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Abstract. A linear-quadratic elliptic control problem with pointwise box constraints on the
state is considered. The state-constraints are treated by a Lavrentiev type regularization. It is
shown that the Lagrange multiplier associated with the regularized state-constraints are functions
in L2. Moreover, the convergence of the regularized controls is proven for regularization parameter
tending to zero. To solve the problem numerically, an interior point method and a primal-dual active
set strategy are implemented and treated in function space.
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1. Introduction. In this paper, we consider the numerical solution of the elliptic
optimal control problem

(P)
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minimize J(y, u) :=
1

2

∫

Ω

(y − yd)
2 dx +

κ

2

∫

Ω

(u − ud)
2 dx

subject to A y(x) = u(x) in Ω

∂ny(x) = 0 on Γ

and ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω,

where Ω is a bounded domain and Γ is the boundary of Ω. Moreover, ∂n = ∂~n denotes
directional derivative with respect to the outward unit normal ~n and A is a uniformly
elliptic differential operator. The functions yd, ud, ya, and yb are given and κ > 0 is
a regularization parameter.

The main difficulty of the problem is the presence of pointwise state constraints. It
is known from the Karush-Kuhn-Tucker theory in function spaces that the Lagrange
multipliers associated with the state constraints are regular Borel measures. This fact
is crucial both for the theory and for the the numerical solution.

There are different ideas to deal with the state-constraints numerically. For instance,
the problem can be discretized and then solved by a primal-dual active set strategy
applied in the finite dimensional space. The efficiency of this technique has been
demonstrated by Bergounioux and Kunisch in [3]. On the other hand, interior point
methods can be applied to the discretized problem as well, see Haddou et al. [1].
In the case of supremum-norm functional, also Grund and Rösch applied an interior
point method to the discrete problem, see [5].

The situation is different when the problem is considered in function spaces. Primal-
dual active set strategies need the solution of equations such as (y(u))(x) = d(x)
on subsets of Ω, where d(x) = ya(x) or d(x) = yb(x). The mapping u → y(u) is
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compact, hence these equations for u may cause effects of ill-posedness. It is well
known from the theory of inverse problems that a Lavrentiev type regularization of
the type λu + y = d is helpful to overcome this difficulty.

This is one reason to approximate the pointwise state constraints in (P) by

ya(x) ≤ λu(x) + y(x) ≤ yb(x). (1.1)

A regularization of this type has several advantages. First, the associated Lagrange
multipliers can assumed to be functions of L2(Ω). This result has been shown for
convex elliptic problems for a more general setting including also certain pointwise
control constraints by Tröltzsch [10]. For (P), the proof of regularity of Lagrange
multipliers is almost trivial, since box constraints on the control are missing, see
Section 2 below.

Second, primal-dual active set strategies are be well defined in functions space for
this type of regularized constraints. In this way, we are able to directly compare the
performance of a primal-dual active set strategy and an interior point method.

Our paper complements the discussion of a semilinear version of (P) in [8], where the
existence of regular Lagrange multipliers, second-order sufficient optimality conditions
and the application of an SQP method with primal-dual active set strategy for the
quadratic subproblems have been discussed for fixed λ > 0. Here, we concentrate
on the convergence for λ ↓ 0. Moreover, we briefly sketch the implementation of the
active set method and an interior point method with classical continuation technique.
With that part we continue the work in Prüfert et al. [9] on the applicaton of a
classical interior point method in function spaces. The existence of a central path was
shown there for a single state constraint. In the case of upper and lower bounds that
is given here, the situation is so simple that we present the proof for convenience of
the reader.

Throughout this paper, the domain Ω is a subset of R
n, n = 2, 3, with a C0,1-boundary

Γ. As mentioned above, A is an elliptic differential operator. More precisely, it has
the form

A y(x) = −
n

∑

i,j=1

Di(aij(x) Djy(x)) + c(x) y(x),

where Di denotes the partial derivative with respect to xi. Here c is a given function
in L∞(Ω) with c(x) ≥ 0 a.e., and aij ∈ L∞(Ω), i, j = 1, ..., n satisfy the ellipticity
condition

n
∑

i,j=1

aij(x) ξi ξj ≥ θ |ξ|2 ∀ (x, ξ) ∈ Ω × R
n

with some positive constant θ. Furthermore, the bounds ya and yb in (P) are fixed
functions in L∞(Ω) with yb(x) − ya(x) ≥ cad > 0 a.e. in Ω. The desired state yd and
the function ud are defined in L∞(Ω).

With (1.1) at hand, we transform (P) into the following optimal control problem
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(Pλ)
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minimize J(y, u) :=
1

2

∫

Ω

(y − yd)
2 dx +

κ

2

∫

Ω

(u − ud)
2 dx

subject to A y(x) = u(x) in Ω

∂ny(x) = 0 on Γ
(1.2)

and ya(x) ≤ λ u(x) + y(x) ≤ yb(x) a.e. in Ω, (1.3)

where λ > 0 is a fixed regularization parameter. In the following, we show that (Pλ)
admits Lagrange multipliers in L2(Ω) and that the corresponding solution (ūλ, ȳλ)
converges strongly to the solution of (P) if λ converges to zero.

For n ≤ 3, (1.2) admits for every u ∈ L2(Ω) a unique solution y ∈ H1(Ω)∩L∞(Ω) (see
for instance [4]). Hence, we may introduce the control-to-state operator G : L2(Ω) →
H1(Ω) ∩ L∞(Ω) that assigns y to u.

Notation. By ‖.‖ = ‖.‖L2(Ω) and (. , .) = (. , .)L2(Ω) we denote the natural norm
and the associated inner product of L2(Ω), respectively. For the L∞(Ω)-norm, we
abbreviatory write ‖.‖∞ = ‖.‖L∞(Ω). Furthermore, I : L2(Ω) → L2(Ω) is the identity.
Given two normed spaces U and Y and a linear operator S : U → Y , the associated
adjoint operator is denoted by S∗ : Y ∗ → U∗. Throughout the paper, we say that u ∈
L2(Ω) is feasible for (P) if ya(x) ≤ (G u)(x) ≤ yb(x) holds true a.e. in Ω. Analogously,
u ∈ L2(Ω) is said to be feasible for (Pλ) if ya(x) ≤ λ u(x)+(G u)(x) ≤ yb(x) is fulfilled
a.e. in Ω. By E2 : H1(Ω) ∩ L∞(Ω) → L2(Ω) we denote the embedding operator of
H1(Ω) ∩ L∞(Ω) in L2(Ω), whereas E∞ denotes the analogous embedding operator
with range in L∞(Ω).

2. First-order optimality conditions. If we consider the state y as a function
in L2(Ω), then the associated solution operator of (1.2) is given by S := E2 G. Since
E2 is compact, the same holds for S : L2(Ω) → L2(Ω).

The objective functional f is strictly convex and lower semicontinuous. Therefore, the
existence of solutions of (P) and (Pλ), respectively, is obtained by standard methods.
Moreover, the solutions are unique in both cases. However, considering first-order
necessary optimality conditions, both optimal control problems behave different. As
mentioned above, the Lagrange multipliers associated to the pure state-constraints in
(P) are in general regular Borel measures. Their singular part is concentrated on the
boundary of the active set, see Bergounioux and Kunisch [2]. In contrast to that, we
are able to prove the existence of regular Lagrange multipliers in L2(Ω) in the case
of (Pλ). To that end, we convert this problem into one with box-constraints on the
control by substituting v = λ u + y. Thanks to the compactness of S, (λ I + S) repre-
sents a Fredholm operator that has only countably many eigenvalues accumulating at
0. Moreover, since S is positive definite, the eigenvalues of −S are negative. Thus, for
every λ > 0, the theory of Fredholm operators ensures that (λ I +S) has a continuous
inverse operator B : L2(Ω) → L2(Ω), i.e.

