (4.19) can also be directly
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derived from (4.17). We leave this to the reader. With these prerequisites, the
proof can be easily completed. In view of (4.18) and (4.19)

|ū(x) − uε
h(x)| =

= |Proj[αε(x),βε(x)](−
1
ν
ϕ(ū(x))) − Proj[αε

h
(x),βε

h
(x)](−

1
ν
Πhϕh(uε

h(x)))|

≤ |Proj[αε(x),βε(x)](−
1
ν
ϕ(ū(x))) − Proj[αε

h
(x),βε

h
(x)](−

1
ν
ϕ(ū(x)))|

+|Proj[αε
h
(x),βε

h
(x)](−

1
ν
ϕ(ū(x))) − Proj[αε

h
(x),βε

h
(x)](−

1
ν
Πhϕh(uε

h(x)))|.

The first difference tends uniformly to zero, as

Proj[αε
h
(x),βε

h
(x)]v(x) = min(βε

h(x), max(αε
h(x), v(x)))

is a composition based on continuous functions, if v ∈ C(Ω). Therefore

Proj[αε
h
(x),βε

h
(x)]v(x) → Proj[αε(x),βε(x)]v(x)

in C(Ω), since αε
h(x) → αε(x) and βε

h(x) → βε(x) in C(Ω). The second differ-
ence tends uniformly to zero, as the projection operator is Lipschitz continuous
with constant 1 and Πhϕh(uε

h(x)) tends uniformly to ϕ(ū(x)) by Lemma 4.3
and (4.9).

Finally, we show that uε
h is a local solution of (Ph). Intuitively, this follows

from uε
h → ū. Therefore uε

h cannot be located at the boundary of the ball
‖uh − Πhū‖∞ = ε.

Lemma 4.4 Suppose that ε ≤ ε̄. Then uε
h is a local solution of (Ph) for all

sufficiently small h.

Proof. We have to show that

Jh(uh) ≥ Jh(uε
h) (4.20)

holds for all uh ∈ Uad
h such that ‖uh − uε

h‖∞ ≤ ε/2. By the definition of uε
h we

know (4.20) only for all uh ∈ Uad
h with ‖uh −Πhū‖∞ ≤ ε. Let uh ∈ Uad

h satisfy
‖uh − uε

h‖∞ ≤ ε/2. Then, if h is sufficiently small,

‖uh − Πhū‖∞ ≤ ‖uh − uε
h‖∞ + ‖uε

h − ū‖∞ + ‖ū − Πhū‖∞
≤ ε/2 + ε/4 + ε/4 = ε,

since uε
h tends to ū by Theorem 4.3 and Πhū → ū as h ↓ 0. Therefore, uε

h

belongs to Uad
h,ε, where (4.20) is satisfied. The optimality of uε

h is proved in the

intersection of Uad
h with a ball of radius ε/2 around uε

h. This is local optimality.

One can also show that uε
h is the unique local solution of (Ph) in a certain

neighborhood of ū. However, we do not discuss this here. In what follows, let
us fix (P ε

h) by ε = min(ε̄, ετ ) and put ūh := uε
h. In this way, a sequence of

local approximate solutions (ūh)h is found that tends to ū as h ↓ 0. In the next
section we estimate the error ‖ūh − ū‖.
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5 FEM-approximation of (P ): Error-estimates

for local solutions

In this section, we prove the error estimates for local approximate solutions in
the norms of L2 and L∞. As outlined in the preceding subsection, we start
our investigations by the sequence (ūh)h>0 of local solutions for (Ph), h > 0,
converging to the fixed local reference solution ū of (P ) that satisfies (SSC).

To perform our analysis, we need an element uh admissible for (Ph) so that
it can serve as a test function in the variational inequality and has an optimal
distance O(h) to ū. The idea is to take uh = Proj[α,β](−

1
ν
Πhϕ(ū)). This

element is admissible and close to ū, but we cannot expect that ūh−uh is in the
τ -critical cone where our second-order sufficient condition holds. To overcome
this difficulty, we apply a splitting ūh − uh = eh + dh, where

eh =





0 on Ω \ Ωh

ūh − uh on (Aτ ∪ Ai) ∩ Ωh

ūh − ū on Ωh \ (Aτ ∪ Ai),
dh =





ūh − uh on Ω \ Ωh

0 on (Aτ ∪ Ai) ∩ Ωh

ū − uh on Ωh \ (Aτ ∪ Ai).

Here, Ai denotes the inactive set of ū, i.e. Ai = {x ∈ Ω |α < ū(x) < β}. We
have taken eh = 0 outside Ωh to apply later Lemma 5.2.

Then eh belongs to the τ -critical cone for all sufficiently small h:

If h is small, then in all triangles T with T ∩ Aτ 6= ∅ we know ū(x) ≡ α
or ū(x) ≡ β, hence on T also uh = Πhū ≡ ū(x) holds. Moreover, Lemma 4.2
yields ūh = ū(x) on T . Therefore, eh = 0 is true on Aτ . On Ai, the τ -critical
cone does not restrict the functions. On the remaining set Ωh \ (Aτ ∪ Ai), the
function ū is active, while ūh belongs to Uad. This ensures that the difference
ūh − ū has the right sign required by the τ -critical cone.

