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Abstract. Two optimal control problems for instationary magnetization processes are considered in 3D spatial
domains that include electrically conducting and nonconducting regions. The magnetic fields are generated by
induction coils. In the first model, the induction coil is considered as part of the conducting region and the electrical
current is taken as control. In the second, the coil is viewed as part of the nonconducting region and the electrical
voltage is the control. Here, an integro-differential equation accounts for the magnetic induction law that couples
the given electrical voltage with the induced electrical current in the induction coil.

We derive first-order necessary optimality condition for the optimal controls of both problems. Based on them,
numerical methods of gradient type are applied. Moreover, we report on the application of model reduction by POD
that lead to tremendous savings. Numerical tests are presented for academic 3D geometries but also for a real-world
application.
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1. Introduction. In this paper, we deal with different problems of optimal magnetization that
arise from applications in flow measurement. We consider the following situation: An electrically
conducting tube is surrounded by an induction coil that generates a magnetic field. Applying an
appropriate electrical current or voltage in the coil, the magnetic field should be influenced in an
optimal way. The aim of optimization is to switch very fast from a given magnetic field to one with
opposite polarization. For the modeling of the underlying application, we refer to [18].

We model the magnetization process by two different linear parabolic-elliptic evolution Maxwell
systems, where the real quantity of interest, the magnetic induction B is represented by a vector
potential as B = curl y. The vector potential y is the state of our control systems. In the first
problem, the electrical current is the control function that appears in the right-hand side of the
evolution equation. In the second, the voltage is taken as control. To obey the induction law, this
eventually leads to a controlled Maxwell integro-differential system for the state function y.

The optimal control theory of Maxwell equations became quite active in the last years. In
particular, the optimal control of processes of magneto-hydrodynamics (MHD) has a fairly long
tradition. Here, the control system includes Maxwell equations coupled with equations accounting
for fluid flow and/or heat conduction. We mention [4], [8], [10], [6], [7], or [11] and further references
cited therein.

In these papers, the Maxwell equations are posed in a steady state or time-harmonic setting,
while the Navier-Stokes equations for the fluid flow are considered in a time variant setting. The
time harmonic approach is also used in [14], [23],[24], [17], [5], [9].

∗This work was supported by Endress+Hauser Flowtec AG Reinach (Switzerland).
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In the papers mentioned above, the Maxwell equations are coupled with the Navier-Stokes
or heat equation. In contrast to them, [14] deals with the optimal control of magnetic fields in
a time-harmonic setting of the Maxwell equations. In this context, we also mention the recent
PhD thesis [13]. These two papers are closer to our model than the problems of coupled systems
appearing in MHD control. However, in contrast to the references cited above, our two problems of
optimal magnetization are modeled by evolution Maxwell equations of degenerate parabolic type.
To our best knowledge, optimal control problems of this type of equations were not yet discussed
in literature.

Our paper contains the following main novelties: In the analysis, we derive first-order necessary
optimality conditions for two different optimal control problems for evolution Maxwell equations,
in particular for a Maxwell integro-differential system. Here, we rely on the paper [19] on existence
and uniqueness theorems for the state systems under consideration. We prove optimality conditions
by introducing adjoint states as a basis for computational optimization techniques.

In the second part of the paper, we apply the optimality conditions to set up numerical methods.
We solve problems of optimal magnetization in 3D spatial domains by gradient type methods. The
computed optimal magnetization curves turned out to be very precise and are used in practical
applications. Moreover, we briefly report on the application of model reduction by standard proper
orthogonal decomposition (POD) that enabled us to achieve tremendous savings of computing times.
A detailed discussion of model reduction, complemented by a discussion of necessary optimality
conditions for a quadratic objective functional that measures the distance of B = curl y to a desired
magnetic field, is contained in our paper [18]. We also mention the contribution [20] on the successful
application of POD to the optimal control of Maxwell equations. Moreover, we refer to the recent
PhD thesis by Altmann [2], who numerically determined some optimal solutions to our optimal
magnetization problem.

2. Two models for magnetic fields.

2.1. The evolution Maxwell equations. The application of optimal control methods to
the magnetization processes we have in mind are considered in a bounded spatial domain Ω ⊂ R3

that stands for the ”holdall domain” for the whole process. In our test examples, Ω is a cube that
is taken so large that a further extension does not really change the numerical results. This domain
Ω is the union of the electrically conducting domain Ω1 and the electrically nonconducting domain
Ω2, more precisely,

Ω̄ = Ω̄1 ∪ Ω̄2.

We denote by Γ := Ω̄1 ∩ Ω̄2 the interface between the conducting and nonconducting region and
by ν : ∂Ω → R3 the vector field of the outer unit normal on ∂Ω. We shall specify the concrete
geometric assumptions on these subdomains below.

Our main quantity of interest is the magnetic induction B : Ω̄→ R3. Thanks to the assumption
that B is divergence free, we are justified to represent B by a vector potential y : Ω̄→ R3, namely
B := curl y. Inserting y in the standard Maxwell equations and neglecting the term ε ∂2y/∂t2, since
ε is very small in our application, we finally arrive at evolution Maxwell equations of the form

σ(x)
∂y

∂t
(x, t) + curlµ−1 curl y(x, t) = f(x, t) in Ω× (0, T )

y(x, t)× ν = 0 on ∂Ω× (0, T )

y(x, 0) = y0(x) in Ω1.

(2.1)
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Fig. 2.1. Scheme of the tube with coil – cut through the origin along the x3-axis

Depending on the concrete model, we will specify the given functions f : Ω × (0, T ) → R3 and
y0 : Ω1 → R3 later. The electrical conductivity σ : Ω→ R is given with some constant σ0 > 0 by

σ(x) :=

{
σ0 in Ω1

0 in Ω2,

while the magnetic permeability µ : Ω→ R is assumed to be bounded and measurable and uniformly
positive such that

µ(x) ≥ µ0 > 0 for a.a. x ∈ Ω.

In view of our computational examples, we fix the following geometry of Ω1 and Ω2: We have a
tube Ωtb,

Ωtb = {x ∈ R3 : 0 < r1 < x2
1 + x2

2 < r2, z1 < x3 < z2}

and an induction coil

Ωc = {x ∈ R3 : 0 < r2 < x2
1 + x2

2 < r3, c1 < x3 < c2}.

In this setting, r3 > r2 and z1 ≤ c1 < c2 ≤ z2 are given real numbers.