B v = (λ I + S)−1 v = u. (2.1)

Therefore, (Pλ) can be transformed into the following optimization problem with
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simple box constraints on the new control v

(PV)







minimize F (v) =
1

2
‖S B v − yd‖

2 +
κ

2
‖B v − ud‖

2

subject to ya(x) ≤ v(x) ≤ yb(x) a.e. in Ω.

Since F is continuously Fréchet-differentiable from L2(Ω) to R, the Riesz representa-
tion theorem implies that its derivative can be identified with a function in L2(Ω).
We denote this function by g(x). Then, by standard arguments, one can show the
existence of Lagrange multipliers νλ, µλ ∈ L2(Ω) that are given by

νλ(x) = g(v̄)(x)+ =
1

2
(g(v̄)(x) + |g(v̄)(x)|)

µλ(x) = g(v̄)(x)− =
1

2
(−g(v̄)(x) + |g(v̄)(x)|) ,

where v̄ denotes the unique optimal solution of (PV). Together with νλ and µλ, v̄
fulfills the following optimality system:

S∗(S B v̄ − yd) + κ(B v̄ − ud) + (B−1)∗µλ − (B−1)∗νλ = 0

(νλ, ya − v̄) = (µλ, v̄ − yb) = 0

νλ(x) ≥ 0 , µλ(x) ≥ 0 , ya(x) ≤ v̄(x) ≤ yb(x) a.e. in Ω.



















(2.2)

Because of the equivalence of (PV) to (Pλ), ūλ = B v̄ represents the optimal solution
of (Pλ). With B−1 = λ I + S, the first equation in (2.2) is transformed into

S∗(S ūλ − yd − νλ + µλ) + κ(ūλ − ud) + λ(µλ − νλ) = 0.

Next, we substitue ȳλ = S ūλ and pλ := S∗(ȳλ − yd − νλ + µλ) in (2.2). Notice that
S∗ is the solution operator of the adjoint equation that is given by

A∗ pλ = ȳλ − yd + µλ − νλ in Ω

∂npλ = 0 on Γ.
(2.3)

where A∗ denotes the formal adjoint operator of A. With these substitutions, ewe
obtain the following optimality system for (Pλ):

A ȳλ = ūλ in Ω

∂nȳλ = 0 on Γ

A∗ pλ = ȳλ − yd + µλ − νλ in Ω

∂npλ = 0 on Γ

pλ(x) + κ(ūλ(x) − ud(x))+λ(µλ(x) − νλ(x)) = 0 a.e. in Ω

(νλ, ya − λ ūλ − ȳλ) = (µλ, λ ūλ + ȳλ − yb) = 0

νλ(x) ≥ 0 , µλ(x) ≥ 0 , ya(x) ≤ λ ūλ(x) + ȳλ(x) ≤ yb(x) a.e. in Ω.







































(2.4)

Similar to (1.2), the adjoint equation (2.3) admits a unique solution in H1(Ω) ∩
L∞(Ω) for every right hand side in L2(Ω). Therefore, due to µλ, νλ ∈ L2(Ω), we
have pλ ∈ H1(Ω) ∩ L∞(Ω). As above, we introduce the solution operator to (2.3) by
G~ : L2(Ω) → H1(Ω) ∩ L∞(Ω). Notice that G∗ would transform (H1(Ω) ∩ L∞(Ω))∗

into L2(Ω)∗. Therefore, we use the notation G~ for the solution mapping of (2.3).
For the adjoint operator of S, we find S∗ = E2 G~.
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In this way, we have derived the following theorem:

Theorem 2.1. Let ūλ be the optimal solution of (Pλ) with associated state ȳλ, then
there exist non-negative Lagrange multipliers νλ ∈ L2(Ω) and µλ ∈ L2(Ω) and an
associated adjoint state pλ ∈ H1(Ω) ∩L∞(Ω) such that the optimality system (2.4) is
satisfied.

Remark 2.2. Due to the convexity of the objective functional J , the optimality
conditions in (2.4) are also sufficient.

3. Pass to the limit. In this section, we prove the convergence of the solutions
of the regularized problem (Pλ) to the solution of the original problem (P). The theory
is similar to the technique presented in [7]. However, here the situation is a little bit
more difficult, since the state is bounded from above and below in our case, whereas
in [7] only lower constraints are imposed on the state. This especially complicates the
proof of Lemma 3.1 below.

In the following, the unique solution of (P) is denoted by ū ∈ L2(Ω) with associ-
ated state ȳ and associated adjoint state p. Furthermore, we introduce the reduced
objective functional f by

f(u) :=
1

2
‖S u − yd‖

2 +
κ

2
‖u− ud‖

2

and a function uλ that is defined by

uλ := (λ I + S)−1ȳ. (3.1)

Notice that uλ ∈ L2(Ω) is well defined for all λ > 0 because of the compactness of S as
described above. The feasibility of ū for (P) yields ya(x) ≤ λ uλ(x)+(S uλ)(x) ≤ yb(x)
a.e. and thus, uλ is feasible for (Pλ). In the following, we will show that uλ converges
to ū as λ ↓ 0. To that end, we introduce by {λn} a sequence of positive numbers
tending to zero and the sequence {un} whose elements are defined by un = (λn I +
S)−1ȳ according to (3.1).

Lemma 3.1. The sequence {un} converges strongly in L2(Ω) to ū, as n → ∞.

Proof: By inserting ȳ = S ū in (3.1), we obtain for a fixed, but arbitrary λ

uλ − ū = (λ I + S)−1S ū − (λ I + S)−1(λ I + S) ū

= (λ I + S)−1(S + λ I − S)ū

= λ (λ I + S)−1 ū.

(3.2)

The set of eigenvectors of S, denoted by vi, i = 1, ...,∞, represents an orthonormal
basis of L2(Ω). The associated eigenvalues of S are denoted by µi, i ∈ N. We obtain
for all i ∈ N

(λ I + S)−1 vi =
1

λ + µi

(λ I + S)−1 (λ + µi) vi =
1

λ + µi

(λ I + S)−1(λ I + S) vi

=
1

λ + µi

vi.

Since {vi} is an orthonormal basis of L2(Ω), we have that ū =
∑∞

i=1(ū , vi) vi. There-
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fore, (3.2) implies

uλ − ū = λ (λ I + S)−1 ū = λ

∞
∑

i=1

(ū , vi) (λ I + S)−1 vi

=
∞
∑

i=1

λ

λ + µi

(ū , vi) vi,

and we obtain for the L2-norm of uλ − ū

‖uλ − ū‖2 =

∥

∥

∥

∥

∥

∞
∑

i=1

λ

λ + µi

(ū , vi) vi

∥

∥

∥

∥

∥

2

=

∞
∑

i=1

(

λ

λ + µi

)2

(ū , vi)
2.

Since S is positive definite, all µi are positive. Therefore

∞
∑

i=1

(

λ

λ + µi

)2

(ū , vi)
2 ≤

∞
∑

i=1

(ū , vi)
2 = ‖ū‖2, (3.3)

follows from the Bessel inequality. Consider the real valued functions

ϕi(λ) :=

(

λ

λ + µi

)2

(ū , vi)
2,

which are continuous and zero at λ = 0. The series
∑∞

i=1(ū, vi)
2 dominates the one

of the left hand side in (3.3) that represents a function series with continuous func-
tions. Thus, the series converges uniformly and, hence, we are allowed to interchange
summation and pass to the limit and obtain

lim
n→∞

‖un − ū‖2 = lim
n→∞

∞
∑

i=1

ϕi(λn) =

∞
∑

i=1

ϕi(0) = 0.

