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Abstract

An optimal control problem governed by the heat equation with nonlinear bound-
ary conditions is considered. The objective functional consists of a quadratic ter-
minal part and a quadratic regularization term. On transforming the associated
optimality system to a generalized equation, an SQP method for solving the opti-
mal control problem is related to the Newton method for the generalized equation.
In this way, the convergence of the SQP method is shown by proving the strong
regularity of the optimality system. After explaining the numerical implementation
of the theoretical results some high precision test examples are presented.
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1 Introduction

Lagrange-Newton-SQP methods in infinite-dimensional spaces have received much at-
tention during the past years. For general investigations in Banach spaces and their
application to the optimal control of ordinary differential equations we refer, for instance,
to Alt [1], [2], Alt and Malanowski [4], to the mesh independence principle in Alt [3], and
to the numerical application in Machielsen [23]. The control of weakly singular integral
equations was considered by Alt, Sontag and Troltzsch [5].
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Paralleling this development, the case of nonlinear partial differential equations was in-
vestigated. Numerical aspects of SQP and related methods are considered for problems
without control constraints by Kupfer and Sachs [21], Heinkenschloss [14], and with ad-
ditional control constraints by Heinkenschloss and Sachs [15], who report on different
techniques for an effective numerical implementation. Moreover, we refer to the con-
vergence analysis done by Ito and Kunisch [17], [18] in a Hilbert space setting and to
associated numerical test examples.

First rigorous proofs of convergence in the presence of constraints on the control were
given for semilinear partial differential equations by Troltzsch [29] for a 1-D nonlinear
parabolic boundary control problem with the integral equation method and by Heinken-
schloss and Troltzsch [16] for a system of phase-field equations in the framework of weak
solutions. A semigroup approach for a particular parabolic model in N-dimensional do-
mains is contained for a simplified model in [28].

Our paper concentrates on two main points. In contrast to [16], [28], and [29], where
the convergence analysis is based on a quite strong second order sufficient optimality
condition, we follow Dontchev, Hager, Poore and Yang [10] and include here first order
sufficient conditions to tighten the inevitable gap between second order necessary and
sufficient conditions. This is worked out for a simplified model including terminal ob-
servations to make the analysis more transparent. The convergence analysis for general
semilinear parabolic problems is very extensive and will be presented in the forthcoming
paper [30].

Moreover, we report on our computational experience for the 1-D heat equation including
pointwise constraints on the control. The SQP method was implemented as close as
possible to its infinite-dimensional version and shows the expected fast convergence. We
should underline that we did not concentrate on the numerical efficiency of the single
SQP steps. In fact, modifications of the technique can be more effective, and we refer the
reader to the papers [14], [15], [21], mentioned above. A computational verification of our
(infinite-dimensional) analysis is the main aim of the numerical part (cf. the remarks at
the beginning of section 7).

We consider the optimal boundary control problem to minimize

1 A
Pl1) = S (T.) = gy + Sl (L)
subject to
yt(tv'x) - Adfy(tv‘x) in @
y(0,z) yo(x) in (1.2)
Ony(t,z) = bly(t,z))+u(t,z) on X
and

U, < u(t,z) < up a.e. on Y. (1.3)

Although the problem can be discussed under much weaker conditions and in more gen-
erality, we study for convenience this simplified version of a control problem and rely



on the following strong assumptions: € € IR" is a bounded domain with boundary T

of class C**, Q = (0,T) x Q, ¥ = (0,T)x T, T > 0, A > 0, u, < up are fixed real
numbers, and yo, yr € C(Q) are given functions. By 8, the (outward) normal deriva-
tive on T' is denoted. We assume that b = b(y) belongs to C*'(IR) and is monotone

non—increasing. The control function v = wu(t,z) is looked upon in L*(X), while the

state y = y(t,z) is defined as weak solution of (1.2) in Y = W(0,T) N C(Q), where
W(0,T)={y € L*(0,T; H'(Q))| y: € L*(0,T; H'()")} (cf. Lions and Magenes [22]). A
weak solution y of (1.2) is defined by y(0,z) = yo and

(ye(t),v) 1y, + /Vy(t)Vv dx = /(b(y(t, )+ u(t,-))vdS a.e. 1 €(0,T) (1.4)

for all v € H'(Q) (dS: surface measure on T'). Note that W(0,T) C C([0,T], L*()),

continuously. We endow Y with the norm

lylly = lyllwo.r + lvlle@):

2 The parabolic initial-boundary value problem

In this section we provide some important properties of (1.2) and a linearized version of
it without proof. First, we consider the linear system

Y = Ary n Q (21>
Owy+ 0By = ¢ in . (2.3)

Lemma 2.1 Let p > n+ 1 and g € L™(X), 8 > 0. If g € L?(X) and yo = 0, then
the unique weak solution y of (2.1)-(2.3) belongs to Y. The linear mapping G : g — y
is conlinuous from LP(X) to Y. If g = 0 and yo € C(Q), then y € Y, too. The linear
mapping Go : yo +— y is continuous from C(Q) to Y.