Let the holdall domain Ω ⊂ R3 be an open cube that contains Ω̄tb ∪ Ω̄c. In both models we
discuss in our paper, the tube Ωtb belongs to the conducting region, while the meaning of Ωc changes:
In the first model, Ωc is considered as part of the conducting region, hence Ω1 = int (Ω̄tb ∪ Ω̄c). In
the second, it is modeled as nonconducting, hence Ω1 = Ωtb and Ω2 = Ω \ Ω̄tb.

Remark 1. Our theory is also true for the following more general setting: Here, Ω, Ω1, Ω2,
and Ωc are (open) bounded Lipschitz domains such that Ω̄1 ⊂ Ω (i.e. Ω1 is strictly included in Ω),
Ω2 has exactly one hole formed by Ω̄1 and that the boundary ∂Ω2 is composed of two connected
components. We either have Ωc ⊂ Ω1 or Ωc ⊂ Ω2.
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2.2. Electrical current as control.

2.2.1. The control problem and its well-posedness. In our first optimal control model,
we consider the electrical current as the control function. This is not very realistic, since it is mainly
the voltage that can be controlled. However, this setting is simpler so that theory and numerical
treatment are easier than in the second model, where the magnetic field is controlled by the voltage.

In this section, we consider the induction coil as part of the conducting region, hence here we
have

Ω1 := int (Ω̄tb ∪ Ω̄c), Ω2 := Ω \ Ω̄1.

An induction coil is composed of many windings of a conducting wire so that the direction of the
electrical current is given very precisely by the direction of the wire. Computing the electrical
current by the Maxwell equations would be very complicated. The reason is that a finite element
mesh should be extremely fine to match the geometry of the windings and empty space between
them; cf. Fig. 2.2 that shows a cross section through a coil and the finite element mesh needed for
computing the magnetic field. Therefore, we use the following ansatz for modeling the electrical
current density jc,

jc(x, t) := e(x) i(t).

Here i : [0, T ]→ R is the amplitude of the electrical current in one single winding and

e(x1, x2, x3) =


Nc

|ωc|
√
x2

1 + x2
2

 −x2

x1

0

 in Ωc

0 else,

(2.2)

where Nc is a positive constant and |ωc| is the area of a vertical cross section through the windings.
In the geometry ”tube with coil”, the cross section ωc is displayed as the upper red part of Fig. 1.
Note that e is divergence free in the whole domain Ω.

Remark 2. The ansatz (2.2) for the current density can be justified as follows. The direction
of the current in any point x of the coil is very well approximated by (−x2, x1, 0)/

√
x2

1 + x2
2, if the

number of windings is large. This motivates the direction of the vector e. The factor Nc/|ωc| has
the following reason:

Let a coil be totally filled by a wire of rectangular cross section so that no space is left between
its windings. If the strength of the electrical current in the wire is |i|, then the total flow of the
current through the cross section ωc is Nc |i|. The ansatz (2.2) ensures in this case that the integral
of the current density e i over ωc is just Nc |i|. In a real coil, there is some empty space between the
windings that is fairly small. Here, (2.2) yields a very good approximation.

In the first model, we consider the following state equation for the vector potential y:
σ0
∂y

∂t
(x, t) + curlµ−1 curl y(x, t) = e(x)i(t) in Ω1 × (0, T )

curlµ−1 curl y(x, t) = 0 in Ω2 × (0, T )
y(x, t)× ν = 0 on ∂Ω× (0, T )

y(x, 0) = y0(x) in Ω1.

(2.3)
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Fig. 2.2. Windings of the coil and FE mesh

Moreover, we shall always assume the gauging condition

div y = 0 in Ω1 ∪ Ω2. (2.4)

The vector function y is the state of our control system while i is the control. Notice that we cannot
guarantee that y is divergence free in the whole domain Ω, since the normal component of y can
be discontinuous across the interface Γ. We will include (2.4) by the choice of the state space. In
what follows, we use the notation Qj := Ωj × (0, T ), j = 1, 2.

The aim of our first optimal control problem is to minimize the objective functional

J(y, i) :=
λT
2

∫
Ω1

|y(x, T )−yT (x)|2 dx+
λQ
2

∫∫
Q1

|y(x, t)−yQ(x, t)|2 dxdt+ λiF

2

∫ T

0

i2(t) dt, (2.5)

where λT , λQ, and λi are nonnegative constants (not all being zero) and yQ ∈ L2(Q1)3 and yT ∈
L2(Ω1)3 are given functions.

In our concrete application, we aim at switching in shortest time between two magnetic fields of
opposite polarization, i.e. starting from some B0 we want to reach −B0 in short time. In the context
of the vector potential, we start with y0 and want to match −y0 very fast. In this concrete example,
we set yT (x) := −y0(x) and also yQ(x, t) := −y0(x). Here, the first part of J , weighted by λT ,
drives y(T ) to −y0. The second part, weighted by λQ, accounts for the speed of this approximation.
Some experience is needed to find a good balance between the parameters λQ and λT to achieve
the goal of fast switching. We refer to the paper [3], where the time-optimal control of electrical
circuits was discussed in this way. Notice that we do not consider the problem of reaching a given
state yT exactly, because this would rise difficult problems of exact controllability.

Next, we introduce some function spaces. We use the standard Sobolev spaces H(curl ,O) and
H(div ,O) and the space

H(div = 0,O) := {y ∈ L2(O)3 : div y = 0 in O},

the space of divergence free vector functions equipped with the inner product of L2(O)3. It is well
known that this is a Hilbert space. We also need the space

H0(curl ,Ω) := {y ∈ L2(Ω)3 : curl y ∈ L2(Ω)3 and y × ν = 0 on ∂Ω}.
5



As state space for our problem, we define

Y (Ω) := {v ∈ H0(curl ,Ω) : div v|Ωj ∈ L
2(Ωi)

3, j = 1, 2, and 〈v|Ω2
· ν, 1〉Γ = 0}.

Here, 〈· , ·〉Γ denotes the pairing between H−1/2(Γ) and H1/2(Γ). Moreover, we define the space V

V := {v ∈ L2(Ω)3 : div v|Ω1
= 0 and div v|Ω2

= 0 and 〈v|Ω2
· ν, 1〉Γ = 0}.

These spaces may be defined on the fields of real or complex numbers. Due to our application, the
state function y is assumed to be real. In the weak formulations of our state equations, the test
functions z are taken from the associated complex spaces.

For defining the notion of a weak solution of (2.3), we introduce the following sesquilinear form
a0 : Y (Ω)× Y (Ω)→ C:

a0(y, z) =

∫
Ω

µ−1curl y · curl z̄ dx+ ei
π
4

∫
Ω1

div y1 div z̄1 dx+ ei
π
4

∫
Ω2

div y2 div z̄2 dx. (2.6)

In this definition, yj stands for y|Ωj , j = 1, 2, i denotes the imaginary unit and z̄ the complex
conjugate function of z. Since this is the only position, where the complex unit i appears, there
should not be any confusion with the use of i for the electrical current.