Now, let {ūn} be the sequence of associated optimal solutions of (Pλn
) with associated

optimal states ȳn = S ūn. Lemma 3.1 implies f(un) → f(ū). Hence, the optimality
of ūn and the feasibility of un for (Pλn

) yields f(ūn) ≤ f(un) ≤ f(ū) + 1 for all
sufficiently large n. Therefore, we have

‖un‖
2 ≤

2

κ
(f(ū) + 1)

giving the uniform boundedness of {un} in L2(Ω). Thus we can select a weakly
converging subsequence, ūnk

⇀ ũ. Everything what follows is also valid for any other
weakly converging subsequence. Thus, a known argument yields that w.l.o.g. ūn ⇀ ũ.

Lemma 3.2. Let ũ be the weak limit of {ūn}. Then ũ is feasible for (P).

Proof: For every λn > 0, the associated ūn is feasible for (Pλ) and hence fulfills the
constraints

ya(x) ≤ λn ūn(x) + ȳn(x) ≤ yb(x) a.e. on Ω.

The boundedness of ‖ūn‖ implies λn ūn → 0 in L2(Ω). Furthermore, we have ȳn =
S ūn → S ũ in L2(Ω) due to the compactness of S and the weak convergence of {ūn}.
Therefore, passing to the limit n → ∞, ũ is feasible for (P), i.e.

ya(x) ≤ (S ũ)(x) ≤ yb(x) a.e. in Ω,
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since the set {y ∈ L2(Ω) | ya(x) ≤ y(x) ≤ yb(x) a.e. in L2(Ω)} is closed.

Now, we are able to prove our main result:

Theorem 3.3. The sequence of optimal solutions {ūn} of (Pλn
) converges strongly

in L2(Ω) to the solution ū of (P), i.e.

ūn → ū , n → ∞.

Proof: Thanks to Lemma 3.1, i.e. the strong convergence of un to ū in L2(Ω), the
states yn = S un converge strongly in L2(Ω) to ȳ = S ū. This implies

f(un) → f(ū) , n → ∞. (3.4)

Since un = (λn I +S)−1ȳ is feasible for (Pλn
) and ūn is the optimal solution of (Pλn

),
f(un) ≥ f(ūn) holds true for all n ∈ N. On the other hand, the feasibilty of ũ and
the optimality of ū for (P) imply f(ũ) ≥ f(ū). Therefore, passing to the limit, (3.4)
yields

f(ū) = lim
n→∞

f(un) ≥ lim sup
n→∞

f(ūn) ≥ lim inf
n→∞

f(ūn) ≥ f(ũ) ≥ f(ū), (3.5)

since f is weakly lower semicontinuous. Thus we get f(ũ) = f(ū) and the strict
convexity of f implies

ũ = ū,

and hence ūn ⇀ ū.

To show the strong convergence of {ūn}, we will prove the norm convergence of ‖ūn‖
to ‖ū‖. It follows from the convergence

lim
n→∞

f(ūn) = f(ū),

that is obtained from (3.5). Thus, by definition of f , we have

lim
n→∞

‖ūn‖
2 = lim

n→∞

2

κ

(

f(ūn) −
1

2
‖ȳn − yd‖

2

)

=
2

κ

(

f(ū) −
1

2
‖ȳ − yd‖

2

)

= ‖ū‖2,

where we again used ȳn → ȳ in L2(Ω). It is well known that weak and norm conver-
gence together yield strong convergence, i.e. un → ū for n → ∞.

Remark 3.4. Clearly, the states yn = S un converge strongly in L2(Ω) to ȳ = S ū,
too.

Next, we consider two different optimization methods for handling the regularized
quadratic problem (Pλ) – an active set strategy and an interior point method.

4. Interior point method. This section is devoted to the depiction of an in-
terior point algorithm for the solution of (Pλ). We follow the lines of [9] where the
state is only bounded from below. However, here we have upper and lower bounds.
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This simplifies the proof of existence of the central path. We think that it is worth to
present this easier setting.

The basic idea of interior point methods is to transform problem (Pλ) into one without
inequality contraints. To that end, we penalize the constraints by a logarithmic barrier
term. For (Pλ), this amounts to

(Pε
λ)



































minimize Jε(y, u) :=
1

2
‖y − yd‖

2 +
κ

2
‖u− ud‖

2

−

∫

Ω

(

ln(λu + y − ya) + ln(yb − λu − y)
)

dx

subject to Ay(x) = u(x) in Ω

∂ny(x) = 0 on Γ,

with ε > 0. Introducing the solution operator S = E2G as defined in Section 2 and
the operator B defined by (2.1), we rewrite (Pε

λ) as

(Qε
λ)















min Fε(v) :=
1

2
‖SBv − yd‖

2 +
κ

2
‖Bv − ud‖

2

− ε

∫

Ω

(ln(v − ya) + ln(yb − v)) dx.

The proof of existence of a solution of (Qε
λ) is a little bit delicate, since the logarithmic

barrier function in Fε(v) may tend to infinity as v approaches the bounds ya or yb.
To compensate for this lack of continuity, we first restrict v to a smaller set, where we
can prove existence of an optimal solution. To that end, we introduce for fixed τ > 0
and fixed λ > 0, ε > 0 the auxilliary problem

(Qτ ) min
ya+τ≤v≤yb−τ

Fε(v), .

Here, we supress the sub- and superscript and write (Qτ ) instead of of (Qε
τ,λ) to

improve the readability. Let us denote the solution of (Qτ ) by vτ . In the following,
we show that vτ is the unique solution vε

λ of (Qε
λ), provided that τ is sufficiently small.

Theorem 4.1. For all 0 < τ < cad/2 and for all ε ≥ 0, problem (Qτ ) has a unique
solution vτ , and there is a constant c such that ‖vτ‖∞ ≤ c.

Proof: The admissible set associated to (Qτ ) is defined by

V τ
ad := {v ∈ L2(Ω) | ya + τ ≤ v(x) ≤ yb − τ for a.a. x ∈ Ω},

where τ < cad/2 ensures that V τ
ad is not empty. We notice that Fε is strictly convex

and continuous on V τ
ad, therefore weakly lower semicontinuous. Moreover, V τ

ad is
convex, closed and bounded. Therefore, standard arguments show the existence of a
unique solution vτ . Moreover, ‖vτ‖∞ is uniformly bounded, since ya ≤ vτ ≤ yb holds
for all τ < cad/2.

For every v ∈ V τ
ad and t ∈ [0, 1], the convexity of V τ

ad yields vτ + t(v − vτ ) ∈ V τ
ad.

Obviously, Fε is not Gâteaux-differentiable in L2(Ω), since Fε(v+ht) may be undefined
for some h ∈ L2(Ω) even for small t > 0. However, it is directionally differentiable in
the direction v − vτ , since vτ + t(v − vτ ) ∈ V τ

ad. The optimality of vτ gives

Fε(vτ + t(v − vτ )) − Fε(vτ )

t
≥ 0. (4.1)
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Passing to the limit t ↓ 0, (4.1) implies for the directional derivative

F ′
ε(vτ )(v − vτ ) ≥ 0 ∀ v ∈ V τ

ad. (4.2)

With the definition of Fε in (Qε
λ) at hand, (4.2) is equivalent to

(

(SB)∗(SBvτ − yd) + κB∗(Bvτ − ud) −
ε

vτ − ya

+
ε

yb − vτ

, v − vτ

)

≥ 0

for all v ∈ V τ
ad. Thus, due to S, B : L2(Ω) → L2(Ω) and ya(x)+τ ≤ vτ (x) ≤ yb(x)−τ ,

the directional derivative F ′
ε(vτ ) can be identified with a function in L2(Ω). Let us

denote this function by gε, i.e.

gε(x) =

[

(SB)∗(SBvτ − yd) + κB∗(Bvτ − ud) −
ε

vτ − ya

+
ε

yb − vτ

]

(x). (4.3)

Then (4.2) is equivalent to

F ′
ε(vτ )(v − vτ ) =

∫

Ω

gε(x)
(

v(x) − vτ (x)
)

dx ≥ 0 ∀ v ∈ V τ
ad. (4.4)

Next, we substitute

pτ := (SB)∗(SBvτ − yd) and wτ := κB∗(Bvτ − ud). (4.5)

Before we perform a pointwise evaluation of (4.4) to show that vτ = vε
λ, we need the

following Lemma that covers the boundedness of pτ and wτ .