The Lemma follows from Theorem 3.1 and Proposition 3.1 in Raymond and Zidani [24].
Next, we consider the nonlinear system (1.2).

Lemma 2.2 Let p > n+1. Then (1.2) admits for each w € LP(X) a unique weak solution
y € Y. The mapping u — y = y(u) is of class C* from LP(X) to Y. There is a constant
cr, such that

ly(u) = y(ua)lly < erflur — wallr(s)
holds for all uy, uy satisfying the constraints (1.53).
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This result can be derived from [24].

In what follows, we define the "boundary operator 7 (G, and the "initial operator” G
according to Lemma 2.1 for # = 0. Moreover, we introduce a Nemytskii operator B :

C(Q) = LP(X) by
B(y)(t,x) = b(y(t, z)), (t,z) € X.

In this way, the nonlinear parabolic system (1.2) can be re—formulated as equation in

C(@)b
' y = Goyo + G(B(y) + u). (2.4)

B is of class C?, as the trace mapping y + ~y is linear and continuous from C(Q) to

C(Z) and y = b(y) is C* from C(X) to C(T) — LP(D).

3 First and second order optimality conditions

We assume once and for all that a fixed reference control u € Uy = {u € L=(X)|u, <
u < wup} is given, which satisfies together with its associated state § = y(u) € Y and
an adjoint state p € Y the standard first order optimality system consisting of (1.2), the
control constraint u € U,q, the adjoint equation

—pi(t,z) = Aup(t,x) in @

p(T, z) §(T,z) —yr(z) in Q (3.1)
O,p(t,x) = b(y(t,x))p(t,z) on X

and the variational inequality

/(/\a +5)(u — @) dS dt > 0 Vu € Usy. (3.2)
b

Existence and uniqueness for (3.1) can be discussed by means of Lemma 2.1 and the

transformation of time ' = T' — ¢. In particular, this yields p € C(Q). A well known
argument shows that (3.2) is equivalent to

u(t,z) = P[umub]{—)\_lﬁ(t,m)} a.e. (t,z) €Y, (3.3)

where Py, 1 0 IR — [ug, uy] denotes projection onto [ug, us]. The continuity of p and (3.3)
show that @ is continuous.

For convenience we introduce the Lagrange function £:Y x L>(X) x Y — IR by

L(y,u,p) =e(y,u)— /(ytp + VyVp)dx dt + /(b(y) +u)pdS dt. (3.4)
Q )



In (3.4) the integral over y; p stands for the value of the functional y; € L*(0,7; H'(R?)')
at p € L*(0,T; H'(Q)). L is of class C? w.r. to (y,u). By L', L"” we denote the first and
second order Fréchet derivative of £ w.r. to (y,u) in Y x LOO(Z). We write L£”(y, u, p)[v]?
for £"(y,u,p)v,v] to shorten long expressions. It should be mentioned that (3.1)-(3.2)
can be formulated also by

L'(y,u,p)(y,u—1u) >0  VyeW(0,T) with y(0)=0 and Yu€ U,a.  (3.5)

To establish a second order sufficient optimality condition being arbitrarily close to the
corresponding necessary ones, we consider also first order sufficient conditions: Following
[10] we define for fixed (arbitrarily small) o > 0

I, ={(t,z) € ¥ | |Aa(t,z)+ p(t,z)| > o} (3.6)

Note that (3.2) (or (3.3)) implies u(t, z) € {u,, up} a.e. on I,. Infact, we have u(t,z) = u,,
where Au(t,z) + p(t,z) is positive and u(t, z) = us, if the expression is negative.

We suppose that the triplet (i, @, p) satisfies the second order sufficient optimality condi-
tion (SSC): There are § > 0, o > 0 such that

L7, @, p)(y, v, (y,u)] = 8]lullZ2s) (3.7)
holds for all (y,u) € W(0,T) x L*(X) such that v = 0 on I, and
(88C) y = Auy
y(0) = 0 (3.8)

Ony = b'(gj)y—l—u.

We assume in our analysis below that mes [, < mesY, i.e. that (3.7) is not trivially
satisfied. In the opposite case, first order sufficiency holds a.e. on ¥. Then the theory of
the next chapters simplifies in an obvious way.