The part dh can be estimated by the optimal order ‖dh‖2 ≤ O(h). Notice
that |Ω \ Ωh| ≤ c h and dh is uniformly bounded. The part ‖eh‖2 must be
estimated yet.

Remark: In the case Aτ = Ω, the τ -critical cone consists of the zero ele-
ment. Here, the second-order condition (SSC) is trivially satisfied and does not
contribute to the error estimation. However, in this case, the continuity of the
function ϕ̄ + νū implies that the sign is constant and then ϕ̄ + νū ≥ τ in Ω or
conversely ϕ̄ + νū ≤ −τ in Ω. In the first case, (3.2) implies that ū ≡ α in
Ω. In the second case, the identity ū ≡ β in Ω holds. On the other hand, the
uniform convergence ϕ̄h + νūh → ϕ̄ + νū implies that ϕ̄h + νūh has the same
sign as ϕ̄ + νū for every h small enough. Then (4.4) leads to ūh ≡ uh ≡ ū in
Ω for every h small enough. Consequently, also eh = dh = 0 holds true for h
small.

The next auxiliary statements express important properties of J ′′ and J ′′
h ,

which are more or less intuitively clear. For their proofs we refer to Arada et
al. (2001). First, since eh belongs to the τ -critical cone for sufficiently small h,
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we obtain:

Lemma 5.1 It holds

J ′′(ū)(eh)2 ≥ δ ‖eh‖
2
2

for all sufficiently small h.

The next result concerns the approximation of J ′′ by J ′′
h .

Lemma 5.2 Suppose that w belongs to Uad
h . Then

|J ′′(w)v2 − J ′′
h (w)v2| ≤ C hλ ‖v‖2

2

holds for all v ∈ L2(Ω) vanishing on Ω \ Ωh, where the constant C = C(Ω, n)
does not depend on v and h.

Lemma 5.3 For all sufficiently small h > 0,

J ′′
h (ū)(eh)2 ≥

δ

2
‖eh‖

2
2

is satisfied.

Proof. This is a direct consequence of Lemma 5.1 and Lemma 5.2.

Moreover, J ′′
h (w) is in some sense Lipschitz with respect to w:

Lemma 5.4 Let w1 and w2 belong to Uad. Then

∣∣J ′′
h (w1)v

2 − J ′′
h (w2)v

2
∣∣ ≤ C (‖w1 − w2‖∞ + hλ) ‖v‖2

2 (5.1)

is satisfied for all v ∈ L2(Ω) with a constant C = C(Ω, n) independent of v and
h.

The term hλ in (5.1) can be avoided, if the so-called discrete maximum principle
holds for the finite-element approximation of (1.1).

By (4.4) the approximate local solution ūh satisfies

∫

Ωh

(ϕh(ūh) + νūh)(v − ūh)(x) dx ≥ 0 ∀ v ∈ Uad
h .

The auxiliary control uh will not fulfill the analogous inequality

∫

Ωh

(ϕh(uh) + νuh)(v − uh)(x) dx ≥ 0 ∀ v ∈ Uad
h .
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Instead of this, we are able to show that uh satisfies an associated perturbed
variational inequality with perturbation ζh, namely

∫

Ωh

(ϕh(uh) + νuh + ζh)(v − uh)(x) dx ≥ 0 ∀ v ∈ Uad
h . (5.2)

To this aim, we introduce ζh ∈ Uh by

ζh|T =





{
− 1

|T |

∫

T

(ϕh(ūh) + νūh) dx
}+

if uh|T = α,

−
{

1
|T |

∫

T

(ϕh(ūh) + νūh) dx
}+

if uh|T = β,

− 1
|T |

∫

T

(ϕh(ūh) + νūh) dx otherwise,

for all T ∈ Th. We extend ζh up to the boundary of Ω analogously to the
definition of the controls in Uh. As we shall verify below, the function ζh is
constructed such that the auxiliary function uh satisfies the first-order necessary
optimality condition of the problem

min Jh(v) +

∫

Ωh

ζhv dx, v ∈ Uad
h , (5.3)

which is a perturbation of (Ph) by the linear functional (ζh, v). We have adopted
the idea to work with this type of perturbation from Malanowski, Büskens and
Maurer (1997). It was introduced there for the optimal control of ODEs and can
be transferred to our case. Although we shall not exactly follow that method,
this idea is behind our technique to show the main error estimate.

Lemma 5.5 The auxiliary control uh satisfies the variational inequality (5.2).

Proof. How can we define ζh to fulfill (5.2)? Select an arbitrary triangle T ∈ Th.
First, observe that (5.2) can be equivalently written as

( ∫

T

(ϕh(uh) + νuh) dx + |T | ζh|T

)
(v − uh|T ) ≥ 0 (5.4)

for all T ∈ Th and all v ∈ [α, β].