Lemma 4.2. For all 0 < τ < cad/2, there exist positive constants c1 and c2 such that
‖pτ‖∞ ≤ c1 and ‖wτ‖∞ ≤ c2 hold true a.e. in Ω.

Proof: We know from Theorem 4.1 that ‖vτ‖∞ is uniformly bounded. If we show that
the operators B, B∗, S, and S∗ are all bounded in L∞(Ω), then the result follows
directly from (4.5).

(i) Boundedness of S and S∗ from L2(Ω) to L∞(Ω): We know that S = E2 G.
Moreover, G is bounded from L2(Ω) to C(Ω̄) ⊂ L∞(Ω). Therefore, the operator S
is bounded in L∞(Ω). Moreover, we know S∗ = E2 G~, where G~ is the solution
operator of the equation (2.3). G~ is bounded from L2(Ω) to L∞(Ω) as well, so the
same is true for S∗.

(ii) Boundedness of B in L∞(Ω). We show in (iii) that

B =
1

λ
(I − S B). (4.6)

The right-hand side is bounded in L∞(Ω), since B is trivially bounded from L∞(Ω)
to L2(Ω) and S is bounded from L2(Ω) to L∞(Ω). Moreover, 1/λ I is bounded in
L∞(Ω). Therefore, the left-hand side must be bounded in L∞(Ω), too.

It is easy to see that S and B commute, hence also S∗ and B∗. From (4.6) it follows

B∗ =
1

λ
(I − B∗S∗) =

1

λ
(I − S∗B∗).

We know the boundedness of S∗ from L2(Ω) to L∞(Ω). Now the same arguments as
above yield the boundedness of B∗ in L∞(Ω).
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(iii) Let u = B v = (λI + S)−1v. Hence, we have λu = v − Su. Now u = Bv implies
λBv = v − SBv and thus

B v =
1

λ
(I − S B)v ⇒ B =

1

λ
(I − S B)

since v was arbitrary.

Preparing the proof of the next theorem, we define the following sets:

M+(τ) := {x ∈ Ω | gε(x) > 0} ,

M0(τ) := {x ∈ Ω | gε(x) = 0} ,

M−(τ) := {x ∈ Ω | gε(x) < 0} .

Theorem 4.3. For all sufficiently small τ > 0, the solution vτ of (Qτ ) is the unique
solution vε

λ of (Qε
λ).

Proof: A pointwise evaluation of (4.4) yields

gε(x) vτ (x) = min
ya(x)+τ≤v≤yb(x)−τ

gε(x) v

with v ∈ R. Hence, we have vτ (x) = ya(x) + τ for almost all x ∈ M+(τ) and
vτ (x) = yb(x) − τ for almost all x ∈ M−(τ). Therefore, with the definition of M+(τ)
and gε, Lemma 4.2 implies

0 < gε(x) = pτ (x) + wτ (x) −
ε

τ
+

ε

yb(x) − ya(x) − τ
≤ c1 + c2 −

ε

τ
+

2 ε

cad

(4.7)

for almost every x ∈ M+(τ). For τ ↓ 0, the right hand side in (4.7) tends to −∞, a
contradiction for sufficiently small τ > 0. Similarly, we have on M−(τ)

0 > gε(x) = pτ (x) + wτ (x) −
ε

yb(x) − ya(x) − τ
+

ε

τ
≥ −(c1 + c2) −

2 ε

cad

+
ε

τ
.

Here, the right hand side tends to ∞ for τ → 0, leading to a contradiction too.
Therefore, the sets M+(τ) and M−(τ) have measure zero for all sufficiently small
τ > 0. Hence, if τ is sufficiently small, we have that gε(x) = 0 holds a.e. on Ω. This
implies

∫

Ω

gε(x) h(x) dx = F ′
ε(vτ )h = 0 ∀ h ∈ L2(Ω),

so that vτ satisfies the necessary optimality conditions for the unconstrained prob-
lem (Qε

λ). By convexity, these necessary conditions are also sufficient for optimality.
Uniqueness follows from strict convexity.

Remark 4.4. By Theorem 4.3, ūε
λ := B vε

λ and ȳε
λ := S ūε

λ represent the optimal
solution of (Pε

λ).

In preparation of the numerical computations, we transform the necessary conditions
for (Qε

λ) given by

B∗S∗ (SBvε
λ − yd) + κB∗ (Bvε

λ − ud) −
ε

vε
λ − ya

+
ε

yb − vε
λ

= 0 (4.8)
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back to terms of the original problem (Pε
λ). We apply the operator (B∗)−1 = (λ I+S∗)

to (4.8) and obtain

S∗

(

SBvε
λ − yd −

ε

vε
λ − ya

+
ε

yb − vε
λ

)

+ κ(Bvε
λ − ud) −

λε

vε
λ − ya

+
λε

yb − vε
λ

= 0.

Now we substitute

νε
λ =

ε

yb − vε
λ

and µε
λ =

ε

yb − vε
λ

.

Notice that , νε
λ(x) > 0 and µε

λ > 0 hold true almost every where on Ω, because of
ya(x) < vε

λ(x) < yb(x). Next, we set

pε
λ = S∗

(

SBvε
λ − yd −

ε

vε
λ − ya

+
ε

yb − vε
λ

)

.

Then, together with ȳε
λ = S Bvε

λ and ūε
λBvε

λ, we obtain the optimality system to (Pε
λ)

that is given by

A ȳε
λ = ūε

λ in Ω

∂nȳε
λ = 0 on Γ

A∗ pε
λ = ȳε

λ − yd + µε
λ − νε

λ in Ω

∂npε
λ = 0 on Γ

pε
λ(x) + κ(ūε

λ(x) − ud(x)) + λ(µε
λ(x) − νε

λ(x)) = 0 a.e. in Ω

νε
λ(x)

(

ȳε
λ(x)+λūε

λ(x) − ya(x)
)

= ε a.e. in Ω

µε
λ(x)

(

yb(x)−ȳε
λ(x) − λūε

λ(x)
)

= ε a.e. in Ω.







































(4.9)

4.1. Discretization. We start with the discretization of the state equation (1.2).
Let v ∈ V be an element of the space of test functions V ⊂ H1(Ω). Multiplication of
(1.2) with v and integration by parts yield

−

∫

Ω

n
∑

i,j=1

aij(x)Djy(x)Div(x)+c(x)y(x)v(x) dx

=

∫

Ω

u(x)v(x) dx for all v ∈ V.

(4.10)

For a given triangulation τh(Ω), we consider a finite dimensional subspace Vh of V .
Let N denote the dimension of Vh(τh) and {φk(x)}, k = 1, ..., N , a basis of Vh.
Then (4.10) implies that the variational equation is satisfied for all test functions
φk(x) ∈ Vh(τh), k = 1, 2, ..., N, i.e.

−

∫

Ω

n
∑

i,j=1

aij(x)Djy(x)Diφk(x)+c(x)y(x)φk(x) dx

=

∫

Ω

u(x)φk(x) dx , k = 1, ..., N.