One can show that (y,u) is locally optimal for the control problem in the sense of Y x
L>(%), if (y,u, p) satisfies the first order optimality system together with (SSC). We refer
to the elliptic case discussed in Casas, Troltzsch and Unger [7]. The extension to the
parabolic case is straightforward.

4 The Generalized Newton method

Completely analogous to (2.4) we can formulate the adjoint equation (3.1) as
p=Gr(y(T) —yr) + DB'(y)p, (4.1)
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where the "final operator” G : C(f2) — Y gives the solution of (3.1) with homogeneous
boundary condition d,p = 0 and D : L>®(X) — Y is the corresponding "boundary
operator”. Moreover, we introduce the set-valued mapping N : L>(X) — 2L (E) by

N(u) = {ve LOO(Z)|/U(Z W) dSdL <0 Vze U,

N is the normal cone of U,y at u. Then (3.2) reads 0 € Au + p + N(u). Let W :=

C(Q) x L™(X), fi, fo: W = C(Q), fs: W — L>=(X) be defined by

fily,p,u) = —y+ Goyo+ G(B(y) + u)
falyspyu) = —p+Gr(y(T) —yr) + DB'(y)p (4.1)
faly,pyu) = du+p

FZ(?J;p;“) - {0}7 FS(y7p7u> = *N(u>

and introduce set-valued mappings by Fi(y,p,u) =
= (y,p,u), the optimality system (1.2),

erltlng f = (f17f27f3>7 F = (F17F27F3)7 w
(3.1)-(3.2) admits finally the form

0€ f(w)+ F(w), (4.2)

where [ : W — W is of class C'' (note that " € C®'(IR)) and F : W — 2" has closed
graph (u, — u, v, — v in L*(X¥) and v,, € N(u,) implies v € N(u)).

The generalized Newton method for solving (4.2) can be described as follows: Let w,
be the last (current) iterate. Then the new iterate w,4; is obtained from the linearized
generalized equation

0 € f(wn) + ['(wn)(w —wn) + F(w). (4.3)

To show the convergence of the method, we shall make use of a generalization of the
well known Newton-Kantorovich theorem. It relies mainly on the assumption of strong
reqularity of the generalized equation. This notion goes back to Robinson [25]: The
generalized equation (4.2) is said to be strongly regular at @ € W, if there are positive
constants r(w) and ¢z (w) such that the perturbed linearized equation

e € f(0) + ['(@)(w — ©) + F(w) (4.4)

has a unique solution w = w(w, ¢) for all ¢ € B,(#)(0), and the mapping ¢ — w(w, ¢) is
Lipschitz continuous on Br(m)(O) with modulus ¢z, ().

Here and in the sequel B,(w) denotes the closed ball of W around w with radius r, where
W is endowed with its natural norm || - ||w.



Theorem 4.1 Let w be a solution of (4.2) such that this generalized equation is strongly
reqular at w. Assume further that F : W — 2V has closed graph, f: W — W is of class
C', and that for all M > 0 there is a constant Iy > 0 with

1/ (w1) = f(w2) lw—w < Duflwon = wslw (4.5)

Jor all wy, wy in Bar(0). Then there is a py > 0 such that for any starting point w, €
B, (@) the generalized Newton method generales a unique sequence {wy} convergent lo
w. Moreover,

lionss — @l < enlloe — ol (1.6)

holds with some positive constant ¢y for all k > 1.

(4.6) expresses the quadratic convergence of the Newton method. For the proof we refer
to a recent paper by Alt [3], Theorem 2.6, and to the references therein. A generalization
of this theorem can be found in Dontchev [8], [9], where the so-called Aubin continuity of
the inverse mapping associated to the linearized generalized equation is introduced and
assumed instead of strong stability.

Let e = (ey, €p, €,) € C(Q)* x L(X) be the perturbation standing in (4.4). Transforming
(4.4) back into three separate equations of the type (4.17) we get the linearized system

0 = —y—ey+Goyo+G(BH)+ B'(H)(y — ) + u),
0 = —p—e,+Gr(y(T)—yr)+ D(B'(H)p+ B"(§)dly — 7))
Au+p—e, € N(u).

In this form, it is difficult to interprete y, p as solutions of perturbed partial differential
equations. After introducing § =y + €,, p = p + ¢, we see that (4.4) is equivalent to

= Goyo+ G(B(y) + B'(4)(§ —y) — B'(y)ey)

= Gr(y(T) —yr — ey(T))

+ D(B'(y)p+ B"(5)p(y — y) — B'(y)e, — B"(y)pe,) (4.7)
(Au + p—ep—eu,v—u)p,x) =20 Voe Us.