Definition 2.1. A function y : [0, T ] → Y (Ω) is is said to be a weak solution of the
system (2.3), if it enjoys the regularity properties y ∈ L2(0, T ;Y (Ω)), σy ∈ C([0, T ], V ) and
σyt ∈ L1(0, T ;Y (Ω)′), and there holds

〈σyt(t) , z̄〉Y (Ω)′,Y (Ω) + a0(y(·, t), z̄) = i(t)

∫
Ω

e(x) · z̄(x) dx ∀z ∈ Y (Ω), for a.a. t ∈ (0, T ),

y(x, 0) = y0(x) for a.a. x ∈ Ω1.
(2.7)

Here, we wrote for short yt := ∂y/∂t.

Moreover, we introduce the set of admissible controls

Iad = {i ∈ L2(0, T ) : α ≤ i(t) ≤ β for a.a. t ∈ (0, T )}. (2.8)

We know from Corollary 3.12 in Nicaise and Tröltzsch [19] that, to each i ∈ L2(0, T ), there exists
a unique weak solution y of (2.3) provided that y0 ∈ H(div = 0,Ω1). We denote this solution y
by yi, where the subscript indicates that y is associated to the control i. We do not indicate the
dependence on y0, since the initial data y0 remain fixed. The mapping i 7→ yi is continuous, cf.
estimate (33) of Corollary 3.8 in [19] (to apply this Corollary, take f(x, t) := e(x) i(t) there).

Now we are able to define our first optimal control problem:

(OCP1) min
i∈Iad

J(yi, i).

Theorem 2.2. The optimal control problem (OCP1) has a unique optimal control i∗.

This result follows in a standard way by the weak compactness of the set Iad, the continuity
and affine-linearity of the mapping i 7→ yi, and by the weak lower semicontinuity of the reduced
objective function Ĵ : L2(0, T )→ R,

Ĵ : i 7→ J(yi, i).

Let us denote for convenience the (optimal) state associated with i∗ by y∗ := yi∗ . In the next
section, we derive the necessary optimality conditions for i∗.
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2.2.2. Necessary optimality conditions. It is well known that i∗ must satisfy the varia-
tional inequality

Ĵ ′(i∗)(i− i∗) ≥ 0 ∀i ∈ Iad. (2.9)

Expanding Ĵ ′, we obtain more explicitely

λT

∫
Ω1

(yi∗(·, T )− yT (·)) · (yi(·, T )− yi∗(·, T )) dx+ λQ

∫
Q1

(yi∗ − yQ) · (yi − yi∗) dxdt

+λi

∫ T

0

i∗ (i− i∗) dt ≥ 0 ∀i ∈ Iad.
(2.10)

By an adjoint state, the state function y can be eliminated from the inequality above in a standard
way. To this aim, we introduce the following adjoint equation:

−σ0
∂p

∂t
(x, t) + curlµ−1 curl p(x, t) = λQ(y∗(x, t)− yQ(x, t)) in Ω1 × (0, T )

curlµ−1 curl p(x, t) = 0 in Ω2 × (0, T )

p(x, t)× ν = 0 on ∂Ω× (0, T )

σ0 p(x, T ) = λT (y∗(x, T )− yT (x)) in Ω1.

(2.11)

Lemma 2.3. Suppose that yQ ∈ L2(0, T ;L2(Ω1)3) satisfies div yQ(·, t) = 0 for a.a. t ∈
(0, T ) and that also div yT = 0 is fulfilled. Then there exists a unique solution p∗ of the ad-
joint equation (2.11); p∗ enjoys the regularity p∗ ∈ L2(0, T ;Y (Ω)), σp∗t ∈ L1(0, T ;Y (Ω)′), and
p∗|Ω1

∈ C([0, T ], H(div = 0,Ω1)).

Proof. The result is obtained by the transformation of time τ = T − t. In this way, the adjoint
equation is transformed to a forward parabolic-elliptic equation for the new function p̃(x, τ) =
p(x, T − t).

To apply Corollary 3.12 of [19], we need that the associated right-hand side (in [19] denoted
by f) and the initial data satisfy the assumptions f ∈ L2(0, T ;Y (Ω)′), div f = 0 in Q1, and that
div y0 = 0 in Ω1. In our adjoint equation, this amounts to the requirements y−yQ ∈ L2(0, T ;Y (Ω)′),
div (y−yQ) = 0 in Q1, and div (y(T )−yT ) = 0 in Ω1. Obviously, this is ensured by our assumptions
on yT and yQ and by the regularity of y∗.

We use p∗ for eliminating the state functions in the variational inequality (2.10).

Lemma 2.4. Let y∗ be the solution associated with an arbitrary (not necessarily optimal)
i∗ ∈ L2(0, T ) and take i ∈ L2(0, T ) with associated state yi. Assume that yQ and yT satisfy the
assumptions stated in Lemma 2.3. Define the adjoint state p∗ as the unique solution to the adjoint
equation (2.11). Then there holds

λT

∫
Ω1

(y∗(x, T )− yT (x)) · (yi(x, T )− y∗(x, T )) dx+ λQ

∫
Q1

(y∗ − yQ) · (yi − y∗) dxdt

=

∫ T

0

(∫
Ω1

e(x) · p∗(x, t) dx
)

(i− i∗) dt.
(2.12)

Proof. We introduce the function y := yi−y∗ = yi−i∗ ; then it holds y(0)|Ω1
= 0. Since yt and p∗t

only belong to L1(0, T ;V ′), we proceed by a density argument: H1(0, T ) is dense in L2(0, T ), hence
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we can select a sequence (in)n in H1(0, T ) such that in → (i − i∗) in L2(0, T ) as n → ∞. Let yn
denote the solution of (2.3) associated with i := in and y0 = 0. We have yn → y in L2(0, T ;L2(Ω)3)
and yn|Ω1

→ y|Ω1
in C([0, T ], L2(Ω1)3).

Now we follow the arguments of the proof of Thm. 3.14 in [19]. We formally differentiate the
state equation (2.3) with respect to t. The right-hand side e i′n belongs to L2(0, T ;H(div = 0,Ω)),
hence the differentiated equation has a solution wn ∈ L2(0, T, V ) with wn|Ω1

∈ C([0, T ], L2(Ω1)3).
The functions

yn(t) =

∫ t

0

wn(s) ds

are solutions of (2.3) with in instead of i and satisfy (yn)t|Ω1
∈ C([0, T ], L2(Ω1)3), cf. formula (55)

in [19]. Notice also that the initial value of yn is zero, hence smooth and divergence free.

