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Abstract

A mathematical model for instationary magnetization processes is considered,
where the underlying spatial domain includes electrically conducting and noncon-
ducting regions. The model accounts for the magnetic induction law that couples
the given electrical voltage with the induced electrical current in the induction coil.
By a theorem of Showalter on degenerate parabolic equations, theorems on existence,
uniqueness, and regularity of the solution to the associated Maxwell integrodifferential
system are proved.
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1 Introduction
Due to their paramount importance for various electromagnetic processes in different ap-
plications, Maxwell equations attracted increasing interest in the past years. In particular,
the control of magneto-hydrodynamic processes led to the discussion of new mathematical
aspects. There is already an extended literature on the whole field.

Let us mention first the classical monographs by Bossavit [6] or Monk [13], where the
foundations of the underlying numerical analysis are contained. We also refer to the recent
book by Rodriguez and Valli [1] on stationary Maxwell equations.

Our paper is close to recent contributions on evolution Maxwell equations of degenerate
parabolic type by H. Ammari, et al [2], Arnold and von Harrach [4], Bachinger et al [5],
Hömberg and Sokołowski [10], and Kolmbaur [12]. A characteristic feature of these papers
is the presence of conducting and nonconducting regions in the spatial domain. While [5]
and [12] consider the model in bounded regions and [5] also sketches a quasilinear system, in
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[2] and [4] the problem is discussed in the whole space. The paper [10] deals with induction
heating and considers a coupled system of the evolution Maxwell and heat equations.

In [5], the evolution Maxwell equations
σ
∂y

∂t
+ curlµ−1 curl y = f(t) in Ω× (0, T )

y × n = 0 on ∂Ω× (0, T )

y(0) = y0 in Ω1

(1)

are considered, where Ω ⊂ R3 is a bounded domain that is the union of two subdomains Ω1

(conducting region) and Ω2 (nonconducting region) such that Ω̄ = Ω̄1 ∪ Ω̄2. The electrical
conductivity σ : Ω→ R vanishes on Ω2 so that the equation (1) is of degenerate parabolic
type. Therefore, an initial condition can only be prescribed in Ω1. By µ : Ω → R+, the
magnetic permeability is denoted.

In the application to the magnetization processes we have in mind, the real quantity
of interest is the magnetic field B : Ω̄ × (0, T ) → R3 that is represented by a vector
potential y : Ω̄× (0, T )→ R3 to be determined by equation (1). The given right-hand side
f : Ω× (0, T )→ R3 has to obey some special regularity properties. In particular, div f = 0
is required on Ω . For us, the special choice

f(x, t) =

{
0 in Ω1 × (0, T ),
e(x)i(t) in Ω2 × (0, T )

(2)

is of particular interest, where e : Ω2 → R3 is a given divergence free vector field and
i : [0, T ]→ R stands for the electrical current in an induction coil.

By the induction coil, magnetic fields are generated, but in practice the quantity under
control is the electrical voltage u : [0, T ] → R. According to Faraday’s induction law,
the total magnetic flux Ψ is coupled with the current i and the voltage u by the equation
∂ψ/∂t+Ri = u. By the divergence theorem, after some steps the model below is obtained.
We refer exemplarily to Kaltenbacher [11], chpt. 7.3, who also uses this well known idea.
After splitting the equations in their parts in Ω1 and Ω2, the related model amounts to the
following equations:

σ
∂y

∂t
+ curlµ−1 curl y = 0 in Ω1 × (0, T )

curlµ−1 curl y = e(x)i(t) in Ω2 × (0, T )
y × n = 0 on ∂Ω× (0, T )
y(0) = y0 in Ω1,∫

Ω

∂y

∂t
· e(x) dx+R i(t) = u(t) in (0, T )

i(0) = i0.

(3)

Here, R > 0 is the resistance of the induction coil and i0 denotes the initial value for the
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electrical current. To allow for more generality, we will discuss the model in the form

σ
∂y

∂t
+ curlµ−1 curl y + εy = f(t) in Ω× (0, T )

y × n = 0 on ∂Ω× (0, T )
y(0) = y0 in Ω1,∫

Ω

∂y

∂t
· e(x) dx+R i(t) = u(t) in (0, T )

i(0) = i0.

(4)

In this setting, ε ≥ 0 is a regularization parameter that can be taken positive in the
numerical solution of the system to enhance better stability of numerical methods, f :
Ω× (0, T )→ R3 with

f(x, t) =

{
0 in Ω1

i(t)e(x) in Ω2

has to obey certain regularity assumptions to be specified later.
Our paper is organized as follows: In Section 2, we transform the system (4) to a

parabolic model that can be handled by a theorem of Showalter [14]. We will eliminate the
electrical current i and arrive at a model that covers also the model of [5] as a particular
case. In this way, we are able to provide an alternative proof of existence and uniqueness
for the equation (1). Moreover, this section contains basic definitions of spaces and bilinear
forms. Here and in the next sections, we heavily rely on results of Costabel et al. [8] on
the existence and regularity of solutions to elliptic equations of Maxwell type.

In Section 3, we discuss the well-posedness of our general system (4). Moreover, here
we discuss an associated adjoint equation as a prerequisite for later applications to the
optimal control of magnetization processes.

2 Transformation to a degenerate parabolic equation

2.1 Geometrical configuration and assumptions on the data

In our paper, Ω ⊂ R3 is a bounded open set. This is the hold-all domain that covers
an electrical conducting domain Ω1 and an electrical nonconducting domain Ω2 such that
Ω̄ = Ω̄1 ∪ Ω̄2.

We first fix an illustrating example of a geometrical configuration. Our theory will hold,
however, for any other configuration that obeys our assumptions on Ω1 and Ω2 stated after
the example.

Let Ω ⊂ R3 be an open cube, while Ω1 is an open tube of finite length,

Ω1 = {x ∈ R3 : 0 < r1 < x2
1 + x2

2 < r2, z1 < x3 < z2}.
We assume that Ω is sufficiently large such that Ω̄1 ⊂ Ω and take Ω2 = Ω \ Ω̄1. Moreover,
a subdomain Ωc ⊂ Ω2 is given by

Ωc = {x ∈ R3 : 0 < r2 < x2
1 + x2

2 < r3, c1 < z < c2},
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where r3 > r2 and z1 ≤ c1 < c2 ≤ z2 are given numbers. In the application, Ωc stands for
an induction coil that – due to our modelling – belongs to the nonconducting domain Ω2.

Notice that Ω2 contains exactly one hole given by Ω1 and that the boundary of Ω2 is
composed of two disjoint connected sets.

Let us call this example geometry for later reference as tube with coil. Our theory is
is true for the following more general setting: We assume once and for all that Ω, Ω1,
Ω2, and Ωc ⊂ Ω2 are (open) bounded Lipschitz domains such that Ω̄1 ⊂ Ω (i.e. Ω1 is
strictly included in Ω), Ω2 has exactly one hole formed by Ω̄1 and that the boundary ∂Ω2

is composed of two connected components.

Let Γ := Ω̄1 ∩ Ω̄2 denote the interface between Ω1 and Ω2. The electrical conductivity
σ : Ω→ R is given with some constant σ0 > 0 by

σ(x) :=

{
σ0 in Ω1

0 in Ω2.

The magnetic permeability µ : Ω → R is assumed to be bounded and measurable and
uniformly positive such that

µ(x) ≥ µ0 > 0 for a.a. x ∈ Ω.