S &

This is the abstract form of an optimality system of a perturbed linear quadratic control
roblem (QQP)_ depending on a new perturbation z. In fact, it corresponds to
p » 4d€p g P ) P
= = = ~ 1 "ni— - = ~ —\12 — — |
(QP), ' u)y—yu—u)+ Ly, up)y —y,u—u)” + d(y — y,u — u) = min!
2
subject to

Yy = Ay
y(0) = wo (4.8)
Oy = b)) +V (W) (y—y)+u+zy, u€ Uy,
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where we have introduced y = §, z := (27,2y,2p, 2u), 27 = €y(T), zy 1= —B'(y)ey,
zp = —B'(y)e, — B"(y)pey, zu := —(€, + €4) regarding the restrictions of z,, zp, 2, to X.
The linear perturbation functional d, is defined by

d,(y, ) ::/ZT(;L')y(T,x)dx+/zp(t,x)y(t,:v)det+/zu(t,x)u(t,:c)d5dt. (4.9)
Q b b

To check the assumptions of Theorem 4.1 we shall investigate the stability of (QP,) with

respect to z in the next section. It is obvious that stability with respect to z implies

stability of (4.4) with respect to e = (e, ep, €,), as HZHC(Q)X(Loo(E))s <c H(:’Ho(Q)X(Loo(E))'z.

5 Stability of (QP.)

The linear—quadratic programming problem (QP,) cannot assumed to be convex, since
L" is coercive on a subspace only. Regarding (QP,) for all controls u € U,4 may therefore
lead to different local minima. This is the reason for regarding (QFP,) in a local setting,
i.e. in a neighborhood of .

Let us start with (Q P, ) restricted to U,g = {v € Usglu =1 on I,} and call this problem
(QP:).

Theorem 5.1 Problem (QP,) admits for all perturbations z € C(Q) x (L**(X))* a unique
solution (y,,u,) €Y X Ug.

Proof: In ((P.) we set u = uy + uy, where uy = x7, @ and uy = xx\r,u. Let y;, 1 =1,2,
denote associated states satisfying y1(0) = yo, y2(0) = 0, and the heat equation in (4.8)
subject to

Onyr = b(§) + V(i) (g1 — §) + 2 +

Opyy = b'(gj)y2 + ug. (5-1)
Then y = y1 + y, is the state associated to u € U,q. Moreover, (y1,uq) is a fixed element
and (yz, uz) belongs to the subspace, where £"(y, u, p) is coercive. Now we get by standard

arguments the existence of a globally optimal control u,, in U,g N {u|u = 0on I,} with
state ys.. Obviously u, = uy 4+ vz, y. = y1 + y2,. forms an optimal pair for (QF,). O

This solution (y,, u,) fulfils the optimality system consisting of (4.8), the adjoint equation
—p: = Ap
p(T) = yAT) —yr +2r (5.2)
Oup = V(@p+0"(@)ply: — ) + 2

and

/(/\uz—l—p—}—zu)(u—uz)detZO Vue Ty (5.3)
X



with the adjoint state p=p, € Y.
In the next theorem, we use the norms
Iy, p. )l = llylwom + lIpllwor + llullzz)
12114 Izl o) + |2yl ey + zullnam) + 2ol Lo, (2 < ¢ < o0).

Theorem 5.2 Let (y;,u;) , ¢ = 1,2, be the unique solutions of (QP,,) and p; be the
associated adjoint states. Then the Lipschilz estimate

H(ylaplaul) - (y2aP2aU2)H2 < 1H21 - 22H2 (5-4)

holds with some [ > 0, which does not depend on zy, z,.

Proof: We first mention the system for y; — y2: It holds (y; — y2)(0) = 0, and (y1 — y2)
solves the heat equation together with the boundary condition

Oy —y2) = V' () (41 — y2) + (w1 —ua) + Z; — zj (5.5)
The objective functionals of (QP;,) are
gio= (T ) —yr+ 20, y(T) = §(T)) (@) + (N + 2w = W)2(x)
+ (¥ = Do) (5.6)
1
4 S IT) = BTy + 5l = ey + 5 / V@)l — 5)* dS dr.