In view of this, we also have (σ yn)t ∈ C([0, T ], L2(Ω)3) ⊂ C([0, T ], Y (Ω)′). Now, we multiply
the adjoint equation by the function yn and integrate over Q to obtain

−
∫ T

0

∫
Ω

σ p∗t · yn dxdt+

∫ T

0

a0(p∗(t), yn(t)) dt =

∫ T

0

∫
Ω1

λQ (y∗ − yQ) · yn dxdt.

Notice that all yn and also p∗ are real functions, hence yn = ȳn and p∗ = p̄∗ so that it does not
matter on which side of the sesquilinear forms the functions stand.

In the equation above, we have written for convenience

〈σp∗t , yn〉Y (Ω)′,Y (Ω) =:

∫ T

0

∫
Ω

σ p∗t · yn dxdt

although the integrals are possibly not well defined. We shall apply this notation also later, since
this supports the understanding of integration by parts.

Integrating by parts in the first integral, it follows∫ T

0

∫
Ω

σ p∗ · (yn)t dxdt+

∫ T

0

a0(p∗(t), yn(t)) dt

=

∫
Ω1

σ0 p
∗(x, T ) · yn(x, T ) dx+

∫ T

0

∫
Ω1

λQ (y∗ − yQ) · yn dxdt

=

∫
Ω1

λT (y∗(x, T )− yT (x)) · yn(x, T ) dx+

∫ T

0

∫
Ω1

λQ (y∗ − yQ) · yn dxdt,

where we have finally inserted the given terminal condition for p∗(T ). On the other hand, multi-
plying the equation for yn by p∗, we find∫ T

0

∫
Ω

σ (yn)t · p∗ dxdt+

∫ T

0

a0(y∗n(t), p∗(t)) dt =

∫ T

0

(∫
Ω1

e(x) · p∗(x, t) dx
)
in(t) dt.

Obviously, the left-hand sides of the last two equations are equal, hence the same holds for their
right-hand sides,∫

Ω1

λT (y∗(x, T )− yT (x)) · yn(x, T ) dx+ λQ

∫
Q1

(y∗ − yQ) · yn dxdt =

∫ T

0

(∫
Ω1

e · p∗ dx
)
in dxdt.
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Passing to the limit n→∞, we arrive at the desired equation (2.12).

Now the necessary optimality condition for i∗ is an immediate consequence.

Theorem 2.5. Let i∗ be the optimal control of problem (OCP1), y∗ = yi∗ be the associated
(optimal) state. Assume that div yQ(·, t) = 0 for a.a. t ∈ (0, T ) and that div yT = 0 holds. Let the
adjoint state p∗ be the solution to (2.11). Then i∗ must satisfy the variational inequality∫ T

0

(∫
Ω1

e(x) · p∗(x, t) dx+ λi i
∗(t)

) (
i(t)− i∗(t)

)
dt ≥ 0 ∀i ∈ Iad. (2.13)

The theorem follows immediately from (2.10) and Lemma 2.4, equation (2.12). If λi > 0, then,
by a standard pointwise discussion of (2.13), we arrive at the projection formula

i∗(t) = P[α,β]

(
− 1

λi

∫
Ω1

e(x) · p∗(x, t) dx
)

for a.a. t ∈ (0, T ). (2.14)

Here, P[α,β] : R→ R is defined by P[α,β](v) = max(α,min(β, v)). We apply this formula for testing
the precision of numerically computed optimal controls.

Moreover, the reduced gradient ∇Ĵ(i∗), i.e. the Hilbert space representation of the derivative
Ĵ ′(i∗) at an arbitrary not necessarily optimal i∗, is given by

(∇Ĵ(i∗))(t) =

∫
Ω1

e(x) · p∗(x, t) dx+ λi i
∗(t), t ∈ [0, T ]. (2.15)

This is the basis for implementing gradient type methods.

2.3. Controlled electrical voltage.

2.3.1. An integro-differential model. We have already pointed out that controlling the
electrical current is not realistic in practice, because only the voltage can be chosen more or less
arbitrarily. Therefore, we now consider the electrical voltage u as control function.

One might think that, for given u, the electrical current i is just obtained by Ohm’s law, i.e.
i = u/Rc, where Rc is the resistance of the coil windings. However, any current i in the coil
generates a magnetic field – the field we want to influence – and generating this field counteracts
the electrical current. Therefore, we have to consider also the induction law. This eventually leads
to the following integro-differential equation as a substitute for Ohm’s law:∫

Ω

∂y

∂t
(x, t) · e(x) dx+Rc i(t) = u(t), t ∈ (0, T ),

i(0) = i0.
(2.16)

Since e vanishes outside the coil Ωc, the integral above is one on Ωc. Moreover, now we regard Ωc
as part of the nonconducting domain (this is a consequence of the modeling), hence Ωc ⊂ Ω2 holds
here. The integro-differential equation (2.16) is derived in our paper [18], where also the practical
background of time-optimal control in flow measurement devices is sketched.

Let us explain for convenience of the reader the derivation of the formula (2.16). We follow our
arguments of [18]: Thanks to the induction law, it must hold

d

dt
Ψ(t) +Rc i(t) = u(t),
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where

Ψ(t) =

∫
Fc
B(t) · dS

is the total magnetic flux through the area spanned by all windings and Fc is the surface spanned
by the windings of the coil. Now, we argue as follows: If the coil consists of only one winding, the
surface Fc is bounded by the closed curve ∂Fc of this winding. We obtain

d

dt
Ψ(t) =

∫
Fc

∂B

∂t
(t) · dS =

∫
Fc

∂

∂t
(curl y(t)) · dS =

∫
Fc

curl
∂y

∂t
(t) · dS =

∮
∂Fc

∂y

∂t
(t) · ds,

where the last equation follows from the theorem of Stokes. If the coil has Nc windings, then we
have to consider the union of the surfaces Fwi spanned by all windings wi,

Fc =

Nc⋃
i=1

Fwi .

We obtain

d

dt
Ψ(t) =

Nc∑
i=1

∮
∂Fwi

∂y

∂t
(t) · ds ≈ Nc

|ωc|

∫
Ωc

∂y

∂t
(t) · w dx =

∫
Ωc

∂y

∂t
(t) · e dx.

Here, we used the current direction w = e/|e| with divw = 0 and |w| = 1.