Let O ⊂ R3 be an open domain. We use the standard Sobolev spaces H(curl,O) and
H(div,O) and the space

H(div = 0,O) := {y ∈ L2(O)3 : div y = 0 in O},

the space of divergence free vector functions equipped with the inner product of L2(O)3.
It is well known that this is a Hilbert space. Moreover, we need the space

H0(curl,Ω) := {y ∈ L2(Ω)3 : curl y ∈ L2(Ω)3 and y × n = 0 on ∂Ω}.

Note that from Theorem I.2.11 of [9], the mapping

D(Ω)3 → L2(Γ)3 : y → y × n,

can be extended as a continuous mapping from H0(curl,Ω) to H−
1
2 (Γ)3.

Further, a nontrivial divergence free function

e ∈ H(div,Ωc) ∩H(curl,Ωc)

is given such that
e(x) · n = 0 ∀x ∈ ∂Ωc. (5)

For all x ∈ Ω \ Ω̄c, we extend e by e(x) = 0 and denote the extended function by the
same symbol e. For the tube with coil Ωc, we define for all x ∈ Ωc

e(x1, x2, x3) =
Nc

|Ωc|
√
x2

1 + x2
2

 −x2

x1

0

 (6)
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and extend e by zero to the cube Ω. The natural number Nc is the number of windings of
the induction coil, and |Ωc| is the area of the cross section of the coil that is perpendicular to
the windings. The extension, still denoted by e, belongs to H(div,Ω) but not to H(curl,Ω).
Notice that e · n = 0 holds on ∂Ωc and on Γ.

2.2 Simplification of the equations

Next, we simplify the system (4). As R > 0, we can eliminate i from the fifth identity of
(4) and find

i(t) = −R−1

∫
Ω

∂y

∂t
(x, t) · e(x) dx+R−1u(t) in (0, T ). (7)

In that way the initial condition i(0) = i0 is formally equivalent to

R−1

∫
Ω

∂y

∂t
(x, 0) · e(x) dx = R−1u(0)− i0.

However, in associated optimal control problems, the voltage umight be chosen as a control
function of L2(0, T ) so that u(0) is not defined. Since this is not satisfactory, we replace
the last condition by

R−1

∫
Ω

y(x, 0) · e(x) dx = α0, (8)

where α0 has to be chosen properly to comply with the given initial condition i(0) = i0.
In Theorem 3.14, we formulate smoothness assumptions on u and y0 that guarantee the
continuity of i so that the initial value i(0) is well defined.

Inserting the expression (7) of i in the first identity of (4), we arrive at

R−1

∫
Ω

∂y

∂t
(t) · e dx e+ curlµ−1 curl y + εy = R−1u(t) e in Ω2 × (0, T ).

These considerations show that (4) is formally equivalent to

σ
∂y

∂t
+ curlµ−1 curl y + εy = 0 in Ω1 × (0, T )

R−1

(∫
Ω

∂y

∂t
· e dx

)
e+ curlµ−1 curl y + εy = R−1u e in Ω2 × (0, T )

y × n = 0 on ∂Ω× (0, T )

y(0) = y0 in Ω1,

R−1

∫
Ω

y(x, 0) · e(x) dx = α0.

(9)

In this form, we shall investigate the degenerate parabolic system, where we allow for
a more general right-hand sides in the first two equations of (9).
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2.3 Relation between α0 and i0

We assume in this subsection that i is a continuous function so that i has a well defined
initial value i0.

Let us explain that i0 is uniquely determined by α0 and vice versa, if y0 is smooth
enough, say y0 ∈ H(curl,Ω1). Given initial data y0 in Ω1, an extension y20 to Ω2 that is
compatible with the boundary value problem included in (3) should solve the equations

curlµ−1 curl y20 + ε y20 = e(x) i0 in Ω2,
y20 × n = 0 on ∂Ω,
y20 × n = y0 × n on Γ.

(10)

The second boundary condition in (10) is due to the continuity of the trace y×n across Γ if
y ∈ H(curl,Ω). If this boundary value problem is uniquely solvable, then y20 := y2(·, 0) =
y(·, 0)|Ω2 can be taken as the initial datum in Ω2.

Lemma 2.1 If y0 belongs to H(curl,Ω1), then for all ε > 0 and i0 ∈ R, the boundary
value problem (10) has a unique solution y20 ∈ H(curl,Ω2) ∩ H(div,Ω2). If ε = 0 and
i0 ∈ R, then the boundary value problem (10) has a unique solution y20 ∈ H(curl,Ω2) ∩
H(div,Ω2)/KN(Ω2), where KN(Ω2) is defined by (27).

Proof. We construct y20 as the sum of a function z satisfying the homogeneous boundary
conditions and of a function R1y0 fulfilling the inhomogeneous boundary condition on Γ.

First, we take an extension Ry0 ∈ H(curl,Ω2) of y0 such that

Ry0 × n =

{
y0 × n on Γ,
0 on ∂Ω.

This extension exists, since the trace mapping y 7→ y × n from H(curl,Ωj), j = 1 or 2 to
H−

1
2 (divΓ,Γ) is surjective, [15, section 7] or [7, p. 848].
This function Ry0 is not necessarily divergence free. Therefore, we subtract ∇θ from

Ry0, where θ ∈ H1
0 (Ω2) is the unique solution of∫

Ω2

∇θ · ∇ψ̄ dx =

∫
Ω2

Ry0 · ∇ψ̄ dx ∀ψ ∈ H1
0 (Ω2).

In view of curl∇θ = 0 we have ∇θ ∈ H(curl,Ω2). Moreover, the function R1y0 = Ry0 −
∇θ ∈ H(curl,Ω2) is divergence free as a simple computation shows. It satisfies the same
boundary conditions than Ry0, namely

R1y0 × n =

{
y0 × n on Γ,
0 on ∂Ω.

This follows from the implication θ ∈ H1
0 (Ω2)⇒ ∇θ ∈ H0(curl,Ω2).
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Now we consider the variational equation∫
Ω2

(µ−1 curl z · curl w̄ + div z div w̄ + ε z · w̄) dx

=

∫
Ω2

(i0 e · w̄ − µ−1 curl(R1y0) · curl w̄ − εR1y0 · w̄) dx ∀w ∈ XN(Ω2)
(11)

for z ∈ XN(Ω2) := H0(curl,Ω2) ∩H(div,Ω2).
Due to the regularizing divergence term, the sesquilinear form on the left-hand side

of (11) is coercive in XN(Ω2) if ε is positive. If, however, ε = 0, then this problem has
a unique solution z ∈ XN(Ω2)/KN(Ω2) since the same sesquilinear form is coercive on
XN(Ω2)/KN(Ω2) due to the compact embedding of XN(Ω2) into L2(Ω2)3 [16] and since the
right-hand side of (11) is equal to zero for any element of KN(Ω2) (see (28)) due to the
divergence free property of e and the fact that

∫
Γ
e · n dσ = 0.

As e and R1y0 are divergence free in Ω2, the same holds true for z. This is confirmed
by taking test functions w = ∇χ in (11), where χ ∈ H1

0 (Ω2) is the weak solution of

∆χ− εχ = g ∈ L2(Ω2).

Then we find that ∫
Ω2

div z ḡ dx = 0 ∀g ∈ L2(Ω2),

hence div z = 0. Therefore we deduce that

curl (µ−1 curl(z +R1y0)) + ε(z +R1y0)) = i0 e in D′(Ω2)

and this yields the desired field y20 := z +R1y0.
The uniqueness of the solution is a consequence of the coercivity of the sesquilinear

form
a(y, z) :=

∫
Ω2

µ−1 curl y · curl z̄ + div y div z̄ + ε y z dx

in XN(Ω2). Given two divergence free solutions v, w of (10), their difference v−w belongs
to XN(Ω2) and solves the homogeneous variational equation a(v − w, z) = 0; then v = w
follows (modulo KN(Ω2) in the case ε = 0).