The Lagrange functions L associated to (QP,,) are

ye,pi) — (Vy, Vi) (g
Wy — ) +u+ 2y, pi)io(s)-

+ (b7 )+ b’(:a
We used (y:,p) to denote the value of the functional y; applied to p. Since v = u on

I, the problems (QP,,) are convex. Therefore, the necessary and sufficient optimality
condition for (y;,u;) is

(Ziy(yhuivpi)(v - Ui) >0 (57)
for all v = (y,u) € Y x U,q, where v; := (y;,u;), ¢ = 1,2. Now we insert v = vy in
the inequality for ¢ = 1, v = vy in the corresponding one for + = 2 and add the two

inequalities. After several computations we arrive at
—L"(y,u,p)[v1 — vo]*+ < dy — doy, 2 — V7 > +(z; — zj,pg — 1)z = 0. (5.8)

The difference vy — vy does not belong to the subspace, where (SSC) applies. Therefore
we split v1 — vy = v + 0, where v = (y,u1 — uz), © = (9,0), y, g solve the heat equation
in (4.8) with homogeneous initial condition and

Ony = b'(gj)y + Uy — uy
Oy = V(y)y+ z; — 22 (5.9)

Y
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Note, that uy —uy = 0 on I,. Thus (SSC) applies to v and L"(y, u, p)[v]* > 6||ua —uQH%Q(Z)
is obtained. Moreover, known results on parabolic regularity yield

ilwor < cllzy = 2l ). (5.10)

Inserting the preceding two estimates in (5.8) we deduce after some formal manipulations
and estimates (in particular for ||p; — p1||w(,r)) that

Sllur —walliamy < elllzr — 2213 + [le1 = zall2llor — v2[2)
< é(llar = zall3 + llon — zallaflun — woll2) (5.11)
with some constants ¢, ¢ > 0. The last estimate follows from ||y; — yQHW(O’T) < (‘(I‘Z; —
ZZHLz(E) + Hul — U/ZHL?(E))- We have used HU1 — 7)2H2 = Hyl — yQHW(O’T) + Hul — UZHL?(E)-

Now there are two possibilities in (5.11). The first is |[u1 — us|[z2(z) < |21 — 22||2. The
second is || 21 — 2|2 < ||ur —ug|[z2(x). Then (5.11) implies |[uy —ug||r2(x) < c67 |21 — zal|2-
(5.4) follows first for ||u; — uq|| with I = max(1,¢6~"). The remaining estimates of y; — ya,
p1 — po follow from estimates for the associated parabolic initial-boundary value problems.

O

Theorem 5.3 There is a constant I' > 0, such that the statement of Theorem 5.2 holds
true in the form

[(y1, P15 u1) = (y2, 2, w2) 0@ xpe(m) < Ul — 22|oo- (5.12)

This result can be shown by a bootstrapping argument relying on parabolic regularity.

We refer to Troltzsch [27].

Corollary 5.1 [t holds
fr = wall sy < Vller = 2o (5.13)

Corollary 5.2 The unique solution (y.,u.) of (QP,) satisfies (5.3) for all u € U,y, i.e.

/()\uz bps ) (u—w)dSdt >0 Yu € U, (5.14)

b

if ||2)l0 < p, and p is sufficiently small.

Proof: It follows from Corollary 5.1 that v, — u in L*(X), if p — 0. This implies in

turn p, — p in C(Q). Therefore, on I, the signs of Au, + p, + z, and Au + p coincide

almost everywhere for p sufficiently small. In (5.3) we have u = u, = @ on I,, hence

/ Ay +ps + 20)(u—u,)dSdt >0 Vu € U,y. (5.15)
s\1,
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On I,, (Au, 4+ ps + z)(t, ) (u —u.(t,2)) > 0 Vu € [ug, up), as u, = u, u solves (3.2) and
the signs of Au, + p, + z, and A + p coincide. Obviously this yields together with (5.15)
the inequality (5.14). O

Up to now, we have shown Lipschitz stability of (Q P,). In view of the equivalence between
the solutions of (QP,) and those of the optimality system (4.7) and of the remark closing
section 4, this implies Lipschitz stability of the solutions of the linearized generalized
equation (4.4) with respect to e. This shows the strong regularity of (4.2) at w = (y, p, u).
All this, however, holds so far only true for U,;. Moreover, we have to re-define N(u) in
this sense, too, to make this result true. Unfortunately, we cannot entirely avoid certain
restrictions, but we are able to weaken them essentially. In the next statement, we use

aa = 1 € Vgl [lu — il Lo (z) < e}

Theorem 5.4 There are positive numbers ¢ and p', which do not depend on the pertur-
bation z, such that for each z with ||z||s < p' the unique stationary control for (QP,) in
Uz, is us.

Proof: Suppose that a perturbation z with ||z]|« < pis given. If p < p, then Corollary 5.2
shows that u, € U, is stationary for (QP.). According to the construction we have u, = u
on I,. Let ¢ > 0 be given. Then u, € U, if p is sufficiently small, say p < pi(e) < p.
This follows from Corollary 5.1. Assume now that @ € U, is another stationary control
of (QP,) with associated state § and adjoint state p. We first estimate § — y,, p — p,:
The difference § — y, solves the heat equation with homogeneous initial condition and
boundary condition

On(§ —y:) = V(GG —y:) = i — us,

hence

|9 — yz”c@) SN = yelly < eyt — uzln (s (5.16)

holds with some ¢, > 0. Similarly, p — p. satisfies the backward heat equation with

(h—p)(T) = §(T) —y(T)
On(p—p:) = V(@B —p:) = V"(H) D0 —ye).