Complementing the original system by this equation, we arrive at the integro-differential model

σ0
∂y

∂t
(x, t) + curlµ−1 curl y(x, t) = 0 in Ω1 × (0, T )

curlµ−1 curl y(x, t) = e(x) i(t) in Ω2 × (0, T )

y(x, t)× ν = 0 on ∂Ω× (0, T )

y(x, 0) = y0(x) in Ω1,∫
Ω

∂y

∂t
(x, t) · e(x) dx+Rc i(t) = u(t) in (0, T )

i(0) = i0.

(2.17)

In this setting, the definition of the sets Ωj , j = 1, 2, differs from that in (2.3). Now, they are
defined by

Ω1 = Ωtb, Ω2 = Ω \ Ω̄tb.

The analysis of (2.17) is more delicate than that for (2.3). In a first step, we eliminate the current
i by the integro-differential part of (2.17),

i(t) = R−1
c

(
u(t)−

∫
Ω

∂y

∂t
(x, t) · e(x) dx

)
(2.18)
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and insert this in the differential part. We get the degenerate parabolic integro-differential equation

σ0
∂y

∂t
(x, t) + curlµ−1 curl y(x, t) = 0 in Ω1 × (0, T )

R−1
c

∫
Ω1

∂y

∂t
(ξ, t) · e(ξ) dξ e(x) + curlµ−1 curl y(x, t) = R−1

c e(x)u(t) in Ω2 × (0, T )

y(x, t)× ν = 0 on ∂Ω× (0, T )

y(x, 0) = y0(x) in Ω1.
(2.19)

By this substitution, we have lost the initial condition i(0) = i0. Moreover, it is not obvious that i
must be continuous so that i(0) is well defined. Therefore, we follow a detour. First we complete
the system (2.19) by the somehow artificial initial condition∫

Ω1

y(x, 0) · e(x) dx = α0 (2.20)

with some given real number α0. We consider an associated optimal control problem for u and
show that this is solvable. Next, as a conclusion of the optimality conditions, we deduce that the
optimal voltage u∗ belongs to H1(0, T ). Finally, Theorem 2.10 yields i∗ ∈ H1(0, T ) so that i∗ is
continuous.

We are able to fix α0 in such a way that the initial condition i(0) = i0 is satisfied. This closes
the loop so that we can later return to the original model (2.17).

2.3.2. Optimal control problem and auxiliary control problem. In what follows, we
write for convenience Uad := Iad although the set of admissible controls remains (mathematically)
unchanged, i.e. it is given by upper and lower bounds α, β. The full optimal control problem
”optimal voltage” that also includes the electrical current i as part of the state functions is

(OCP2) min
u∈Uad

J(yu, u),

where J has the same principal form as in (2.5),

J(y, u) :=
λT
2

∫
Ω1

|y(x, T )−yT (x)|2 dx+
λQ
2

∫∫
Q1

|y(x, t)−yQ(x, t)|2 dxdt+ λu
2

∫ T

0

u2(t) dt, (2.21)

but for convenience we denote the regularization parameter associated with the control by λu ≥ 0.
Here, yu denotes the solution of (2.17) that is associated with the control u.

At this point, the definition of yu this is formal, since we do not know if the underlying system
(2.17) admits a continuous electrical current i as part of the solution. Therefore, the initial condition
for i is possibly not well posed. In view of this, we first discuss the auxiliary control problem

(OCP2aux) min
u∈Uad

J(yu, u),

where yu is the solution to the simplified state equation (2.19) subject to the initial condition (2.20).

For defining a weak solution to the system (2.19) we have to add to a0 a term accounting for
the integrodifferential part of (2.19), cf. Definition 2.1.
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Definition 2.6. A function y : [0, T ]→ Y (Ω) is said to be a weak solution of the system (2.19),
if y has the regularity properties formulated in Definition 2.1, fulfills that t 7→

∫
Ω2
e(x) · y(x, t) dx

belongs to H1(0, T ), and satisfies the equations

〈σyt(t) , z̄〉Y (Ω)′,Y (Ω) + a0(y(·, t), z̄) +R−1
c

(∫
Ω2

e(x) · yt(x, t) dx
) (∫

Ω2

e(x) · z̄(x) dx

)
= R−1

c

∫
Ω2

e(x) · z̄(x) dxu(t) ∀z ∈ Y (Ω), for a.a. t ∈ (0, T ),
(2.22)

y(x, 0) = y0(x) for a.a. x ∈ Ω1, (2.23)∫
Ω2

y(x, 0) · e(x) dx = α0. (2.24)

The following result follows from Corollary 3.13 in [19]:

Lemma 2.7. For all given u ∈ L2(0, T ), divergence free y0 ∈ L2(Ω1)3, and α0 ∈ R, the system
(2.19), (2.20) has a unique weak solution y ∈ L2(0, T ;Y (Ω)) with the following regularity properties:

There is a constant c > 0 not depending on f and y0 such that

‖y‖L2(0,T ;Y (Ω)) + ‖σyt‖L1(0,T ;Y (Ω)′)

+
∥∥∥∫

Ω2

y(x, ·) · e(x) dx
∥∥∥
H1(0,T )

≤ c (|α0|+ ‖u‖L2(0,T ) + ‖y0‖V ).
(2.25)

By this Lemma, we easily deduce again that the optimal control problem (OCP2aux) has a
unique optimal control u∗ with associated optimal state y∗ := yu∗ .

2.4. Necessary optimality conditions for (OCP2aux). To establish the associated neces-
sary optimality conditions, we begin as in the preceding section. Completely analogous to (2.10),
u∗ and y∗ must obey the variational inequality

λT

∫
Ω1

(y∗(·, T )− yT (·)) · (yu(·, T )− yu∗(·, T )) dx+ λQ

∫
Q1

(y∗ − yQ) · (yu − yu∗) dxdt

+λu

∫ T

0

u∗ (u− u∗) dt ≥ 0 ∀u ∈ Uad.
(2.26)

To reduce this inequality to one for u only, we define the following adjoint equation:



−σ0
∂p

∂t
(x, t) + curlµ−1 curl p(x, t) = λQ (y∗(x, t)− yQ(x, t)) in Q1

−R−1
c

∫
Ω2

∂p

∂t
(ξ, t) · e(ξ) dξ e(x) + curlµ−1 curl p(x, t) = 0 in Q2

p(x, t)× ν = 0 on ΣT

σ0 p(x, T ) = λT (y∗(x, T )− yT (x)) in Ω1∫
Ω2

p(x, T ) · e(x) dx = 0.

(2.27)
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Theorem 2.8. Assume that u∗ is the optimal control of (OCP2aux) and y∗ is the associated
state. Let the conditions div yQ(·, t) = 0 for a.a. t ∈ (0, T ) and div yT = 0 be satisfied.