Assuming the continuity of the function t 7→
∫

Ω
y(x, t) · e(x) dx at t = 0 we deduce

α0 = R−1

∫
Ω

y(x, 0) · e(x) dx = R−1

∫
Ω2

y20(x) · e(x) dx.

In other words, the constant α0 in (8) can be obtained from the initial value y0 of y in Ω1

and from the initial value i0 of the electric current that determines y20 by (10).
Conversely, let us determine i0 such that y20 satisfies the initial condition (8). To this

aim, we split y20 as
y20 = i0 ye + yΓ, (12)
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where ye solves 
curlµ−1 curl ye + ε ye = e(x) in Ω2,

ye × n = 0 on ∂Ω ∩ ∂Ω2,
ye × n = 0 on Γ

(13)

and yΓ is obtained from
curlµ−1 curl yΓ + ε yΓ = 0 in Ω2,

yΓ × n = 0 on ∂Ω ∩ ∂Ω2,
yΓ × n = y0 × n on Γ.

(14)

Both functions exists thanks to Lemma 2.1.

Lemma 2.2 If e 6= 0 in the sense of L2(Ω2)3, then∫
Ω2

ye · e dx 6= 0.

Proof. The function ye belongs to H0(curl,Ω2), hence it can be taken as test function in
(13). We get ∫

Ω2

µ−1 curl ye · curl ye dx+ ε

∫
Ω2

|ye|2dx =

∫
Ω2

ye · e dx.

If ε > 0, then a vanishing right-hand side would instantly imply ye = 0 and, via (13), also
e = 0 in contrary to the assumption. If ε = 0, then we find curl ye = 0 and again e = 0 by
(13).

Inserting the ansatz y20 = i0ye + yΓ in (8), we directly obtain the desired value for i0
by

i0 =
Rα0 −

∫
Ω2
yΓ · e dx∫

Ω2
ye · e dx

. (15)

The equivalence of the system (4) (resp. (3) for ε = 0) with (9) will be discussed at the
end of our paper.

3 Existence and uniqueness of solutions

3.1 Preparations for the application of a theorem by Showalter

Our results on existence and uniqueness rely on the following theorem:

Theorem 3.1 ([14], Theorem V4.A) Let Vm be a seminorm space obtained from a sym-
metric and non-negative sesquilinear form m(·, ·), and let M ∈ L(Vm, V

′
m) be the corre-

sponding operator given by Mx(y) = m(x, y), x, y ∈ Vm. Let D be a subspace of Vm and
L : D → V ′m be linear and monotone.
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(a) If kerM ∩ D ⊂ kerL and if M + L : D → V ′m is a surjection, then for every
f ∈ C1([0,∞), V ′m) and u0 ∈ D there exists a solution of

(Mu)t + Lu(t) = f(t), t > 0

with (Mu)(0) =Mu0.
(b) If kerM∩ kerL = {0}, then there is at most one solution.

To apply this theorem, we show that problem (4) fits in the associated framework. For
this purpose, we first define the linear and continuous operators M and L used in that
theorem.

We define the linear bounded operatorM : L2(Ω)3 → L2(Ω)3 as follows:

My :=

{
σy in Ω1,

R−1
(∫

Ω2
y(x) · e(x) dx

)
e in Ω2.

The operator L, whose domain D will be specified below, is introduced by

Ly = curlµ−1 curl y + εy.

By these operators, problem (9) can be shortly and still formally written as{
(My)t + Ly = f in Ω× (0, T ),

My(0) = g0 in Ω,
(16)

where f is defined by

f(x, t) =

{
0 in Ω1 × (0, T ),
R−1u(t)e(x) in Ω2 × (0, T ).

Later, we shall admit more general functions f on the right-hand side. The initial datum
g0 is given by

g0 =

{
σ y0 in Ω1,
α0e in Ω2.

We shall apply the framework of section V.4 of [14] to the system (16) in the space

V = {y ∈ L2(Ω)3 : div y1 = 0 in Ω1, div y2 = 0 in Ω2 and 〈y2 · n, 1〉Γ = 0},

equipped with the semi-inner product

m(y, z) =

∫
Ω1

σ(x)y(x) · z̄(x) dx+R−1

(∫
Ω2

y(x) · e(x) dx

)(∫
Ω2

z̄(x) · e(x) dx

)
.

Here, we used the notation yi := y|Ωi , i = 1, 2, that will be applied throughout our paper.
Moreover, 〈·; ·〉Γ means the duality pairing between H−1/2(Γ) and H1/2(Γ). Let us denote
by Vm the corresponding seminorm space.
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Lemma 3.2 The dual space V ′m is the Hilbert space

V ′m = {y ∈ Vm : ∃α ∈ C : y2 = y|Ω2 = αe},

that is equipped with the inner product m.

Proof. Denote by S the right-hand side above. Since the embedding S ↪→ V ′m is trivial,
it remains to show the converse one. Let ` ∈ V ′m, then there exists C > 0 such that

|`(z)| ≤ C

(
‖z‖L2(Ω1)3 +

∣∣∣∣∫
Ω2

z(x) · e(x) dx

∣∣∣∣) ∀z ∈ V. (17)

Further, we introduce the space

W := {y ∈ H(div = 0,Ω2) : 〈y2 · n, 1〉Γ = 0}

that is a closed subspace of H(div = 0,Ω2).
Take z1 ∈ H(div = 0,Ω1) and z2 ∈ W and denote by z̃1 (resp. z̃2) the extension by

zero of z1 (resp. z2) to the domain outside of Ω1 (resp. Ω2). We rapidly confirm that z̃1

and z̃2 belong to V . By (17) we further have

|`(z̃1)| ≤ C‖z̃1‖L2(Ω1)3 = C‖z1‖L2(Ω1)3 ,

|`(z̃2)| ≤ C

∣∣∣∣∫
Ω2

z̃2(x) · e(x) dx

∣∣∣∣ = C

∣∣∣∣∫
Ω2

z2(x) · e(x) dx

∣∣∣∣ . (18)

The first estimate means that the mapping

z1 7→ `(z̃1)

is linear and continuous from H(div = 0,Ω1) to C; hence, there exists h ∈ H(div = 0,Ω1)
such that

`(z̃1) =

∫
Ω1

h̄ · z1 dx ∀z1 ∈ H(div = 0,Ω1). (19)

Let us show that the second estimate implies the existence of α ∈ C such that

`(z̃2) = α

∫
Ω2

z2 · e dx ∀z2 ∈ H(div = 0,Ω2). (20)

Indeed, as e ∈ W , we can split any z2 ∈ W in the form

z2 = Πez2 + (Id− Πe)z2,

where Πe is the projection on span{e} with respect to the inner product of L2(Ωi)
3, namely

Πez2 =

∫
Ω2
z2 · e dx∫

Ω2
|e|2 dx

e.
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By the estimate (18) we get

|`( ˜z2 − Πez2)| ≤ C

∣∣∣∣∫
Ω2

(z2 − Πez2)(x) · e(x) dx

∣∣∣∣ = 0,

we then deduce that

`(z̃2) = `(Π̃ez2) =

∫
Ω2
z2 · e dx∫

Ω2
|e|2 dx

`(e).