Lemma 2.1 yields

p—p:llo@) < el — v:lle@):- (5.17)

Moreover, ||t — .| p~x) < 2¢, since u,, @ € U,;. Therefore, the estimates (5.16), (5.17)
imply

p—p:lle@g) < 6oy 26 (5.18)

We have
/()\& b ptz)(u— i) dSdt >0 Yu € Uy (5.19)
%
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(@t is stationary for (QP,)). After splitting
A+ P+ 2z = M+ p+ 2 + A8 — uz) + Aus — w) + (p—p2) + (p- — p)

we deduce from (5.18) and the fact that @, p are the unique solution and adjoint state to
(QP,) for z=10
M+ p + 20 — (A + ) 12]lo0 + 26X 4+ Al'|[2][o0 + 2¢peye + ]| 2]]oo

<
< (1 + ()\ + l)l')p + 26()\ + cpcy) < a/2,

iftp<pr=c@1+A+DI)" e <o8(A+¢pey))". We define ¢ in this way and
choose p < p' = min(pi(e), p2). On I, we have |p 4+ Au| > o, hence the signs of p + Au
and At + p + z, coincide for this choice of p and e. Consequently, @& = u (= u, or uy)
on I,,i.e. @ € U,g. (QP.) admits a unique solution, this is u,. On the other hand, @ is
stationary, hence by convexity optimal for the same problem, too. This shows 4 = u,. O

Let (QP3) denote the linear-quadratic control problem obtained from (Q P,) on replacing
the admissible set U,q by UZ;. The next statement shows that this does not change the
solution set for sufficiently small &:

Lemma 5.1 Ife > 0 is sufficiently small, then the unique solution of (QP%) is u,.

Proof: The variational inequality (5.14) is satisfied in particular for all v € UZ,. Therefore,
u, is stationary for (QPZ). Note that Theorem 5.4 cannot be directly applied, as (QP,)
is based on U,4, while (QP%) is connected with U;,. Let u. € U, be another stationary
control, and let y., p. be the associated state and adjoint state. For ¢ — 0 we have u. — u
in L. (X) by the definition of US;, hence y. — ¥, p. — p in C(Q). Following the proof
of Corollary 5.2 we find u. = u = u, on [I,, hence u. —u, = 0 on I,, if ¢ is sufficiently
small. Now we repeat the transformations in the proof of Theorem 5.2 for the choice

(y17p17u1) = (y27p27u2)7 (y27p27u2) = (ysvpévus) to find
_Ell(ga ﬂaﬁ)[yz — Ye, Uy — 71’5]2 2 0

instead of (5.8) (note that u. and u, are stationary for the same perturbation). Obviously,
(SSC) applies to v, —v., thus the last inequality implies v, = v., hence u, —u.. Therefore,
u, is the unique stationary solution for (QP;). It can be shown by standard arguments
that (QP;) is solvable (UZ; is weakly compact in L,(X), the functional lower semicon-
tinuous w.r. to u, the mapping u + y(u) compact from L,(X) to Y). This solution is
necessarily u,, since no other control satisfies the optimality system. O

Let us finally introduce

Ne(u) = {v € Lw(z)|/v(2 —u)dSdt <0 VzeUs).
b))

It is easy to check that N*(u) = N(u) for all € > 0.
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( Let v € N*(u) be given. Define ¥, = {(t,z)|u(t,z) = u.}, ¥y = {(¢,2)| u(t,z) = up},
Yo = ¥\ (Z, UXp). On Xy the constraint z € UZ; means z(t,z) € [up — &, up], hence
z — @ can admit all values in [—&,0] on X3. This yields v > 0 a.e. on Y. In the same
way we find v < 0 a.e. on ¥,. On ¥¢ we have u, < u(t,z) < us, hence z — @ can have
all signs, and we obtain in turn v = 0 a.e. on ¥o. Thus N°(u) = {v € L™®(¥)|v >
0 ae ony,v<0 ae on¥,, v=0 ons}. The discussion for all v € N(u) leads
to the same representation for N(a).)

In what follows we shall regard the generalized equation (4.2) with the set-valued map
F(u) associated to the normal cone N*(u). In view of Theorem 5.2 on Lipschitz-stability,
the preceding investigations ensure the strong stability of this generalized equation at

@ = (§,p, ).