(4.11)

For the discretization of (4.11), we discretize y and u by the same basis of Vh, i.e.

y(x) =
N

∑

k=1

ykφk(x) and u(x) =
N

∑

k=1

ukφk(x). (4.12)
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Moreover, we define the matrices

Klk =

∫

Ω

n
∑

i,j=1

aij(Djφk(x))Diφl(x) dx

M c
lk =

∫

Ω

c(x)φk(x)φl(x) dx

Mlk =

∫

Ω

φk(x)φl(x) dx,



































(4.13)

where K is known as the stiffness matrix and M as the Mass matrix. Then, inserting
(4.12) in (4.11) yields together with (4.13)

(K + M c)yh = Muh, (4.14)

where yh resp. uh are the column vectors of the coefficients of y and u with respect
to the basis φk , k = 1, ..., N., e.g. uh = (u1, u2, ..., uN )>. Note that for symmetric
coefficients aij(x) = aji(x), 1 ≤ i, j ≤ n, the matrix K is symmetric, too. The adjoint
equation in (4.9) is discretized analogously by

(K + M c)>ph = M(yh − yd,h + µh − νh), (4.15)

where νh and µh represent the coefficient vectors of µ and ν, and yd,h denotes the
vector of yd at the nodes of τh, i.e. yd,h = (yd(x1), ..., yd(xN ))>. For a pointwise
evaluation of the last two equations in (4.9), we define

Φa(νh) := diag(νh) and Ψa(uh, yh) := diag(yh + λuh − ya,h) (4.16)

with (diag(vh))ij = vi δij for an arbitrary vh ∈ R
N . Analogously, Φb and Ψb are

defined by

Φb(µh) := diag(µh) and Ψb(uh, yh) := diag(yb,h − yh − λuh). (4.17)

Here, ya,h and yb,h, denote the vectors associated with ya and yb, respectively at the
nodes of τh. Now we are able to define the finite dimensional approximation of the
optimality system (4.9) to (Pε

λ): Let z̄h := (ȳ>
h , ū>

h , p̄>h , ν̄>
h , µ̄>

h )> ∈ R
5N denote the

approximation of (ȳε
λ, ūε

λ, pε
λ, νε

λ, µε
λ). Then z̄h satisfies the following nonlinear system

of equations

Fh(z̄h; ε) =

















−(K + M c)ȳh + Mūh

−(K + M c)>p̄h + M(ȳh − yd,h + µ̄h − ν̄h)

p̄h + κ(ūh − ud,h) + λ(µ̄h − ν̄h)

Φa(ν̄h)>Ψa(ūh, ȳh) − ε1

Φb(ν̄h)>Ψb(ūh, ȳh) − ε1

















= 0 (4.18)

where ud,h denotes the vector associated to ud at the nodes of τh and 1 is defined by
1 := (1)N

i=1. The function Fh is continuously differentiable from R
5N × R+ to R

5N .

4.2. Interior point algorithm. With (4.18) at hand, we are in the position to
formulate an interior point algorithm. By ∆hz we denote the solution of the finite
dimensional Newton equation associated with (4.18)

∂zFh(zh; ε)∆hz = −Fh(zh; ε),
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where ∂zFh denotes the Jacobian of Fh with respect to zh. By the definitions in (4.16)
and (4.17), it is given by

∂zFh(zh; ε) =













M −(K + M c) 0 0 0
0 M −(K + M c)> −M M
κI 0 I −λI λI

λΦa Φa 0 Ψa 0
−λΦb −Φb 0 0 Ψb













, (4.19)

where I denotes the N × N -identity matrix. Notice that this Jacobian has a size of
5N × 5N . It is sparse and not symmetric. Moreover, for λ and κ tending to zero, it
tends to be ill conditioned. With (4.19) at hand, the interior point algorithm reads
as follows:

Algorithm 1. [Classical continuation method]

1. Initalization: choose 0 < σ < 1, δ > 0 , ε0 > 0 and choose z0
h feasible.

2. For k=1,2,...
ε(k+1) = σε(k)

solve

∂zFh(z
(k)
h ; ε(k+1))∆hz(k) = −Fh(z

(k)
h ; ε(k+1))

up to a relative accuracy of

‖∆hz(k)‖ ≤ δ

3. z
(k+1)
h = z

(k)
h + ∆hz(k)

Algorithm 1 represents the simplest form of an interior point method. In case of
a lower state constraint, the convergence of an infinite dimensional counterpart of
Algorithm 1 was discussed in [9]. There exist several other interior point algorithms
for infinite dimensional problems. We mention, for instance, short-step path following
algorithms or affine scaling interior point algorithms. For further details, we refer to
[13], [12] and [11].

5. Primal-dual active set strategy. This section is concerned with the de-
scription of an active set algorithm to solve the optimality system (2.4).

To derive this strategy, we need the pointwise form of the complementary slackness
condition in (2.4) that is given by

∫

Ω

νλ(x)
(

ya(x) − λ ūλ(x) − ȳλ(x)
)

dx =

∫

Ω

µλ(x)
(

λ ūλ(x) + ȳλ(x) − yb(x)
)

dx = 0.

Because of νλ(x) ≥ 0, µλ(x) ≥ 0 and ya(x) ≤ λ ūλ(x) + ȳλ(x) ≤ yb(x), this implies

νλ(x)
(

ya(x) − λ ūλ(x) − ȳλ(x)
)

= µλ(x)
(

λ ūλ(x) + ȳλ(x) − yb(x)
)

= 0 a.e. in Ω.
(5.1)

Given the optimal solution (ȳλ, ūλ) of (Pλ), we define the active and inactive sets up
to sets of measure zero by

Aa := {x ∈ Ω |λ ūλ(x) + ȳλ(x) − νλ(x) < ya(x)}

Ab := {x ∈ Ω |λ ūλ(x) + ȳλ(x) + µλ(x) > yb(x)}

I := Ω\{Aa ∪Ab}.

(5.2)
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We rely on the following assumption of strict complementarity:

(S) meas {x ∈ Ω | ya(x) − λ ūλ(x) − ȳλ(x) = νλ(x) = 0} = 0 and
meas {x ∈ Ω |λ ūλ(x) + ȳλ(x) − yb(x) = µλ(x) = 0} = 0.

Under (S), the inequalities in (2.4) can be replaced by associated equalities on Aa,
Ab, and I, that are stated by following lemma.

Lemma 5.1. Assume that (S) is fulfilled. Then, it follows that

λ ūλ(x) + ȳλ(x) = ya(x) , µλ(x) = 0 a.e. on Aa

λ ūλ(x) + ȳλ(x) = yb(x) , νλ(x) = 0 a.e. on Ab

νλ(x) = 0 , µλ(x) = 0 a.e. on I.

Proof: We sketch the proof of this well known lemma for convenience of the reader.
We distinct between the following cases:

x ∈ Aa: On Aa, we have λ ūλ(x) + ȳλ(x)− νλ(x) < ya(x) and hence, the feasibility of
ūλ for (Pλ) yields νλ(x) > 0. The complementary slackness condition (5.1)
then gives

λ ūλ(x) + ȳλ(x) = ya(x) and µλ(x) = 0 a.e. in Aa.

x ∈ Ab: In this case, we have λ ūλ(x) + ȳλ(x) + µλ(x) > yb(x). Now the feasibility
of ūλ for (Pλ) implies µλ(x) > 0, and, due to the complementary slackness
condition (5.1), we obtain

λ ūλ(x) + ȳλ(x) = yb(x) and νλ(x) = 0 a.e. in Ab.

x ∈ I: By the definition of I in (5.2), we have x /∈ Aa and hence

λ ūλ(x) + ȳλ(x) − ya(x) ≥ νλ(x) a.e. in I. (5.3)

Due to the complementary slackness condition (5.1), equality can only occur
in (5.3) if νλ(x) = λ ūλ(x) + ȳλ(x) − ya(x) = 0, which contradicts assump-
tion (S). Therefore, the inequality in (5.3) is strict. Thanks to νλ(x) ≥ 0,
this implies λ ūλ(x) + ȳλ(x) > ya(x) and hence νλ(x) = 0, because of the
complementary slackness condition. A similar discussion for x /∈ Ab finally
gives

νλ(x) = µλ(x) = 0 a.e. in I.