Then there exists an associated unique weak solution p∗ of (2.27) having the same regularity
properties as y∗ such that∫ T

0

(∫
Ω2

e(x) · p∗(x, t) dx+ λu u
∗(t)

)(
u(t)− u∗(t)

)
dt ≥ 0 ∀u ∈ Uad. (2.28)

Proof. We have to consider the difference y := yu−yu∗ = yu−u∗ . Let us assume that v := u−u∗
belongs to H1(0, T ). If not, we can apply a density argument as in the proof of Lemma 2.4 and
consider a sequence of functions vn ∈ H1(0, T ) converging to v in L2(0, T ).

Notice again that y and p∗ are functions with real-valued components. Now, we use the adjoint
state as test function in the weak formulation of the state equation (2.19) and obtain after adding
the two parts∫ T

0

∫
Ω

σ
∂y

∂t
· p∗dxdt+R−1

c

∫ T

0

∫
Ω

∫
Ω2

∂y

∂t
(ξ, t) · e(ξ) dξ e(x) · p∗(x, t) dxdt

+

∫ T

0

a0(y(t), p∗(t)) dt = R−1
c

∫
Q2

e(x) · p∗(x, t) v(t) dxdt.

(2.29)

Due to our working assumption on v, the derivative ∂y/∂t is sufficiently smooth so that the first
integral in the equation above is well defined. Analogously, we use the state difference y as test
function in the adjoint equation (2.27) and obtain

−
∫ T

0

∫
Ω

σ
∂p∗

∂t
· y dxdt−R−1

c

∫ T

0

∫
Ω2

∫
Ω2

∂p∗

∂t
(ξ, t) · e(ξ) dξ e(x) · y(x, t) dxdt

+

∫ T

0

a0(y(t), p∗(t)) dt =

∫ T

0

∫
Ω1

λQ (y∗(x, t)− yQ(x, t)) · y(x, t) dxdt.

In the integrals containing ∂p∗/∂t, we perform an integration by parts and find

−
∫

Ω1

λT (y∗(x, T )− yT (x)) · y(x, T ) dx+

∫ T

0

∫
Ω

σ
∂y

∂t
· p∗dxdt

+

∫ T

0

a0(y(t), p∗(t)) dt−R−1
c

∫
Ω2

p∗(ξ, T ) · e(ξ) dξ
∫

Ω2

y(x, T ) · e(x) dx

+R−1
c

∫ T

0

∫
Ω2

∫
Ω2

∂y

∂t
(ξ, t) · e(ξ) dξ e(x) · p∗(x, t) dxdt

=

∫ T

0

∫
Ω1

λQ (y∗(x, t)− yQ(x, t)) · y(x, t) dxdt,

(2.30)

where we have used that y(x, 0) = 0 and that σ0p
∗(x, T ) = λT (y∗(x, T )− yT (x)). In view of∫

Ω2

p∗(x, T ) · e(x) dx = 0,
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subtracting the equation (2.30) from (2.29), we deduce∫
Ω1

λT (y∗(x, T )− yT (x)) · y(x, T ) dx+

∫ T

0

∫
Ω1

λQ (y∗(x, t)− yQ(x, t)) · y(x, t) dxdt

=

∫
Q2

e(x) · p∗(x, t) v(t) dxdt =

∫ T

0

∫
Ω2

e(x) · p∗(x, t) (u(t)− u∗(t)) dxdt.

Inserting the right-hand side of this equation in the variational inequality (2.26), we immediately
verify the desired inequality (2.28).

For λu > 0, a pointwise discussion of the variational inequality (2.28), yields the projection
formula

u∗(t) = P[α,β]

(
− 1

λu

∫
Ω2

e(x) · p∗(x, t) dx
)

for a.a. t ∈ (0, T ). (2.31)

Corollary 2.9. Under the assumptions of Theorem 2.8, the optimal control u∗ for (OCP2aux)
belongs to H1(0, T ).

Proof. The adjoint state p∗ enjoys the regularity of y∗ stated in Lemma 2.7, hence the function

q∗ : t 7→
∫

Ω2

e(x) · p∗(x, t) dx

belongs toH1(0, T ). The same holds for the function t 7→ P[α,β](q
∗(t)), because f ∈ H1(0, T ) implies

that also max(f(·), α) and min(f(·), β) belong to H1(0, T ), cf. Kinderlehrer and Stampacchia [12].
Therefore, also the optimal control

u∗ = P[α,β](q(·)∗) = min
(

max
(
α, q(·)∗

)
, β
)

belongs to H1(0, T ).

The reduced gradient is now given by

(Ĵ ′(u∗))(t) =

∫
Ω2

e(x) · p∗(x, t) dx+ λu u
∗(t), t ∈ [0, T ]. (2.32)

2.4.1. Necessary optimality conditions for (OCP2). By Corollary 2.9 we know that the
optimal control u∗ of (OCP2aux) belongs to H1(0, T ). This implies that also the associated optimal
electrical current i∗ enjoys this regularity. To see this, we recall the following results of [19]:

Theorem 2.10. Assume in addition to the assumptions stated in Lemma 2.7 that it holds
curlµ−1curl y0 ∈ L2(Ω1)3, e 6= 0, and u ∈ H1(0, T ). Then the solution y of (2.19) belongs to
H1(0, T ;H(curl ,Ω)). Moreover, then the function i is continuous on [0, T ].

Proof. Thanks to the assumptions of Lemma 2.7, curlµ−1curl y0 ∈ L2(Ω1)3, u ∈ H1(0, T ), and
the property e 6= 0, we can apply Theorem 3.14 of [19] to get y ∈ H1(0, T ;H(curl ,Ω)). Clearly, this
implies the claimed regularity of y. Next, we invoke Lemma 3.15 of [19] that ensures i ∈ H1(0, T )
provided that y|Ω2 belongs to C([0, T ], H(curl (Ω2)). This is granted by y ∈ H1(0, T ;H(curl ,Ω)).

In view of these results, the optimal state i∗ is continuous on [0, T ] and the initial value i∗(0)
is well defined. Therefore, we are justified to return to the original full state equations (2.17) for
the pair of states (y, i).
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Let us now fix the notion of a weak solution (y, i) for the full system (2.17).