6 The Sequential Quadratic Programming method

Let wy = (y1, p1, u1) be a starting triplet (we shall assume that w, is close to w = (g, u, p)).
Then the Sequential Quadratic Programming (SQP) method determines a sequence w,, =
(Yn, Pn, un) as follows. Let ¢ > 0 be given according to Lemma 5.1. Initiating from w,,
the next iterate w,4; 1s obtained from solving

" 1 .
(QP™) O (Yny Un ) (Y — Yy — up) + §£"(yn, Uy P ) [(Y — Yy u — un)]2 = min! (6.1)
subject to

yr = Ay
y(0) = wyo (6.2)
Oy = b(yn) +0(yn)y —yn) +u, ueUy,

while p,.1 1s the associated Lagrange multiplier. First of all, we have to make sure
that (QP") is uniquely solvable. This property cannot be derived from the convergence
theorem 4.1 for Newton’s method: It might happen that (QP™) has more solutions than
the solution w41 = (Yn+41, Prt1, Unt1) of (4.3). The existence of at least one solution of
(QP™) follows by the arguments used at the end of the proof of Lemma 5.1 (note that

1
§£”(ynv Unp,, pn)[y —Yn,U — un] = /(U(T) — Tjn(T>)2 dz
Q
£ [ b )5 = ) + Mo = wn)?) dS
b
is convex w.r. to u and u appears linearly in (6.2).) If w, = (yn,pn,u,) € B,(w0) is

sufficiently close to w = (y, p,u) and ¢ is taken sufficiently small, then any solution 44
of (QP") satisfies u,41 = u on I,, hence u,41 € U,q. This is shown in the same way as
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Corollary 5.2, since L, (Y, Un, pn)(t, ) has on I, the same sign as £, (y, u,p)(t, z). On the
other hand, the quadratic form £”(y,, un, ps) is then coercive on the linear subspace of all
(y,u), which satisfy the parabolic equation (6.2) and v = 0 on I,. This permits to derive
uniqueness (any difference of solutions w41, tUnt1 of (QP") satisfies tpq1 — tiny1 = 0 on
I,). We should underline that "¢ is small” can be defined independently of w, € B,(w).
We refer for the details to the forthcoming paper [30], as the methods are completely
analogous to the proofs of Theorems 5.1, 5.2 and Corollary 5.2. Summarizing up, we have
obtained:

Theorem 6.1 Let 0 < p < py and ¢ > 0 be sufficiently small. Then the SQP-method
generates for any starting point (yl,pl,ul) € BpN(tT)) a4 unique Sequence {(yn,pn,un)}
such that

| (Ynt1, Prt1s untr) — (4, B, a)HC(Q)QxLM(E) < en||(Yns Prs un) — (¥, P, a)“%‘(QVxLOO(E) (6.3)

(n=1,2,..).

We should underline that we have applied Theorem 4.1 for the normal cone N*(u). (6.3)
shows the quadratic convergence of the SQP method in U;,.

The restriction of U4 to Uy, seems to contradict the experience with the SQP method in
IR™, where this is not necessary. In finite dimensions, the constraints contain only finitely
many inequalities. The active inequalities are assumed to be known in the attraction
region of the method. Then the SQP method is nothing more than the Newton method
for a system of equations, where the iterates do not leave the region. In our setting, we
cannot assume that the active set is known after finitely many steps.

To motivate the need for the additional constraint in U7; we consider the following exam-
ple:

¢ € [-21]. (6.4)

This nonconvex quadratic problem has stationary solutions at —2, 0, and 1. The points
—2, and 1 are strict local minima at which first order sufficient conditions are satisfied.
Therefore, (SSC) is trivially fulfilled. Choose z = 1 to be our reference solution. (QP") is
identical to (6.4) and will always deliver the global minimum at z,4+; = —2, independently
on how close z,, is taken to £ = 1. Convergence to z can only be guaranteed by restriction
to a neighborhood of # = 1. We cannot do better in our framework.

A different method of Newton type, presented by Kelley and Sachs [20] for the control
of ordinary differential equations, is able to avoid this restriction to a neighborhood.
However, the authors have to impose some structural assumptions on the active set and
conditions on the slope of the switching function at the junction points.
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There remained an other unsatisfactory point for the application Uz, depends on the
unknown control w. Define U}, := {u € Upal ||u — UIHL"O < 5} and assume that |[wy —
wllw < min(%, pn). Then U,; C Uz;. Moreover, the closed ball of radius ||@ — 1|z (x)
is contained in U};. According to the preceding theorem this ball is an attraction region
for the SQP-method. Therefore the iterates do not leave the set U!, and the SQP method
converges in U,

Remark 6.1 If the second order condition (3.7) holds for all u € L*(X) (this corresponds
to the formal setting I, := ), then the restriction to U, or U}, is not necessary. In this
case, (QP") admils a unique globally oplimal control in U,y.