With Lemma 5.1 at hand, the optimality system (2.4) can be transformed into

A ȳλ = ūλ in Ω

∂nȳλ = 0 on Γ

A∗ pλ = ȳλ − yd + µλ − νλ in Ω

∂npλ = 0 on Γ

pλ(x) + κ(ūλ(x) − ud(x))+λ(µλ(x) − νλ(x)) = 0 a.e. in Ω

λ ūλ(x) + ȳλ(x) =ya(x) , µλ(x) = 0 a.e. on Aa

λ ūλ(x) + ȳλ(x) =yb(x) , νλ(x) = 0 a.e. on Ab

νλ(x) = µλ(x) = 0 a.e. on I.















































(5.4)



ON TWO NUMERICAL METHODS 15

Discretization of (5.4). As before, the discrete solution is indicated by the
subscript h. We use the same basis functions for the discretization of u, y, p, ν and
µ as in (4.12). Then the partial differential equations in (5.4) are discretized in the
same way as in Section 4.1. Thus, we obtain (4.14) for the discrete version of the
state equation and (4.15) for the discrete adjoint equation. A pointwise evaluation of
the third equation in (5.4) at the nodes of τh yields

κ ui + pi + λ (µi − νi) = κ ud(xi) i = 1, ..., N. (5.5)

For the discretization of the remaining equations in (5.4), we introduce the following
index sets that represent the discrete counterparts of the active sets defined in (5.2),

Aa,h := {i ∈ {1, ..., N} |λ ui + yi − νi < ya(xi)}

Ab,h := {i ∈ {1, ..., N} |λ ui + yi + µi > yb(xi)}

Ih := {1, ..., N}\{Aa,h ∪Ab,h}.

(5.6)

These definitions allow a pointwise evaluation of the equations on Aa, Ab and I in
(5.4). To that end, we define the matrix Ea ∈ R

N×N by

Ea,ij =

{

1 , if i = j and i ∈ Aa,h

0 , otherwise
,

and introduce Eb analogously. Thus, the pointwise discrete version of the equation
λ ūλ(x) + ȳλ(x) = ya(x) a.e. on Aa is given by

Ea (λ uh + yh) = Ea ya,h. (5.7)

Similarly, the equation νλ(x) = 0 a.e. on Ab ∪ I is discretized by

(I − Ea) νh = 0. (5.8)

An addition of (5.7) and (5.8) yields

Ea (λ uh + yh) + (I − Ea) νh = Ea ya,h. (5.9)

Together with an analogous equation for Ab,h, the discrete versions of the PDEs, and
(5.5), we obtain the following 5N × 5N -linear system of equations













M −(K + M c) 0 0 0
0 M −(K + M c)> −M M

κ I 0 I −λ I λ I
λ Ea Ea 0 I − Ea 0
λ Eb Eb 0 0 I − Eb

























uh

yh

ph

νh

µh













=













0
M yd,h

κ ud,h

Ea ya,h

Eb yb,h













(5.10)

that represents the discrete version of (5.4). Notice that the coefficient matrix in
(5.10) has a same structure as the Jacobian in (4.19) arising from the interior point
method. Similar to the matrix in (4.19), it tends to be ill-conditioned as λ, κ ↓ 0.

Active set algorithm. The primal dual active set algorithm proceeds as follows.
We denote by wh the solution vector of (5.10), i.e. wh = (u>

h , y>
h , p>h , ν>

h , µ>
h )>.

Algorithm 2.
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1. Define initial sets A
(0)
a,h ⊂ {1, ..., N} and A

(0)
b,h ⊂ {1, ..., N} with A

(0)
a,h ∩A

(0)
b,h =

∅. Set I
(0)
h = {1, ..., N}\{A

(0)
b,h ∪ A

(0)
a,h} and k = 0.

2. Find w
(k)
h by solving (5.10).

3. Set

A
(k+1)
a,h = {i ∈ {1, ..., N} |λ u

(k)
i + y

(k)
i − ν

(k)
i < ya(xi)}

A
(k+1)
b,h = {i ∈ {1, ..., N} |λ u

(k)
i + y

(k)
i + µ

(k)
i > yb(xi)}

I
(k+1)
h := {1, ..., N}\{A

(k+1)
a,h ∪A

(k+1)
b,h }.

4. If A
(k+1)
a,h = A

(k)
a,h and A

(k+1)
b,h = A

(k)
b,h then STOP, else:

Update k = k + 1 and goto 2.

The termination condition in step 4 is justified by the following theorem. We introduce
the discrete version of the optimality system (2.4) with the complementary slackness
condition in the pointwise form (5.1) that is given by

(K + M c) ȳh = M ūh (K + M c)> p̄h = M (ȳh − yd,h + µ̄h − ν̄h)

κ ūh + p̄h + λ (µ̄h − ν̄h) = 0

ν̄i

(

ȳa(xi) − λ ūi − ȳi

)

= µ̄i

(

λ ūi + ȳi − yb(xi)
)

= 0 , i = 1, ..., N

ya(xi) ≤ λ ūi + ȳi ≤ yb(xi) , ν̄i ≥ 0 , µ̄i ≥ 0 , i = 1, ..., N,































(5.11)

where ūh, ȳh, p̄h, ν̄h and µ̄h again denote the discret optimal solution.

Theorem 5.2. If A
(k+1)
a,h = A

(k)
a,h and A

(k+1)
b,h = A

(k)
b,h for some k ∈ N then the

associated solution of (5.10), denoted by w
(k)
h , satisfies the discrete optimality system

(5.11).

For the proof of this theorem, we refer to results of Kunisch and Rösch [6], that can
easily be adapted to our case.

6. Numerical tests. We tested both algorithms by two examples. Generally,
we consider the following optimal control problem

(PT)































minimize J(y, u) :=
1

2
‖y − yd‖

2 +
κ

2
‖u− ud‖

2

subject to −∆ y(x) + y(x) = u(x) in Ω

∂ny(x) = 0 on Γ

and h(y) ≥ 0 a.e. in Ω,

with h(y) = (y−ya, yb −y)> in the first example and h(y) = yb −y in the second one.
In other words, we consider the box-constraints ya(x) ≤ y(x) ≤ yb(x) in the first and
y(x) ≤ yb(x) in the second example. This problem fits into our problem setting with
Ay = −∆y+y. In both examples, we take the unit circle B(0, 1) ⊂ R

2 for the domain
Ω. The associated exact solutions are given in polar coordinates. They depend only
on the radius that is given by r = ‖x‖2 =

√

x2
1 + x2

2.
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6.1. Example with regular Lagrange multipliers in L2(Ω). In the first
example, h is given by h(y) = (y − ya, yb − y)>, hence we consider (PT) with lower
and upper state constraints, i.e.

ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω.