Definition 2.11. Given u ∈ H1(0, T ), i0 ∈ R and y0 ∈ L2(Ω1)3 with curl (µ−1curl y0) ∈
L2(Ω1)3, we say that (y, i) is a weak solution of (2.17), if y ∈ H1(0, T ;H(curl ,Ω)) obeys the
regularity stated in Lemma 2.7, i belongs to C[0, T ], the conditions y(·, 0) = y0 and i(0) = i0 are
satisfied, the fifth identity of (2.17) is fulfilled for a.a. t ∈ (0, T ) and

〈σyt(·, t); z̄〉Y (Ω)′,Y (Ω) +a0(y(·, t), z̄) = i(t)

∫
Ω

e(x) · z̄(x) dx ∀z ∈ Y (Ω), for a.a. t ∈ (0, T ). (2.33)

By Theorem 2.10 and the known H1-regularity of the optimal control u∗, the original state
system (2.17) has a unique weak solution (y∗, i∗). This information justifies to consider the full
system. In the analysis, we can use it to set up the necessary optimality conditions for u∗. For the
numerical treatment, we also consider this full system, because after a finite element discretization
with respect to the space, the associated system of integro-differential equations is uniquely solvable
for all u ∈ L2(0, T ).

2.4.2. Optimality system for problem (OCP2). In view of the higher regularity of u∗,
we obtain the following result on optimality conditions for the control problem (OCP2):

Theorem 2.12. Assume that curl (µ−1curl y0) ∈ L2(Ω1)3 and let u∗ be the optimal control of
problem (OCP2aux). Then there exist a unique pair (p∗, q∗) of adjoint states satisfying the (full)
adjoint system

−σ0
∂p

∂t
(x, t) + curlµ−1 curl p(x, t) = λQ(y∗(x, t)− yQ(x, t)) in Q1

− 1

Rc

dq

dt
(t) e(x) + curl µ−1 curl p(x, t) = 0 in Q2

p(x, t)× ν = 0 on ΣT

q(t) =

∫
Ω2

p(x, t) · e(x) dx in (0, T )

σ0 p(x, T ) = λT (y∗(x, T )− yT (x)) in Ω1

q(T ) = 0

(2.34)

such that the variational inequality∫ T

0

(q∗(t) + λu u
∗(t))

(
u(t)− u∗(t)

)
dt ≥ 0 ∀u ∈ Uad (2.35)

is satisfied.

Proof. The result follows immediately from Theorem 2.8 by substituting

q∗(t) :=

∫
Ω2

p∗(x, t) · e(x) dx.

The function q∗ can be viewed as the Lagrange multiplier associated with the integro-differential
equation ∫

Ω2

∂y

∂t
(x, t) · e(x) dx+Rc i(t) = u(t).
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This can be easily verified by applying a formal Lagrange technique for deriving the optimality
system.

Numerically, it is easier to handle the full system including the electrical current i than to work
with the simplified system, where the current is eliminated. In particular, the initial condition
i(0) = i0 is easier to handle than the auxiliary initial condition

∫
Ω2
y(x, 0) · e(x) dx = α0, where α0

has to be chosen in the right way so that the initial condition for i is fulfilled, cf. [19].

Remark 3. We know by Corollary 2.9 that the optimal control u∗ of (OCP2aux) or (OCP2)
belongs to H1(0, T ) provided that the assumptions of Theorem 2.8 are satisfied. Therefore, u∗ is
also the solution to the problem

min
u∈Uad∩H1(0,T )

J(yu, u)

and the variational inequalities (2.28) (or equivalently (2.35)) are satisfied with Uad ∩ H1(0, T )
substituted for Uad.

Numerically it might be helpful to implement such smoother control functions, for instance by
a piecewise linear approximation of u. Notice, however, that a projection formula such as (2.31)
does not hold for piecewise linear approximations of u while it is true for an approximation by step
functions.

3. Numerical Examples.

3.1. Introduction. Solving the parabolic-elliptic evolution Maxwell equations numerically,
we implemented a finite element method with respect to the space variable and the implicit Euler
method with fixed step size in the time. For the following reasons, this generates very large scale
linear algebraic equations:

First of all, the equations have to be solved in a 3D spatial domain. For the tube with coil, the
problem can be transformed by cylindrical coordinates to one of dimension 2. We decided to avoid
this simplification, because the geometry of the real application is more complicated and does not
allow cylindrical coordinates (cf. the setting of an industrial DN50 sensor presented in Fig. 3.4).
In Section 3.3, we briefly report on a real application to flow measurement. Second, switching in
and off the electrical current leads to steep curves right after the initial time. Therefore, we had to
apply very small time steps in the implicit Euler method so that a large number of linear algebraic
equations had to be solved.

From the optimization point of view, large scale convex optimization problems with box con-
straints on the control function must be solved. This somehow dictated the choice of the numerical
optimization method. Though the discretized optimal control problem is nothing more than a
problem of quadratic optimization, available commercial solvers of quadratic programming will not
be able to process a problem of that size at once. In view of this, we applied a standard pro-
jected gradient method and also the projected conjugate gradient method with exact step size. We
approximated the reduced gradient of J by the solution of the discretized adjoint equation. This
approach worked well for our academic geometries. However, the application to real sensors for flow
measurement would require computation times in the range of months to achieve the needed pre-
cision, cf. Section 3.3. Therefore we invoked model order reduction by standard proper orthogonal
decomposition (POD) with big success, cf. our presentation below.

We omit the details of all implementations, because we do not understand our paper as a
contribution to the efficient numerical solution of the problems under consideration. We just want
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to give the reader an impression on the numerical treatment of the problem and refer to [18], where
we report more detailed on our computational experience.

All computations with academic geometries were done for a tube with coil of the following size:

Test geometry ”tube with coil”. In our numerical tests with simplified geometry, the holdall
domain Ω is a cube of side length 0.2m centered at the origin. The tube is taken parallel to one of
the sides, centered in the cube. For the tube, we selected the following data:

r1 = 0.01 m, r2 = 0.015 m, z1 = −0.05 m, z2 = 0.05 m,

and

r3 = 0.02 m, c1 = −0.02 m, c2 = 0.02 m.

In the numerical examples, we concentrate on the optimal control of the electrical voltage u.
Only this case is realistic for a practicable application. If the electrical current i is taken as control,
then the application of the optimal solution in a sensor would need big jumps between different
values of the current, which cannot be generated in an electrical circuit.

Moreover, the numerical treatment of the controlled voltage is more challenging than that for
the controlled circuit. Readers who are interested in numerical results for the electrical current as
control are referred to the PhD thesis [2].

We applied a conjugate gradient method for the numerical solution of the optimal control
problem. For the convenience of the reader, we mention how the descent direction in the projected
gradient method is determined. Let uk be the current iterate and (yk, ik) be the associated state
vector function. Then, in view of (2.32), we compute the reduced gradient by

gk(t) :=

∫
Ω2

e(x) · pk(x, t) dx+ λu uk(t),

where pk is the adjoint state obtained as solution to (2.34) with y∗ substituted by yk, cf. also the
equation defining q in (2.32). Then

δk := −gk

is a direction of descent provided that gk 6= 0. However, the new iterate uk + s δk might exceed
the given box constraints for any step size s > 0. Therefore, a standard projection step must be
included; we omit the further details.