In our computational examples, (@ P") was solved on the whole region U,,.

7 Some computational results

Our convergence result is more or less of theoretical value only. Any implementation has
to be linked with some discretization. We solve a discretized version of (QP"). This
result is taken to define (Q P"*'), which is discretized again. In this way the accuracy of
the SQP-method depends on that for solving the quadratic subproblems. Let h denote
a mesh size parameter describing the discretization of the quadratic subproblems and let

w’ denote the current solution obtained from (QP " 1)) the discretization of (QP{"~1))
Wl‘rh meqh 9179 h. The problem (QP") is discretized with parameter AT and has the

solution w! . Tt is obvious that the quadratic convergence of the SQP method can only

n+1
be observed during the computation, if the accuracy of solving (QP") is compatible with

the precision reached in the preceding SQP-step, i.e. AT has to be chosen such that

onss — ! llw < el — [,

where w,+1 denotes the exact solution of (QP"). In other words, the mesh size has to
be adapted to the progress of precision of the SQP method. In particular, this refers
to the numerical method for the partial differential equation. Therefore, this successive
refinement of the mesh size leads after a few steps to astronomical dimensions of the
discretized problems.

Aiming to find a compromise between verification of fast convergence and acceptable
dimensions of the discretized problems, we decided to solve our quadratic sub—problems
by a fine discretization, where the difference to the exact (linear-quadratic) control is at
least not visible in the plotted pictures, c¢f. Figure 1. We found that 400 node-points
for the controls were sufficient for this purpose and had to solve problems of dimension
greater than 640,000 of variables in this case.

We avoid any table of computed results, as an accuracy beyond 1072 was not compatible
with the accuracy chosen for solving the heat equation.
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Nevertheless, establishing (@ P") and its solution by a standard QP-method will need
very high storage capacity. Therefore, we applied a multigrid method of the second kind
due to Hackbusch [12] combined with the Bertsekas projection method [6]. We refer to
the authors paper [11] for the details. Similar techniques have already been successfully
applied by different authors. We only mention Hackbusch and Will [13], Heinkenschloss
and Sachs [15], and Kelley and Sachs [19], [20].

Test examples:

To illustrate the strong dependence of the computed optimal control on the discretization,
we first discuss the numerical treatment of the following linear—quadratic problem due to

Schittkowski [26]:

ugﬂwnxyﬂU@de+um/ﬁ%wﬁ:nmﬂ (7.1)
subject to
yt((ta'r; = yxx(ta'f> on EO,CF)] X (0,1)
0,z) = 0 on (0,1
;x(t,O) =0 in (0,7] (7.2)
yr(t,1) = wu(t)—y(t,1) in (0,7],
and
—1<u(t) <1 a.e. at [0,T], (7.3)

where yr(z) = 0.5(1 —2?), A = 0.001 and T' = 1.58. Let n4, n, and n, denote the number
of subintervals used for the discretization of [0,7] x [0,1] in the PDE and of [0,7] with
respect to u. Figure 1 shows the plots of the computed controls for the following triplets

of (n, na,ny): (100,100,50), (400,400,200, (800, 800,400).

05 : .




Figure 1

The figure shows that the controls are very sensitive with respect to the discretization.
Hence a fine discretization should be used to verify the gain of accuracy given by the SQP
method at least in the first steps (cf. the arguments at the beginning of section 7).

The next example is a nonlinear problem with almost the same data as above, but with
the boundary condition

ye(t,1) = u(t) —y(¢,1)%
This boundary condition does not directly fit into our assumptions, as b(y) = —y? is
monotone increasing for y < 0. If we put b(y) = y? for y < 0, then the assumptions are
satisfied. In the computational example, the state y remained positive in all iterations.
Hence this formal change does not influence the result in this test example.

The initial SQP iterate was taken as (yo,uo, po) = (0,0,0), (rnsng,ny,) = (800,800,400).
In Figure 2 the first iterates are represented. A continuation of the iteration process after
the 5. iteration was appearently not meaningful.

3
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S— "5
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0
05 k \,\ i

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

Figure 2

Computations with coarser discretizations exhibited the same behaviour. In this way, all
of our test examples confirmed the mesh-independence principle of Alt [3].

In the test example the restriction to a neighborhood around # was not necessary. More-
over, the method converged, although the starting element was far from the solution. This
behaviour cannot be expected in general. To make Newton type methods practicable, a
globalization technique has to be used.

Acknowledgement: The authors are grateful to W. Alt, W. Hackbusch, M. Heinken-
schloss and E.W. Sachs for helpful discussions during the work on this paper.
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