The Lagrange multipliers associated to such constraints are in general regular Borel
measures with singular part concentrated on the boundary of the active set, see
Bergouniuox and Kunisch [2]. In our examples, the boundaries of the active sets
of both inequalities do not intersect with Γ. The optimality system is given by

−∆ ȳ + ȳ = ū in Ω

∂nȳ = 0 on Γ

−∆ p + p = ȳ − yd + µ − ν in Ω

∂np = 0 on Γ

p(x) + κ(ū(x) − ud(x)) = 0 a.e. in Ω

∫

Ω

(ya − ȳ)dν =

∫

Ω

(ȳ − yb)dµ = 0

ν ≥ 0 , µ ≥ 0 , ya(x) ≤ ȳ(x) ≤ yb(x) a.e. in Ω.



















































(6.1)

In this example, we construct µ and ν such that dν = ν(x) dx and dµ = µ(x) dx with
nonnegative functions µ, ν ∈ L∞(Ω). Choosing ȳ(r) = −r6 + 3r4 − 3r2 + 1 for the
optimal state, the state equation in (6.1) implies

ū(r) = −∆ȳ(r) + ȳ(r) = −r6 + 39r4 − 51r2 + 13.

To fulfill the state constraints, we define

ya(r) =

{

ȳ(r) , ȳ(r) ≤ ca

ca , ȳ(r) > ca
and yb(r) =

{

ȳ(r) , ȳ(r) ≥ cb

cb , ȳ(r) < cb
,

with ca = 0.3 and cb = 0.7. Furthermore, with

ν(r) =

{

ca − ȳ(r) + 1 , ȳ(r) ≤ ca

0 , ȳ(r) > ca
and µ(r) =

{

ȳ(r) − cb + 1 , ȳ(r) ≥ cb

0 , ȳ(r) < cb
,

the complementary slackness condition in (6.1) are satisfied. For these Lagrange mul-
tipliers, we have µa, µb ∈ L∞(Ω) ⊂ L2(Ω). Therefore, the complementary slackness
conditions in (6.1) can be replaced by (ν , ȳ − yb) = (µ , ya − y) = 0. Moreover, we
define the adjoint state by

p(r) = r4 − 2r + 1.

Notice that both p and ȳ fulfill the homogeneous Neumann boundary conditions. To
satisfy the adjoint equation, yd must be defined by

yd(r) = ȳ(r) + ∆p(r) − p(r) + µ(r) − ν(r)

=







−2 r6 + 5 r4 + 10 r2 + 2 r − 7 − ca , ȳ(r) ≤ ca

−r6 + 2 r4 + 13 r2 + 2 r − 8 , ca < ȳ(r) < cb

−2 r6 + 5 r4 + 10 r2 + 2 r − 7 − cb , ȳ(r) ≥ cb.
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Finally, the optimality condition gives

ud(r) = ū(r) +
1

κ
p(r)

= −r6 +

(

39 +
1

κ

)

r4 − 51 r2 −
2

κ
r + 13 +

1

κ
.

The functions yd, ud, ya, and yb are shown in Figures 6.1–6.3.

Fig. 6.1. Desired state yd. Fig. 6.2. Control shift ud. Fig. 6.3. Bounds ya and yb.

6.2. Example with Lagrange multiplier in C∗(Ω̄). In this example, only the
upper state constraint is imposed on y, i.e.

y(x) ≤ yb(x) a.e. in Ω.

In this case, the optimality system reads as follows

−∆ ȳ + ȳ = ū in Ω

∂nȳ = 0 on Γ

−∆ p + p = ȳ − yd + µ in Ω

∂np = 0 on Γ

p(x) + κ(ū(x) − ud(x)) = 0 a.e. in Ω

∫

Ω

(ȳ−yb)dµ = 0

µ ≥ 0 , ȳ(x) ≤ yb(x) a.e. in Ω.



















































(6.2)

For the definition of a weak solution p of the adjoint equation above with measure
µ, we refer to Casas [4]. Notice that, by our construction, the singular part of µ is
concentrated in Ω. Therefore, a boundary part of µ does not appear. To construct
an example with µ ∈ C∗(Ω̄), we consider the fundamential solution Φ of Poisson’s
equation in R

2,

Φ(r) := −
1

2π
log(r)

for r > 0. It is known that in R
2

−∆Φ = δ0,

where δ0 denotes the Dirac measure on R
2 concentrated in r = 0. Notice that δ0 ∈

C∗(Ω̄) but δ0 /∈ H1(Ω)∗. With the fundamental solution, the optimal adjoint state is
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given by

p(r) =
1

4π
r2 + Φ(r) =

1

4π
r2 −

1

2π
log(r).

One can easily verify that p satisfies the homogeneous Neumann boundary conditions
on Γ = ∂B(0, 1). Moreover, we set

ȳ ≡ 4 and ū = −∆ ȳ + ȳ ≡ 4.

The upper bound in the state constraint is defined by

yb(r) = r + 4.

Therefore, the optimal state touches the bound only in the point r = 0, see also Figure
6.6. Hence, a possible Lagrange multiplier, satisfying the complementary slackness
conditions, is given by

µ = δ0,

and thus µ represents a regular Borel measure. From the adjoint equation, we get

yd(r) = ȳ(r) + ∆ p(r) − p(r) + µ = 4 +
1

π
−

1

4π
r2 +

1

2π
log(r).

Finally, the optimality condition implies

ud(r) = ū(r) +
1

κ
p(r) = 4 +

1

4πκ
r2 −

1

2πκ
log(r).

Figures 6.4 and 6.5 show the desired state yd and the control shift ud for this example.

Fig. 6.4. Desired state yd. Fig. 6.5. Control shift ud. Fig. 6.6. Optimal state ȳ

and bound yb.

6.3. Numerical results. Each algorithm was tested at both examples with nine
different values of λ each. For the numerical investigations, we used unstructured grids
that were refined at the boundaries of the active sets. In the first example, the mesh
was additionally refined at ∂B and, in the second test case, at r = 0. All computations
were performed using Matlab on a PC with a 2.8 GHz processor.
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Example 1. In the first example, de-
scribed in Section 6.1, the Tikhonov
regularization parameter was fixed at
κ = 10−4. Figures 6.7–6.11 show the
numerical solution computed by the
active set algorithm on a grid with
N=29272 nodes and λ = 10−4. Here
and in the following, the superscript
“as” marks results that were computed
with Algorithm 2, whereas results of
the Algorithms 1 are denoted by the
superscript “ip”.

Fig. 6.7. Control uas
h

Fig. 6.8. Lagrange multiplier νas
h

Fig. 6.9. Lagrange multiplier µas
h

Fig. 6.10. State yas
h

Fig. 6.11. Adjoint state pas
h

The figures show that the numerical errors in uas
h , νas

h , and µas
h are quite large compared

with the errors in yas
h and pas

h . This is also visible in the Tables 6.1 and 6.2. A possible
explanation is that yh and ph are smooth as the discrete solutions of linear PDEs.

To express the accuracy of the algorithms for λ ↓ 0, the relative errors of u, y, p,
and the Lagrange multipliers are displayed in the Tables 6.1–6.4. For the control, the
relative error used here is defined by

eu :=
‖ū− ūh‖

‖ū‖
≈

√

(ū − ūh)>M(ū − ūh)

ū
>M ū

.
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Here, ū denotes the exact optimal control, ūh the discrete optimal control, and ū

and ūh, respectively, the vector of values at the nodes of τh, i.e. for instance ū =
(ū(x1), ..., ū(xN ))>. The errors ey, ep, eν , and eµ are defined analogously.

As an indicator for the performance of the algorithms, we used the parameter #es
that denotes the number of linear systems of equations that have to be solved dur-
ing the respective iterations. The coefficient matrices defined in (4.19) and (5.10),
respectively, possess the same size and have quite similar structure. Moreover, the
solution of the associated linear systems of equations represent the main effort of both
algorithms. Therefore, #es is a suitable value to compare the different algorithms.