(i) If uh|T = α then v − uh|T ≥ 0 holds in (5.4) for all v ∈ [α, β]. Therefore, ζh

must be chosen such that
∫

T
(ϕh(uh) + νuh) dx + |T | ζh|T ≥ 0 holds. Obviously,

|T | ζh = (

∫

T

(ϕh(uh) + νuh) dx)− = (−

∫

T

(ϕh(uh) + νuh) dx)+

meets that requirement.
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(ii) If uh|T = β, then v − uh|T ≤ 0, and
∫

T
(ϕh(uh) + νuh) dx + |T | ζh|T ≤ 0

must hold. This is accomplished by

|T | ζh = (−

∫

T

(ϕh(uh) + νuh) dx)+.

(iii) If α < uh|T < β, then v − uh|T can be positive or negative, hence ζh must
be taken such that

∫
T
(ϕh(uh) + νuh) dx + |T | ζh|T = 0. We have found the

function ζh as defined above.

Lemma 5.6 There exists a positive constant C, independent of h, such that

‖ζh‖2 ≤ Ch. (5.5)

For the proof, the reader is referred to Arada et al. (2001).

Theorem 5.1 For all sufficiently small h > 0

‖ū − ūh‖2 ≤ C h,

holds with a positive constant C independent of h.

Proof. From the optimality conditions for the problem (Ph), and since uh sat-
isfies the optimality conditions of (5.3), we deduce that

J ′
h(ūh)(uh − ūh) ≥ 0 and J ′

h(uh)(ūh − uh) +

∫

Ωh

ζh (ūh − uh) dx ≥ 0.

Therefore,

(J ′
h(ūh) − J ′

h(uh))(ūh − uh) ≤
∫
Ωh

ζh (ūh − uh) dx

≤ ‖ζh‖2‖uh − ūh‖2.
(5.6)

On the other hand, we have

(J ′
h(ūh) − J ′

h(uh))(ūh − uh) = J ′′
h ((1 − θ)ūh + θuh)(ūh − uh)2

= J ′′
h (ū)(ūh − uh)2 + (J ′′

h ((1 − θ)ūh + θuh) − J ′′
h (ū))(ūh − uh)2

= I1 + I2,

with some θ ∈ (0, 1). Now we estimate I1 and I2 separately and apply the
splitting ūh − uh = eh + dh introduced at the beginning of this section. In view
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of Lemma 5.3 and the Young inequality we obtain for sufficiently small h

I1 = J ′′
h (ū)(eh + dh)2 = J ′′

h (ū)e2
h + 2J ′′

h (ū)(eh, dh) + J ′′
h (ū)d2

h

≥ δ
2‖eh‖2

2 − c ‖eh‖2‖dh‖2 − c ‖dh‖2
2

≥ δ
3‖eh‖2

2 − c ‖dh‖2
2 = δ

3‖eh + dh − dh‖2
2 − c ‖dh‖2

2

≥ δ
3‖ūh − uh‖2

2 −
2δ
3 ‖ūh − uh‖2‖dh‖2 − c ‖dh‖2

2

≥ δ
4‖ūh − uh‖2

2 − c ‖dh‖2
2.

For I2 we obtain by Lemma 5.4

|I2| = |J ′′
h ((1 − θ)ūh + θuh) − J ′′

h (ū))(ūh − uh)2| ≤
δ

8
‖ūh − uh‖

2
2

for all sufficiently small h, since ūh → ū and uh = Πhū → ū as h ↓ 0. Summa-
rizing up, we have

I1 + I2 ≥
δ

8
‖ūh − uh‖

2
2 − c ‖dh‖

2
2 ≥

δ

8
‖ūh − uh‖

2
2 − c h2,

hence (5.6) yields

‖ζh‖2‖uh − ūh‖2 ≥
δ

8
‖ūh − uh‖

2
2 − c h2.

By the Young inequality

‖ζh‖2‖uh − ūh‖2 ≤ δ/16 ‖uh − ūh‖
2
2 + c ‖ζh‖

2
2

is obtained. Now from the estimate (5.5),

c h2 ≥
δ

16
‖uh − ūh‖

2
2,

follows, hence ‖uh − ūh‖2 ≤ c h. This, together with ‖uh − ū‖2 = ‖Πhū− ū‖2 ≤
c h, gives the desired estimate ‖ūh − ū‖2 ≤ c h.

Now it is an easy task to improve this L2-estimate by one in L∞. Here, we
exploit the smoothing property of the elliptic PDEs.

Theorem 5.2 The estimate

‖ū − ūh‖∞ ≤ C hλ

holds for all sufficiently small h. Here, C is a positive constant independent of
h, λ = 1 if n = 2 or if n = 3 and the triangulation is of nonnegative type, and
λ = 1/2 otherwise.
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Proof. Invoking Theorem 4.2 and the projection formulas (3.4), (4.6) we get

‖ū − ūh‖∞ = ‖Proj[α,β](−
1
ν
ϕ(ū)) − Proj[α,β](−

1
ν
Πhϕh(ūh))‖∞

≤ C (h + ‖ϕ(ū) − ϕh(ūh)‖∞) ≤ C (h + ‖ū − ūh‖2 + hλ).

Therefore we obtain

‖ū − ūh‖∞ ≤ C(hλ + ‖ū − ūh‖2).

The conclusion follows from Theorem 5.1.
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