This proves (20).
For each z ∈ V , it holds z1 ∈ H(div = 0,Ω1) and z2 ∈ W . In view of

z = z̃1 + z̃2,

and (19), (20), we conclude that

`(z) =

∫
Ω1

h · z1 dx+ α

∫
Ω2

z2 · e dx,

implying the claim of the theorem.
To define the domain of the operator L, we recall a next result from [8]. To this aim,

we introduce the space

Y (Ω) := {y ∈ H0(curl,Ω) : div yi ∈ L2(Ωi), i = 1, 2 and 〈y2 · n; 1〉Γ = 0},

where we recall that

H0(curl,Ω) := {y ∈ L2(Ω)3 : curl y ∈ L2(Ω)3 and y × n = 0 on ∂Ω}.

The space Y (Ω) is a Hilbert space with the norm

‖y‖2
Y (Ω) = ‖y‖2

L2(Ω)3 + ‖ curl y‖2
L2(Ω)3 + ‖ div y1‖2

L2(Ω1) + ‖ div y2‖2
L2(Ω2).

In Y (Ω), we define two sesquilinear forms: for y, z ∈ Y (Ω), let

aR(y, z) =

∫
Ω1

σ y1 · z̄1 dx+

∫
Ω

(µ−1 curl y · curl z̄ + ε y · z̄) dx

+ei
π
4

∫
Ω1

div y1 div z̄1 dx+ ei
π
4

∫
Ω2

div y2 div z̄2 dx,

and
a0(y, z) =

∫
Ω

(µ−1 curl y · curl z̄ + ε y · z̄) dx

+ei
π
4

∫
Ω1

div y1 div z̄1 dx+ ei
π
4

∫
Ω2

div y2 div z̄2 dx.

Recall that ε ≥ 0 was assumed. According to Lemma 2.2 of [8] we know that there
exists a positive constant C such that

<aR(y, y) ≥ C‖y‖2
Y (Ω) ∀y ∈ Y (Ω). (21)
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where < denotes the real part of a complex number. Thanks to this coercivity property,
for any F ∈ L2(Ω)3, there exists a unique y ∈ Y (Ω) solution of

aR(y, z) =

∫
Ω

F · z̄ dx ∀z ∈ Y (Ω). (22)

In particular if F ∈ V , we have the next result (compare with Theorem 2.3 of [8]).

Theorem 3.3 If F ∈ L2(Ω)3 satisfies divF1 = 0, divF2 = 0 and 〈F2 ·n, 1〉Γ = 0, then the
unique solution y ∈ Y (Ω) of (22) satisfies the system

curl(µ−1 curl y1) + (σ + ε)y1 = F1 in Ω1,
div y1 = 0 in Ω1,
curl(µ−1 curl y2) + εy2 = F2 in Ω2,
div y2 = 0 in Ω2,
[εy · n] + σy1 · n = 0 on Γ.

(23)

In particular this implies that y belongs to V .

In the theorem, the expression [εy · n] denotes the jump of εy · n across Γ. The proof
of this theorem is the same as the proof of Theorem 2.3 of [8] and is therefore omitted.

Now we are able to explain the operator L more precisely. Its domain is

D := {y ∈ Y (Ω) ∩ V : ∃f ∈ V ′m such that a0(y, z) = m(f, z) ∀z ∈ Y (Ω)}.

Notice that we are justified to identify V ′m with a subspace of Vm in view of Lemma 3.2.
For any y ∈ D, define

Ly = f

with the unique f appearing in the definition of D.

Lemma 3.4 The operator L is linear and monotone from D into V ′m. Moreover M + L
is surjective from D onto V ′m.

Proof. By the definition of L, it is obvious that for any y ∈ D

m(Ly, y) = m(f, y) = a0(y, y),

hence it follows
<m(Ly, y) = <a0(y, y) ≥ 0.

In other words, L is linear and monotone from D into V ′m.
Let us now prove the surjectivity ofM+ L from D onto V ′m. Introduce a sesquilinear

form b on Y (Ω) by

b(y, z) = aR(y, z) +R−2‖e‖2
L2(Ω)3

(∫
Ω2

y(x) · e(x) dx

)(∫
Ω2

z̄(x) · e(x) dx

)
.
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For any y ∈ Y (Ω), it holds
<b(y, y) ≥ <aR(y, y)

and hence the form b is strongly coercive on Y (Ω) by the coercivity property of aR. There-
fore, for any f ∈ V ′m there exists a unique solution y1 ∈ Y (Ω) of

b(y1, z) = m(f, z) ∀z ∈ Y (Ω). (24)

Notice that z 7→ m(f, z) defines a linear and continuous functional on Y (Ω). This identity
is equivalent to

aR(y1, z) = m(g, z) ∀z ∈ Y (Ω)

with

g = f −R−2‖e‖2
L2(Ω)3

(∫
Ω

y1(x) · e(x) dx

)
e,

Since g belongs to V ′m, we deduce by Theorem 3.3 that y1 ∈ V .
Similarly, (24) is equivalent to

a0(y1, z) = m(h, z) ∀z ∈ Y (Ω),

with

h = f −R−2‖e‖2
L2(Ω)3

(∫
Ω

y1(x) · e(x) dx

)
e− σy1.

Since again h ∈ V ′m, by the definition of D, we deduce that y1 belongs to D.
Finally for any z ∈ Y (Ω), we see that

m((M+ L)y1, z) = b(y1, z),

and by the previous considerations, we deduce that the solution y1 ∈ Y (Ω) of (24) belongs
to D and is solution of

(M+ L)y1 = f.

This proves the surjectivity ofM+ L.

Lemma 3.5 We have kerM∩D = {0}.

Proof. Let y be in kerM∩D. Then it follows fromMy = 0 that y = 0 in Ω1 and y is
orthogonal to e in Ω2, ∫

Ω2

y · e dx = 0. (25)

On the other hand, the fact that y belongs to D means that there exists f ∈ V ′m such that

a0(y, z) = m(f, z) ∀z ∈ Y (Ω).

13



Since y is zero in Ω1, we have equivalently∫
Ω2

(ε y · z̄ + µ−1 curl y · curl z̄) dx+ ei
π
4

∫
Ω2

div y div z̄ dx =

∫
Ω1

f1 · z̄ dx (26)

+R−1

(∫
Ω2

f2(x) · e(x) dx

)(∫
Ω2

z̄(x) · e(x) dx

)
∀z ∈ Y (Ω).

Let ϕ ∈ D(Ω1)3 be an arbitrary test function and define z̃ by z̃ = ϕ in Ω1 and zero outside.
Then z̃ belongs to Y (Ω) and therefore the previous identity implies that∫

Ω1

f1 · ϕ̄ dx = 0 ∀ϕ ∈ D(Ω1)3.

Therefore, we have f1 = 0. Coming back to (26), we insert z = y and find that∫
Ω2

(ε |y2|2 + µ−1| curl y2|2) dx+ ei
π
4

∫
Ω2

| div y2|2 dx

= R−1

(∫
Ω2

f2(x) · e(x) dx

)(∫
Ω2

ȳ2(x) · e(x) dx

)
= 0,

by (25). Notice that we introduced the notation y2 = y|Ω2 . This implies that

curl y2 = 0 and div y2 = 0.

Since y is in H0(curl,Ω) and y = 0 in Ω1, we deduce that y2 belongs to

KN(Ω2) = {y ∈ H0(curl,Ω2) ∩H(div,Ω2) : curl y2 = 0 and div y2 = 0}. (27)

According to Proposition 3.18 of [3], the dimension of KN(Ω2) is the number of holes in
Ω2 which is 1 in our case.

Thanks to the same proposition, KN(Ω2) is spanned by all ∇q with q ∈ H1(Ω2) the
unique solution of 

∆q = 0 in Ω2,
q = 0 on ∂Ω,
q = constant on Γ,
〈∂nq, 1〉Γ = 1,
〈∂nq, 1〉∂Ω = −1.