Table 6.1

Example 1: Interior point algorithm with N=29272

λ #es eip
u eip

y eip
p eip

ν eip
µ

1e-2 9 7.0644e-01 1.0898e-01 2.2005e-01 1.4511e-01 2.9594e-01
1e-3 13 3.3134e-01 1.4279e-02 2.3352e-02 4.8361e-02 7.7850e-02
1e-4 18 4.5059e-02 1.5656e-03 2.3878e-04 4.1617e-02 5.2152e-02
1e-5 20 3.8185e-02 5.1407e-04 4.5432e-05 9.1956e-02 1.5128e-01
1e-6 20 3.8571e-02 4.4392e-04 4.0144e-05 1.0915e-01 1.8786e-01
1e-7 20 3.8609e-02 4.3790e-04 4.0231e-05 1.1103e-01 1.9190e-01
1e-8 20 3.8613e-02 4.3731e-04 4.0247e-05 1.1122e-01 1.9230e-01
1e-9 20 3.8613e-02 4.3725e-04 4.0248e-05 1.1124e-01 1.9234e-01
0.0 20 3.8613e-02 4.3724e-04 4.0249e-05 1.1124e-01 1.9235e-01

Table 6.2

Example 1: Active set algorithm with N=29272

λ #es eas
u eas

y eas
p eas

ν eas
µ

1e-2 4 7.1296e-01 1.0893e-01 2.2004e-02 1.4513e-01 2.9596e-01
1e-3 7 3.3598e-01 1.4291e-02 2.3351e-03 4.8289e-02 7.7192e-02
1e-4 11 4.5674e-02 1.5158e-03 2.3883e-04 4.7154e-02 5.8081e-02
1e-5 23 4.6090e-02 4.7228e-04 4.9732e-05 3.1060e-01 4.2250e-01
1e-6 33 4.8178e-02 4.0856e-04 4.9575e-05 4.9601e-01 6.3486e-01
1e-7 33 4.8302e-02 4.0350e-04 5.0274e-05 5.2879e-01 6.6125e-01
1e-8 33 4.8314e-02 4.0301e-04 5.0353e-05 5.3240e-01 6.6408e-01
1e-9 33 4.8316e-02 4.0296e-04 5.0361e-05 5.3277e-01 6.6436e-01
0.0 33 4.8316e-02 4.0296e-04 5.0361e-05 5.3281e-01 6.6439e-01

The Tables 6.1 and 6.2 show that both algorithms achieve a similar accuracy even
though the interior point method has slighty smaller errors in avarage. In both meth-
ods, the errors of all quantities are significantly reduced from λ = 10−2 to λ = 10−4,
but stagnate or are even increased for smaller values of λ. Especially eas

ν and eas
µ

increase up to errors of 53% and 66%, respectively. However, considering the results
for λ = 10−4, both algorithms provide errors lower than 6% also for ν and µ. In this
sense, a choice of λ = 10−4 seems to be optimal for both algorithms, if a sufficiently
accurate approximation of all quantities including the Lagrange multipliers is desired.
A further decrease of λ only improves ey and ep significantly, but worsens the errors
of the discrete Lagrange mutlipliers.
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We observe that the iteration numbers and thus the number #es of solved linear
systems of equations increase with a reduction of λ. However, similarly to the devel-
opment of the errors, #es remains static for λ ≤ 10−5 in case of the interior point
method and for λ ≤ 10−6 in case of the active set algorithm. The range between the
minimal and maximal number of solved linear systems varies between 9 and 20 for
Algorithm 1 and between 4 and 33 for Algorithm 2. Thus the interior point method
seems to be less sensitive with respect to the regularization parameter λ than the
active set algorithm. On the other hand, for the optimal value λ = 10−4, the active
set algorithm is slightly more efficient since #es amounts 11 in this case, whereas 18
linear systems of equations have to be solved in the interior point interation.

Examle 2. The Lagrange multiplier in the second example is the Dirac measure.
For the computations, we fixed κ = 1.0 and used a mesh with 21993 nodes that was
refined at r = 0 to deal with the singularity of p and µ at this point. Figures 6.12–6.15
show the numerical solution for λ = 10−4.

Fig. 6.12. Control u
ip

h
Fig. 6.13. State y

ip

h

Fig. 6.14. Adjoint state p
ip

h
Fig. 6.15. Lagrange multiplier µ

ip

h

We observe that the Lagrange multiplier approximates the Dirac measure well. As
in the first example, the two algorithms are compared by the relative errors and the
number #es of solved linear systems of equations. Since the exact Lagrange multiplier
does not belong to L2(Ω), Tables 6.3 and 6.4 only contain eu, ey, and ep.
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Table 6.3

Example 1: Interior point algorithm with N=21993

λ #es eip
u eip

y eip
p

1e-02 30 1.9825e-02 1.8589e-03 1.0539e-01
1e-03 28 8.9583e-03 1.4051e-03 7.5260e-02
1e-04 26 7.2597e-04 4.4813e-05 5.6160e-02
1e-05 24 1.6252e-03 3.3719e-05 5.6161e-02
1e-06 25 1.8601e-03 1.8320e-05 5.6162e-02
1e-07 25 1.8836e-03 1.6640e-05 5.6163e-02
1e-08 25 1.8859e-03 1.6471e-05 5.6163e-02
1e-09 25 1.8862e-03 1.6454e-05 5.6163e-02
0.0 25 1.8862e-03 1.6452e-05 5.6163e-02

Table 6.4

Example 2: Active set algorithm with N=21993

λ #es eas
u eas

y eas
p

1e-2 8 1.9826e-02 1.8593e-03 1.0539e-01
1e-3 12 8.9583e-03 1.4053e-03 7.5259e-02
1e-4 21 7.2613e-04 4.4649e-05 5.6158e-02
1e-5 17 1.6252e-03 3.3565e-05 5.6162e-02
1e-6 28 1.8600e-03 1.8167e-05 5.6162e-02
1e-7 75 1.8834e-03 1.6487e-05 5.6162e-02
1e-8 83 1.8858e-03 1.6318e-05 5.6162e-02
1e-9 75 1.8861e-03 1.6301e-05 5.6162e-02
0.0 78 1.8861e-03 1.6300e-05 5.6162e-02

As a solution of a PDE, p is smooth. Nevertheless, the error ep is significantly larger
than eu and ey in both algorithms. A possible explanation for this fact could be that
the exact solutions ȳ = ū ≡ 4 are identically constant. Hence, the state equation is
exactly satisfied by ȳ, ū. also in the finite dimensional setting.

In this example, the two algorithms behave similarly to the first test case. The
difference in the accuracy of both algorithms is marginal, since the relative errors are
nearly identical. As above, we observe that the errors stagnate or even increase if
λ ≤ 10−5 in case of uh and ph and λ ≤ 10−7 in case of yh. Concerning the control
uh, the best approximation is achieved for λ = 10−4 in both algorithms.

The performance of the algorithms is similar to the first example. Again the active
set algorithm is more sensitive with respect to λ than the interior point method. For
λ ↓ 0, #es increase significantly in the active set algorithm, while the effort of the
interior point algorithm remains nearly constant. In contrast to this, the active set
algorithm requires less iterations than the interior point method for larger values of
λ. This is also true for λ = 10−4, where the best approximation of uh is achieved
with both methods.

Comparing the accuracy of the two methods, the difference between both methods is
negligible. However, they slightly differ in the peformance: the interior point method
is less sensitive to λ, whereas the number of iterations of the active set algorithm
increases as λ ↓ 0. The active set algorithm is less expensive than the interior point
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algorithm for larger values of λ, i.e. λ ≥ 10−4 in the first and λ ≥ 10−5 in the
second example. Larger values of λ lead to a better approximation of the Lagrange
multipliers in the first example and to the control in the second example. This shows
the benefit of the regularization of pointwise state constraints.

Acknowledgement. The authors are grateful to Prof. B. Hofmann (TU Chemnitz)
for pointing out the idea of proving Lemma 3.1.
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