3.2. Example 1: Optimal control for the geometry ”tube with coil”. We consider
the optimal control problem (OCP2) with the equation (2.17) as state equation, where y0 is given
as the initial state for the vector potential y. The aim of the optimization is to reach −y0 in short
time.

Data for the Example. We consider the geometry ”tube with coil” for the following data:

• PDE data:

µ = 400, σ = 106S/m, Rc = 10 Ω, N = 1600, |ωc| = 0.005 · 0.040m2, T = 0.5 s.
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• Weights and bounds: We set λT = 0, λQ = 105, test different values for λu, and fix the
bounds

α = −10, β = 10.

Since λT = 0, only the ratio of λu/λQ is relevant for the optimization, hence one of the two
parameters might be set to one. This is indeed the standard setting in quadratic tracking
type funtionals with regularization term. While this is true from an analytic point of view,
in the numerical calculations both values have their own right. This is due to possible
cancellation of digits.

• Initial state: For y0, we take the constant vector given by the steady state solution y of
the system (2.17) that is associated with the constant control u(t) ≡ 6V , while the initial
current i0 is defined by i0 ·Rc = 6V . For Rc defined above, this amounts to i0 = 0.6A.

• Numerical solution of the FE system: As finite elements, we applied H-curl elements with
degree p = 2 that obey the associated Dirichlet boundary conditions at ∂Ω. For the Crank-
Nicolson method in time, the weight 0.5 and the time step size τ = 10−5 were taken to
cope with very steep slopes of the optimal voltage. For solving the full discretized Maxwell
equations, we invoked the FE code NGSOLVE by J. Schöberl, [21].
Moreover, we applied an elliptic regularization with the differential operator

u 7→ curlµ−1curlu+ κu,

where κ = 100.

Computing the optimal control for the full system is a very time consuming task. To overcome
this obstacle, we tested proper orthogonal decomposition (POD), a standard method of model order
reduction. We refer to Kunisch and Volkwein [15], [16], Afanasiev and Hinze [1], or Volkwein [22]
and to the references cited therein. This method is known to be a reliable tool for reducing the order
of many types of linear and nonlinear evolution equations. In particular, it was applied to different
versions of the nonlinear heat equation or to the Navier-Stokes equations in the case of moderate
Reynolds numbers, to mention only some cases. Due to certain similarities of our evolution Maxwell
equations to the standard heat equation, we expected that POD might be useful for our application
as well. Our expectation turned out to be correct, because POD was extremely efficient.

In the case of the geometry ”tube with coil”, 5 POD modes were sufficient to reach high
precision. Below, we just present the results by this method and do even not show the optimal
solutions of the full optimal control problem. In the figures, we display the optimal solutions to the
POD reduced model. They are very close to those of the full model. The application of POD to
our Maxwell integro-differential system is discussed in detail in our paper [18].

In Fig. 3.1, we present the optimal voltages and the associated optimal electrical currents for the
tube with coil. The optimal control voltage u∗POD starts at the maximal possible voltage 10V and
reaches after some time the value 6V that holds the current of 0.6A. In the figure, the computed
optimal voltage u∗POD is compared with P[α,β] (−q∗POD/λu). For the ratio λu/λQ = 10−5, both
functions graphically coincide, hence u∗POD very well satisfies the optimality conditions (”optimality
test”). For 10−6 and smaller ratios, the optimality test is less satisfactory. Here, λu/λQ seems to
have reached the precision of solving the POD reduced differential equation.

The optimal current i∗POD is presented in Fig. 3.2 for λQ = 105 and different values of λu. For
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Fig. 3.1. Example 1: Optimal voltage u∗POD compared with P[α,β]
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)
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(optimality test). Left hand side: λu/λQ = 10−5, right hand side: λu/λQ = 10−6.
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Fig. 3.2. Example 1: Optimally controlled current i∗POD for λQ = 105, λu = 1, 0.1, 0.01, and for λu = 0
(dashed).

λu = 10−2, the optimal current has the principal form that is to be expected for λu = 0. Starting
with −0.6A, after an initial phase, the current of 0.6A is reached.

For completeness, in Fig. 3.3 we also show the result for λu = 0. To get an adequate numerical
coupling between the forward and adjoint equations we choose λQ large enough, 105 in the example.
Here, to satisfy the necessary optimality conditions, the following complementarity conditions must
hold true:

q∗POD(t) < 0 ⇒ u∗POD(t) = 0.6 and − 0.6 < u∗POD(t) < 0.6 ⇒ q∗POD(t) = 0. (3.1)

The computed optimal solution obeys these conditions almost perfectly.

3.3. Example 2: Real application and model reduction. In the case of our academic
geometries, we were able to apply the projected gradient method to the full finite element discretiza-
tion of our model, because we selected fairly rough meshes. Moreover, we stopped the method after
a small number of gradient steps. In an industrial application to flow measurement, very fine effects
are to be measured. Much higher computational precision is required so that a finer FE mesh, very
small time steps, and a large number of iterations of the gradient method are needed. Let us explain
the consequences for an industrial sensor that is presented in Fig. 3.4.

The FE mesh that we used to solve the Maxwell equations, contained 109 282 elements and
had 1 054 050 degrees of freedom. To achieve a moderate precision, the state equation was solved
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Fig. 3.4. Example 2: Industrial DN50 Sensor

with only 200 time steps. For a time horizon of T = 40ms, this amounts to time steps of length
2 · 10−4 s. Under this discretization, solving the state equation by NGSOLVE needs 5.2 hours. In
each iteration of the gradient method, we have to solve the state equation and the adjoint equation,
hence 10.4 hours are needed for each iteration. To get an acceptable precision, some hundred
gradient steps must be performed, say only 100. In this case, the gradient method would take more
than 43 days of CPU time. This is certainly not acceptable for industrial applications.

To overcome this obstacle, we again tested POD. For the case of the industrial DN50 sensor, we
invoked POD for the FE discretized model explained above. Moreover, we selected 4000 time steps
to reach the precision needed for the industrial application. Instead of hours, one solve of the POD
reduced state equation took only some milliseconds. Eight POD ansatz functions were sufficient
to achieve the required precision. Applied to the optimization of this reduced order model, the
projected gradient method takes only a few minutes.

It is not our aim to report on the details of model order reduction here and we refer again to
our paper [18]. We have mentioned the setting of the DN50 sensor and the high potential of model
reduction to convince the reader that optimal control methods can be efficiently applied to this
particular class of problems with real industrial background.
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