(28)

Hence there exists α ∈ C and a q ∈ H1(Ω2) with (28) such that

y2 = α∇q.

Since y belongs to Y (Ω) it satisfies

〈y2 · n, 1〉Γ = 0,

or equivalently
α〈∂nq, 1〉Γ = 0.

In view of 〈∂nq, 1〉Γ = 1, this implies α = 0.
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3.2 Existence and regularity of solutions to (16)
Now all the hypotheses of Theorem V.4.A of [14] are fulfilled and it holds kerM∩ kerL ⊂
kerM∩D = {0}. According to this theorem, we obtain the following existence result.

Theorem 3.6 For all f ∈ C1([0,∞), V ′m) and all g0 ∈ V ′m there exists a unique solution
y : [0,∞)→ L2(Ω)3 of problem (16) with the regularity

My ∈ C([0,∞), V ′m) ∩ C1((0,∞), V ′m)

and such that
y(t) ∈ D, ∀t > 0.

Here, the first identity of (16) has to be understood as follows:

(My)t(t) + Ly(t) = f(t) in V ′m ∀t > 0. (29)

Notice that the derivative (My)t(t) of the abstract function t 7→ (My)(t) is defined in
the strong sense.

The assumption on f requires in particular that f(t) is divergence free in Ω1 for all t.
The same holds true in Ω2, because f(t) = ϕ(t) e with some real valued function ϕ and e
is divergence free.

Thanks to this theorem, we haveMy ∈ C([0,∞), V ′m). Lemma 3.2 on the characteri-
zation of V ′m yields that (My)(t) = z(t), where z(t) ∈ Vm. In Ω1, it follows σ y1(t) = z1(t),
hence continuity of z1 yields y1 ∈ C([0, T ], L2(Ω1)3). Moreover, we have

R−1

∫
Ω2

y2(t) · e dx e = z2(t)

so that continuity of z2 implies that t 7→
∫

Ω2
y2(t) · e dx is continuous on [0,∞). The

continuous dependence of their norms on the data is part of Corollary 3.7 below.
The differential equation (29) is satisfied for each t > 0, but the theorem above does

not provide sufficient information on the regularity of y. This is the task of the next result.

Corollary 3.7 Assume that f ∈ C1([0,∞), V ′m) and that g0 ∈ V ′m. Then, for any T > 0,
the unique solution y : [0,∞)→ L2(Ω)3 of problem (16) satisfies

y ∈ L2(0, T ;Y (Ω)). (30)

Moreover, it holds
y1 ∈ C([0, T ];L2(Ω1)3), (31)

σyt ∈ L1(0, T ;Y (Ω)′) and
∫

Ω2

y2(x, ·) · e(x) dx ∈ W 1,2(0, T ). (32)

There is a constant c > 0 not depending on f and g0 such that

‖My‖C([0,T ],V ′
m) + ‖y‖L2(0,T ;Y (Ω)) + ‖σyt‖L1(0,T ;Y (Ω)′)

+‖
∫

Ω2
y(x, ·) · e(x) dx‖W 1,2(0,T ) ≤ c (‖f‖L2(0,T ;V ′

m) + ‖g0‖V ′
m

).
(33)
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Proof. (i) Estimation of ‖My(t)‖V ′
m
: As for all t > 0, y(·, t) ∈ D ⊂ V , the existence

result implies that we have∫
Ω1

σyt(x, t) · ȳ(x, t) dx+R−1

(∫
Ω2

yt(x, t) · e(x) dx

)(∫
Ω2

ȳ(x, t) · e(x) dx

)
(34)

+a0(y(·, t), y(·, t)) =

∫
Ω

f(x, t) · ȳ(x, t) dx.

Notice that we have f(·, t)|Ω2 = ϕ(t) e with some ϕ ∈ C1[0, T ], hence∫
Ω

f(x, t) · ȳ(x, t) dx =

∫
Ω1

f(x, t) · ȳ(x, t) dx+ ϕ(t)

∫
Ω2

e(x) · ȳ(x, t) dx.

Both integrals in the right-hand side are continuous functions on [0, T ] (cf. Remark 3.2),
thus the right-hand side of (34) is well defined and bounded.

Let us introduce the real function

h(t) =

∫
Ω1

σ|y(x, t)|2 dx+R−1

∣∣∣∣∫
Ω2

y(x, t) · e(x) dx

∣∣∣∣2 = ‖My(t)‖2
V ′
m
.

Its derivative

d

dt
h(t) =

∫
Ω1

σyt(x, t) · ȳ(x, t) dx+R−1

(∫
Ω2

yt(x, t) · e(x) dx

)(∫
Ω2

ȳ(x, t) · e(x) dx

)
appears in the left-hand side of (34). Taking the real part of this previous identity and
using the fact that

<a0(y(·, t), y(·, t)) = a0(y(·, t), y(·, t)) ≥ 0,

we get in view of the identity
√
h(t) = ‖y(·, t)‖Vm that

d

dt
h(t) ≤ 2<

∫
Ω

f(t) · ȳ(x, t) dx ≤ 2‖f(·, t)‖V ′
m

√
h(t) ≤ ‖f(·, t)‖2

V ′
m

+ h(t),

for all t > 0.
Thanks to the regularity of y stated in Theorem 3.6, h belongs to W 1,1(η, T ) for all

η > 0. Therefore Gronwall’s inequality yields

h(t) ≤ h(η)et−η +

∫ t

η

et−s ‖f(·, s)‖2
V ′
m
ds ∀t > η.

The regularity of y also implies that h is continuous at zero. Hence, passing to the limit
η → 0 we find

h(t) ≤ h(0)et +

∫ t

0

et−s ‖f(·, s)‖2
V ′
m
ds ∀t > 0.

By the definition of h, there holds h(0) = ‖g0‖2
V ′
m
. Therefore, we have found that

max
0≤t≤T

‖My‖V ′
m

=
√
h(t) ≤ C(T )(‖g0‖V ′

m
+ ‖f‖L2(0,T ;V ′

m)) (35)
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holds for a positive constant C(T ) that depends on T but not on the data and on y. This
proves (31).

(ii) Estimation of ‖y‖L2(0,T ;Y (Ω)): Now we return to (34) and take again the real part
of this identity. Integrating in (η, T ) for η > 0 we find that∫ T

η

{∫
Ω1

σ
d

dt
|y(x, t)|2 dx+R−1 d

dt

∣∣∣∣∫
Ω2

y(x, t) · e(x) dx

∣∣∣∣2 + 2<a0(y(·, t), y(·, t))
}
dt (36)

= 2<
∫ T

η

∫
Ω

f(t) · ȳ(x, t) dxdt.

This shows that |y1|2 (resp.
∣∣∣∫Ω2

y(x, ·) · e(x) dx
∣∣∣2) belongs to W 1,1(η, T ;L2(Ω1)) (resp.

W 1,1(η, T )), cf. the remark after (34). Consequently,∫
Ω2

y(x, ·) · e(x) dx ∈ W 1,2(0, T )

follows by passing to the limit η → 0. Moreover, we can integrate by parts in (36) and get
equivalently∫

Ω1

σ|y(x, T )|2 dx+R−1

∣∣∣∣∫
Ω2

y(x, T ) · e(x) dx

∣∣∣∣2 + 2

∫ T

η

<a0(y(·, t), y(·, t)) dt

= 2<
∫ T

η

∫
Ω

f(t) · ȳ(x, t) dxdt+

∫
Ω1

σ|y(x, η)|2 dx+R−1

∣∣∣∣∫
Ω2

y(x, η) · e(x) dx

∣∣∣∣2 .
The right-hand side of this identity admits a limit as η tends to zero, thanks to the regularity
of y. Hence the same is true for the left-hand side. Passing to the limit, we obtain∫

Ω1

σ|y(x, T )|2 dx+R−1

∣∣∣∣∫
Ω2

y(x, T ) · e(x) dx

∣∣∣∣2 + 2

∫ T

0

<a0(y(·, t), y(·, t)) dt

= 2<
∫ T

0

∫
Ω

f(t) · ȳ(x, t) dxdt+

∫
Ω1

σ|y(x, 0)|2 dx+R−1

∣∣∣∣∫
Ω2

y(x, 0) · e(x) dx

∣∣∣∣2 .
The above identity implies that there exists c > 0 such that∫ T

0

∫
Ω

µ−1| curl y(x, t)|2 dxdt ≤ c (‖f‖L2(0,T ;V ′
m)‖y‖L2(0,T ;V ′

m) + ‖g0‖2
L2(0,T,V ′

m)).

As for all t > 0, y(·, t) belongs to Y (Ω) ∩ V , by Lemma 2.2 of [8] we have∫
Ω2

|y(x, t)|2 dx ≤ C
(∫

Ω

µ−1| curl y(x, t)|2 dx+

∫
Ω1

|y(x, t)|2 dx
)
,

for some C > 0 that is independent of t. The estimates (35) and (37) show that the
right-hand side of the previous inequality is square integrable in (0, T ). We conclude that
(30) holds together with the estimate

‖y‖L2(0,T ;Y (Ω)) ≤ C1(T ) (‖g0‖V ′
m

+ ‖f‖L2(0,T ;V ′
m)), (37)
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for a positive constant C1(T ) that depends on T but not on the data and on y.
(iii) Enlarging the set of test functions: As Y (Ω) ∩ V is included in V , the existence

result implies that for all t > 0, we have∫
Ω1

σyt(x, t) · z̄(x) dx+R−1

(∫
Ω2

yt(x, t) · e(x) dx

)(∫
Ω2

z̄(x) · e(x) dx

)
+a0(y(·, t), z) =

∫
Ω

f(t) · z̄(x) dx ∀z ∈ Y (Ω) ∩ V.
(38)

Our next goal is to show that this identity remains true for all z in Y (Ω).
Indeed, for any given z ∈ Y (Ω) and i = 1 or 2, we can consider ϕi ∈ H1

0 (Ωi), the
solution of ∫

Ωi

∇ϕi · ∇χdx =

∫
Ωi

z · ∇χdx ∀χ ∈ H1
0 (Ωi).

Such a solution satisfies
div(z −∇ϕi) = 0 in D′(Ωi),

hence z −∇ϕi is divergence free in Ωi. However, we are not sure that

〈(z2 −∇ϕ2) · n, 1〉Γ = −〈∇ϕ2 · n, 1〉Γ

is zero, which is needed to have z −∇ϕi ∈ Y (Ω). If this quantity is not zero, we define

φ2 = ϕ2 − q 〈∇ϕ2 · n, 1〉Γ,

where q is the unique element in H1(Ω2) that satisfies (28); cf. the characterization of
KN(Ω2). An easy computation confirms that

〈(z2 −∇φ2) · n, 1〉Γ = 0.

Now we define
z1 = z −∇ϕ̃1 −∇φ̃2,

where

ϕ̃1 =

{
ϕ1 in Ω1,
0 in Ω2,

φ̃2 =

{
1 in Ω1,
φ2 in Ω2

and verify that z1 belongs to Y (Ω) ∩ V. We will show in (v) below that there holds∫
Ω1

σyt(x, t) · ∇ϕ̃1(x) dx+R−1

(∫
Ω2

yt(x, t) · e(x) dx

)(∫
Ω2

∇ϕ̃1(x) · e(x) dx

)
+a0(y(·, t),∇ϕ̃1) =

∫
Ω

f(t) · ∇ϕ̃1(x) dx

(39)

18



and ∫
Ω1

σyt(x, t) · ∇φ̃2(x) dx+R−1

(∫
Ω2

yt(x, t) · e(x) dx

)(∫
Ω2

∇φ̃2(x) · e(x) dx

)
+a0(y(·, t),∇φ̃2) =

∫
Ω

f(t) · ∇φ̃2(x) dx.

(40)

Inserting z := z1 in (38) and subtracting it from the sum of the previous two identities we
obtain that∫

Ω1

σyt(x, t) · z̄(x) dx+R−1

(∫
Ω2

yt(x, t) · e(x) dx

)(∫
Ω2

z̄(x) · e(x) dx

)
(41)

+a0(y(·, t), z) =

∫
Ω

f(t) · z̄(x) dx ∀z ∈ Y (Ω).

In this way, we have shown that (38) holds true for all test functions z ∈ Y (Ω).
Equivalently, we can re-arrange this as∫

Ω1

σyt(x, t) · z̄(x) dx+R−1

(∫
Ω2

yt(x, t) · e(x) dx

)(∫
Ω2

z̄(x) · e(x) dx

)
= −a0(y(·, t), z) +

∫
Ω

f(t) · z̄(x) dx ∀z ∈ Y (Ω).

(iv) Verification of (32): By the Cauchy-Schwarz inequality we obtain after integration
on [0, T ]∫ T

0

∣∣∣∣∫
Ω1

σyt(x, t) · z̄(x) dx+R−1

(∫
Ω2

yt(x, t) · e(x) dx

)(∫
Ω2

z̄(x) · e(x) dx

)∣∣∣∣ dt
≤ C
√
T
(
‖f‖L2(0,T,V ′

m) + ‖y‖L2(0,T ;Y (Ω))‖z‖Y (Ω)

)
∀z ∈ Y (Ω),

for some C > 0. Due to (37), we deduce the existence of a constant C2(T ) > 0 such that∫ T

0

∣∣∣∣∫
Ω1

σyt(x, t) · z̄(x) dx+R−1

(∫
Ω2

yt(x, t) · e(x) dx

)(∫
Ω2

z̄(x) · e(x) dx

)∣∣∣∣ dt (42)

≤ C2(T )
(
‖g0‖V ′

m
+ ‖f‖L2(0,T ;V ′

m))‖z‖Y (Ω)

)
∀z ∈ Y (Ω).

In a first step, since e is different from zero in Ω2, we can fix a function ϕ ∈ D(Ω2)3 such
that ∫

Ω2

ϕ̄(x) · e(x) dx 6= 0.

If not, it would hold ∫
Ω2

ϕ̄(x) · e(x) dx = 0,∀ϕ ∈ D(Ω2)3,
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and by the density of D(Ω2)3 into L2(Ω2)3 we would deduce that e = 0.
The function ϕ̃ belongs to Y (Ω) (here we take the extension by zero). Therefore, we

deduce by (42) with z = ϕ̃ that

R−1

∫ T

0

∣∣∣∣∫
Ω2

yt(x, t) · e(x) dx

∣∣∣∣ dt ≤ C3(T )
(
‖g0‖V ′

m
+ ‖f‖L2(0,T ;V ′

m)

)
. (43)

This proves the second assertion from (32).
To show the first assertion, by taking any z in Y (Ω) and using (42) and (43) we deduce

that ∫ T

0

∣∣∣∣∫
Ω

σyt(x, t) · z̄(x) dx

∣∣∣∣ dt ≤ C4(T )
(
‖g0‖V ′

m
+ ‖f‖L2(0,T ;V ′

m)

)
‖z‖Y (Ω). (44)

This leads to the first assertion by the definition of the norm of Y (Ω)′.

(v) Verification of (39) and (40): To complete the proof, we still have to show (39)
and (40). For the first identity, we mention thatMy(t),Myt(t) and f(t) belong to V ′m for
all t ∈ (0, T ]. Therefore, it suffices to show that∫

Ω1

g(x) · ∇ϕ1(x) dx = 0 ∀g ∈ V ′m.

But for such g, by Green’s formula we have∫
Ω1

g(x) · ∇ϕ1(x) dx = −
∫

Ω1

div g(x)ϕ1(x) dx+ 〈g · n, ϕ1〉Γ.

The right-hand side is zero because g is divergence free and ϕ1 = 0 holds on Γ = ∂Ω1.
Similarly, (40) holds, if ∫

Ω2

g(x) · ∇φ2(x) dx = 0 ∀g ∈ V ′m.

We invoke again the Green’s formula and obtain∫
Ω2

g(x) · ∇φ2(x) dx = −
∫

Ω2

div g(x)φ2(x) dx+ 〈g2 · n, φ2〉Γ + 〈g2 · n, φ2〉∂Ω.

The right-hand side is again zero because g is divergence free, φ2 = 0 holds on ∂Ω, and by
φ2 = 1 on Γ, we finally get

〈g2 · n, φ2〉Γ = 〈g2 · n, 1〉Γ = 0,

in view of g ∈ V ′m.
The estimate (33) follows from (35), (37), (43), and (44). To confirm the W 1,2(0, T )-

estimate, we first mention that we have∣∣∣∣∫ T

0

∫
Ω

f(x, t) · ȳ(x, t) dxdt

∣∣∣∣ ≤ ‖f‖L2(0,T ;V ′
m) ‖y‖L2(0,T ;Y (Ω))

≤ C1(T ) ‖f‖L2(0,T ;V ′
m)

(
‖g0‖V ′

m
+ ‖f‖L2(0,T ;V ′

m)

)
≤ C1(T )

(
‖g0‖V ′

m
+ ‖f‖L2(0,T ;V ′

m)

)2

by (37). The maximum norm of h is bounded by (35). In view of this, the W 1,2(0, T )-
estimate follows from (35) and (36).
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3.3 Existence for data with lower regularity

Our next step is to weaken the regularity assumption on the datum f , for that purpose,
we adopt the next definition. For T > 0, g0 ∈ V ′m and f ∈ L2(0, T ;V ′m), we say that
y : [0, T ) → L2(Ω)3 is a weak solution of problem (16) if y has the regularity from (30),
(31) and (32) and if it satisfies

〈σyt(·, t); z〉Y (Ω)′,Y (Ω) +R−1

(∫
Ω2

yt(x, t) · e(x) dx

)(∫
Ω2

z̄(x) · e(x) dx

)
(45)

+a0(y(·, t), z) =

∫
Ω

f(x, t) · z̄(x) dx ∀z ∈ Y (Ω),

as well as

y1(·, 0) = g0 in Ω1 and
∫

Ω2

y2(x, 0) · e(x) dx =

∫
Ω2

g0(x) · e(x) dx.

Note that the initial conditions are well defined due to (31) and the embeddingW 1,2(0, T ) ↪→
C([0, T ]).

The assumption on g0 means that div y0 = 0 in Ω1, div e = 0 in Ω2, and the integral
condition (5) is satisfied on Γ. The assumption on f is equivalent to f1 ∈ L2(0, T ;L2(Ω1)3)
with div f1(t) = 0 a.e. in (0, T ), and f2(t) = α(t) e in Ω2, where α ∈ L2(0, T ).

Note further that the estimate (33) of our previous Corollary shows the uniqueness of
a weak solution. This estimate also justifies the definition of a weak solution and also
guarantees the existence of such a weak solution with appropriate data, namely we have
the

Theorem 3.8 Let T > 0 be fixed and assume that f ∈ L2(0, T ;V ′m) and g0 ∈ V ′m. Then
problem (16) has a unique weak solution y.

Proof. Fix a sequence fn ∈ D((0, T ), V ′m), n ∈ N such that

fn → f in L2(0, T ;V ′m) as n→∞.

Then by Corollary 3.7, for all n ∈ N, problem (16) with right-hand side fn and an initial
datum g0 has a unique solution yn that satisfies

‖yn − ym‖L2(0,T ;Y (Ω)) + ‖σ((yn)t − (ym)t)‖L1(0,T ;Y (Ω)′) + max
0≤t≤T

‖M(yn − ym)‖V ′
m

+
∥∥∥∫

Ω2

(yn,2(x, ·)− ym,2(x, ·)) · e(x) dx
∥∥∥
W 1,1(0,T )

≤ C(T ) ‖fn − fm‖L2(0,T ;V ′
m)

(46)
for some C(T ) > 0 and all n,m ∈ N. Here, we use the estimate (33). But due to the
continuous embedding Y (Ω) ↪→ Y (Ω)′ this also implies that

‖σ(yn − ym)‖H1(0,T ;Y (Ω)′) ≤ C ‖fn − fm‖L2(0,T ;V ′
m). (47)
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Since (fn) is a Cauchy sequence, (46) implies the same for (yn) in different spaces.
Therefore, from the first estimate we deduce that there exist y ∈ L2(0, T ;Y (Ω)), z ∈
C([0, T ], L2(Ω1)3), w ∈ L1(0, T ;Y (Ω)′), and α ∈ W 1,1(0, T ) such that

yn → y in L2(0, T ;Y (Ω)), (48)
yn,1 → z in C([0, T ], L2(Ω1)3), (49)
(σyn)t → w in L1(0, T ;Y (Ω)′), (50)∫

Ω2

yn,2(x, ·) · e(x) dx→ α(·) in W 1,2(0, T ), (51)

as n→∞, with z = y1.
On the other hand the estimate (47) implies the existence of z ∈ H1(0, T ;Y (Ω)′) with

σyn → z in H1((0, T );Y (Ω)′) (52)

as n→∞.
As L2(0, T ;L2(Ω)3) ↪→ L2(0, T ;Y (Ω)′) and H1((0, T );Y (Ω)′) ↪→ L2(0, T ;Y (Ω)′), we

deduce that
z = σy.

Furthermore as (52) implies that

(σyn)t → zt in L2(0, T ;Y (Ω)′),

and comparing with (50) we obtain that

w = σyt.

Moreover, as (48) implies that∫
Ω2

yn,2(x, ·) · e(x) dx→
∫

Ω2

y2(x, ·) · e(x) dx in L2(0, T ),

we deduce that
α(·) =

∫
Ω2

y2(x, ·) · e(x) dx.

In summary we have proved that the limit y satifies (30), (31) and (32).
Finally, by the previous Corollary we know that yn satisfies (41) with fn instead of f ,

namely

∫
Ω1

(σyn)t(x, t) · z̄(x) dx+R−1

(∫
Ω2

(yn)t(x, t) · e(x) dx

)(∫
Ω2

z̄(x) · e(x) dx

)
+a0(yn(·, t), z) =

∫
Ω

fn · z̄(x) dx,∀z ∈ Y (Ω).

Passing to the limit we find that y satisfies (45).
In the same manner, starting from the initial conditions satisfied by yn and passing to

the limit, we deduce that y satisfies the same initial conditions as yn.
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3.4 Particular cases

Let us apply Theorem 3.8 to some particular settings that fit in the general system (16).
Here, we allow again any ε ≥ 0.

First, we consider the case e = 0. Here, we have

My = 0 in Ω2 and g0 = 0 in Ω2.

Therefore, the system (16) reduces to the degenerate parabolic equation (1). Then Theorem
3.8 includes the following Corollary that recovers a result by Bachinger et al. [5].

Corollary 3.9 Suppose that y0 ∈ L2(Ω1)3 is divergence free and f belongs to L2(0, T ;V ′m).
Then the equation (1) has a unique weak solution y ∈ L2(0, T ;Y (Ω)) with σyt ∈ L1(0, T ;Y (Ω)′).

Notice that the assumption f(t) ∈ V ′m ∀t ∈ [0, T ] means that div f(t)|Ω1 = 0 and
f(t)|Ω2 = 0 for all t ∈ [0, T ]. We have y ∈ C([0, T ], L2(Ω1)3) as in Remark 3.2.

In particular, it follows for y0 = 0 that the map f 7→ y is continuous from L2(0, T ;V ′m)
to L2(0, T ;Y (Ω)) and the mapping f 7→ y1 is continuous from L2(0, T ;V ′m) with values in
C([0, T ], L2(Ω1)3). The latter follows from estimate (35).

From now on, e can be nonzero again and our real interest is the case e 6= 0. The
next result refers to equation (9), where the right-hand side vanishes in Ω1 and is equal to
R−1u(t) e(x) in Ω2.

Corollary 3.10 For all given u ∈ L2(0, T ), divergence free y0 ∈ L2(Ω1)3, and α0 ∈ R, the
system (9) has a unique weak solution y ∈ L2(0, T ;Y (Ω)) that obeys the regularity stated
in Corollary 3.9 above.

The next result provides a sufficient condition for the assumption that y|Ω2 belongs to
C([0, T ], H(curl,Ω1)) that will be used as assumption in Lemma 3.12 on the continuity of
the electrical current i in the system (4).

Theorem 3.11 Assume in addition to the assumptions stated in Corollary 3.10 that it
holds curlµ−1 curl y0 ∈ L2(Ω1)3, e 6= 0, and u ∈ H1(0, T ). Then the solution y of (9)
belongs to H1(0, T ;H(curl,Ω)).

Proof. As in the previous sections, we denote the restriction of y0 to Ωj by yj0. We
consider the solution w ∈ L2(0, T ;Y (Ω)) of the problem

σwt(t) + Lw(t) = 0 in Ω1∫
Ω2

wt(t) · e dx e+RLw(t) = u′(t)e in Ω2
(53)

subject to the initial conditions

σw(0) = −Ly10 in Ω1∫
Ω2

w(0) · e dx = u(0)−R i0 in Ω2,
(54)
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where i0 is fixed according to (15) so that y0 satisfies the initial condition (8). Notice that
u(0) is defined, since u ∈ H1(0, T ). For the same reason, we have u′ ∈ L2(0, T ). Moreover,
Ly10 belongs to L2(Ω1)3, hence the regularity assumption on the initial condition for w in
Ω1 is fulfilled.

Thanks to Corollary 3.10, there exists a unique weak solution w ∈ L2(0, T ;Y (Ω)) to
the problem (53), (54). We also know that w ∈ C([0, T ], L2(Ω1)3) so that the value w(0)
is well defined in Ω1.

Now we define y by

y(t) :=

∫ t

0

w(s) ds+ y0, (55)

where y0 = y10 is defined in Ω1 and y0 = y20 = i0ye+yΓ in Ω2 according to (12). The integral
is defined in the Bochner sense. The solution y0 constructed by Lemma 2.1 is contained in
H(curl,Ω) because it holds y10 ∈ H(curl,Ω1), y10 ∈ H(curl,Ω2) and y10 × n = y20 × n on
Γ.

Therefore, we have that y ∈ H1(0, T ;H(curl,Ω)). Let us verify that this is a solution
to the system (9); then the regularity result follows by the uniqueness of this solution. In
Ω1, we obtain

σyt(t) + Ly(t) = σ
d

dt

(∫ t

0

w(s) ds+ y10

)
+ L

∫ t

0

w(s) ds+ Ly10

= σw(t) +

∫ t

0

Lw(s) ds+ Ly10

= σw(t)−
∫ t

0

σw′(s) ds+ Ly10

= σw(t)− σw(t) + σw(0) + Ly10 = 0,

where the last term vanishes thanks to the upper initial condition of (54). Therefore, the
first equation of (9) is fulfilled.

Consider now the equation in Ω2. We have a.e. in (0, T ) that∫
Ω2

wt(t) · e dx e+RLw(t) = u′(t)e in Ω2.

Integration over (0, T ) yields∫
Ω2

w(t) · e dx e+R

∫ t

0

Lw(s)ds = u(t)e− u(0)e+

∫
Ω2

w(0) · e dx e. (56)

By the lower initial condition of (54), the right-hand side of (56) is equal to u(t)e−Ri0e,
hence ∫

Ω2

w(t) · e dx e+

∫ t

0

Lw(s)ds+R i0e = u(t)e.
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By (55), the condition Ly20 = L(i0ye + yΓ) = i0e, and the last equation, we get∫
Ω2

yt(t) · e dx e+RLy(t) =

∫
Ω2

w(t) · e dx e+R

∫ t

0

Lw(s)ds+Ri0e = u(t)e.

This confirms the second differential equation of (9). Moreover, the initial condition is
satisfied, because

R−1

∫
Ω2

y(0) · e dx e = R−1

∫
Ω2

y20 · e dx e = α0.

Notice that y20 was defined in a way such that R−1
∫

Ω2
y(0) · e dx = α0 is granted.

Let us finally discuss the equivalence of the system (4) with the system (9).
Assume that y is a weak solution of (9) with u ∈ H1(0, T ), α0 ∈ R and y0 satisfying

the assumptions of Theorem 3.11. Defining i by (7), the identity (45) becomes

〈σyt(·, t); z〉Y (Ω)′,Y (Ω) + a0(y(·, t), z) = i(t)

∫
Ω

e(x) · z̄(x) dx ∀z ∈ Y (Ω). (57)

Due to Theorem 3.11 and Lemma 3.12 below, i is continuous and by the results of subsection
2.3, i0 = i(0) is given by formula (15).

This consideration suggests the following definition: Given u ∈ H1(0, T ), i0 ∈ R and y0

satisfying the assumptions of Theorem 3.11, we say that (y, i) is a weak solution of (4), if
y ∈ H1(0, T ;H(curl,Ω)) has further the regularity from (30), (31), (32) while i ∈ C[0, T ],
and the conditions (57) and (7) hold with y(·, 0) = y0 and i(0) = i0.

Again from the results of subsection 2.3, if (y, i) is weak solution of (4) in the above
sense, then by (7) and using formula (15), we directly deduce that y is a weak solution of
(9).

Lemma 3.12 Assume that y is a weak solution to (9) such that y|Ω2 belongs to the space
C([0, T ], H(curl,Ω2)). Then the function i is continuous on [0, T ].

Proof. Owing to (57), the solution y satisfies the equation∫
Ω2

{µ−1 curl y(t) · curlϕ+ ε y(t) · ϕ} dx =

∫
Ω2

e · ϕdx i(t)

for all test functions ϕ ∈ H0(curl,Ω2). As H0(curl,Ω2) is dense in L2(Ω)3, there exists a
sequence (en) of functions of H0(curl,Ω2) converging to e in the sense of L2(Ω)3. If n is
sufficiently large, then ∫

Ω2

e · en dx > 0

holds, since ‖e‖L2(Ω)3 > 0. Now we take en as a test function for a sufficiently large n,
hence

i(t) =
1∫

Ω2
e · en dx

∫
Ω2

{µ−1 curl y(t) · curl en + ε y(t) · en} dx.
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Thanks to our assumption on y, the right-hand side is continuous. Hence the same holds
true for i.
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