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Abstract We define a class of parabolic problems with control and state con-
straints and identify a problem within this class which possesses a lo-
cally unique critical point satisfying the second order sufficient optimal-
ity conditions. The second derivative of the Lagrangian is not globally
coercive, since active equality and strongly active inequality constraints
are considered. This is both shown analytically as well as verified nu-
merically for a finite difference discretization.
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1. Introduction

The theory of second-order sufficient optimality conditions (SSC) for
the optimal control of semilinear elliptic and parabolic equations is a
field of active research. Conditions of this type play an important role
in the associated numerical analysis. Their verification is a basic and
important issue. Although a numerical confirmation of SSC cannot yet
give a definite answer whether they really hold in the infinite-dimensional
problem, it provides some evidence about their validity. We refer to
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recent papers by Mittelmann [7; 8], who confirmed that second order
sufficient conditions can be checked effectively by numerical techniques.
Here, we consider the numerical verification of second order sufficient
optimality conditions for the following class of nonlinear optimal control
problems of parabolic equations with constraints on the control and the
state.

(P) Minimize

T(w) = 3 f Jo ol ) (e, t) — yale, 1)) dedt + % [ () de
T 0 (1.1)
+ [lay (O(,1) + oule)ut) at

subject to
Yt — Yzx = €Q in Q
y(z,0) =0 in (0,0)
yz(0,2) =0 in (0,7) (1.2)
yz(1,t) + y2(1,t) = ex(t) + u(t) in (0,7)
and to
ug < u(t) < up, a.e. in (0,7), (1.3)

//Qy(x,t) dzdt < 0. (1.4)

In this setting, T, v, | > 0, u, < uy are fixed real numbers, @ = (0,1) x
(0,T). Functions «, y4, and eq are given in L*°(Q), and ay, a,, ex. are
fixed in L*°(0,7"). We shall denote the set of admissible controls by
Usda = {u € L*®(0,T)|us < u < up, ae. in(0,7)}. Problem (P)
is nonconvex, since the state equation is semilinear. Its nonlinearity
y? is not of monotone type, hence standard results on existence and
uniqueness of solutions to (1.2) do not apply. However, in our test
example we shall construct a pair (g, @) solving (1.2). The linearization
of (1.2) at y is uniquely solvable for all u € U,q with continuity of the
solution mapping u — y(u) from LP(0,T) to W(0,T) N C(Q), p > 2,
where

W(0,T) = {y € L*(0,T; H'(0,1)) | y» € L*(0,T; H' (0,1)")},

see Raymond and Zidani [11]. Thus the implicit function theorem guar-
antees existence and uniqueness of the solution y = y(u) of (1.2) in

W(0,T) N C(Q) for all u in a sufficiently small LP-neighborhood of @.

We shall consider a particular example of (P), where SSC are fulfilled,
although the second order derivative £ of the Lagrange function is not
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positive definite on the whole space. This is possible, since we consider
strongly active control constraints. Therefore, the construction of this
example is more involved than the analysis of a similar one presented
by Arada, Raymond and Troltzsch in [1], where £ was coercive on the
whole space. As a natural consequence, the numerical verification is
more difficult. In fact, the example from [1] was verified numerically in
[7] for coarser and in [8] for finer discretizations establishing the defi-
niteness of a projected Hessian matrix while even the full matrix has
this property. This gave rise to our search for the example presented
below. The analysis of SSC for semilinear elliptic and parabolic control
problems with pure control constraints is already quite well elaborated.
We refer to the referenes in [5], [10]. The more difficult case of point-
wise state-constraints is investigated, by Casas, Troltzsch, and Unger
[5], or Raymond and Tréltzsch [10], and in further papers cited therein.
However, the discussion of SSC for state constraints is still rather incom-
plete. Problems with finitely many inequality and equality constraints
of functional type are discussed quite completely in a recent paper by
Casas and Troltzsch [4].

2. First and second-order optimality condition
2.1. First order necessary conditions

Let the control u be locally optimal for (P) with associated state y,
le.

J(y,u) = J(y,1) (2.1)

holds for all (y, u) satisfying the constraints (1.2-1.4), where u belongs to
a sufficiently small L*>°-neighborhood of u. Suppose further that (y,u)

is regular. Then there exist Lagrange multipliers p € W (0,T) N C(Q)
(the adjoint state) and A > 0 such that the adjoint equation

_2515_153535:a(g_yd)—l_X in Q

p(z,T)=0 in (0,1) (2.2)
P(0,t) =0 in (0,7) )
(L, t) +2y(1,t) p(l,t) = ay(t) in (0,7),

the variational inequality

wat) + p(l, ) + au(t)) (u(t) — @) dt >0 Yu € Upg,  (2.3)

O
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and the complementary slackness condition

X//Qy(x,t) dzdt =0 (2.4)

are fulfilled, see [3] or [11]. We mention that (2.3) is equivalent to the
well-known projection property

(1) = Wy g (- (000, 1) + au (D)}, (25)

where TTj,,, 4,1 : R = [uq,up] denotes projection onto [u4,up]. Moreover,
we recall that these conditions can be derived by variational principles
applied to the Lagrange function L,

L(y,u,p,N) = J(y,u) — [ oy — Yoz — €Q) dxdt + [ [ Ay(, t) dudt
T
- Of (yz(l,2) +12(1, 1) — u(t) — ex(t))p(l, 1) dt.

Defining £ in this way, we tacitly assume that the homogeneous initial
and boundary conditions of y are formally included in the state space.
The conditions (2.2-2.3) follow from £, (7, @, p, A\)y = 0 for all admissible
increments y and L, (7, @, p, \)(u—) > 0 Vu € Uyq. Let 7 > 0 be given.
We define

AT (1) ={t € (0,7) |va(t) + p(l,t) + au(t) < -7}
A7 (1) = {t € (0,T) |vu(?) +p(,t) + au(t) 2 7}.

It holds % = uy on A" and @ o on A7. These sets indicate strongly
active control constraints.

2.2. Second order sufficient optimality
conditions

Let (7,@,p,\) be given such that the system of first order necessary
conditions is satisfied, i.e. the relations (1.2-1.4), (2.2-2.4) and A > 0
are fulfilled. Now we state second order conditions, which imply local
optimality of 4. For this purpose, we need the second order derivative
of £ with respect to (y,u),

L" (g, u,p, N[y, u] //ay d:vdt—l—u/u dt+2/ (1,)y2(1,t) d

(2.6)
Let us assume as in the example below that the state-constraint (1.4)
is active at y and A = 1. Then we require the following second-order
sufficient optimality condition:
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(SSC) There exist positive § and 7 such that
T
£, Ny al? 2 5 [ ot 27)
0

holds for all y € W(0,T), u € L?(0,T) such that

Ut (_ yaca)c =0

z,0) =0
02(0,0) =0 29

ya(l,t) +25(1, t)y(l, 1) = u(?)
and

u(t) =0 on AT(T)UA (1) (2.9)
u(t) >0 ifu(t) =ug, but t ¢ A=(1) (2.10)
u(t) <0 ifa(t) =up but t ¢ AT (1) (2.11)
//Qy(m,t) dxdt = 0. (2.12)

It is known that (SSC) implies local optimality of % in a neighborhood
of L*(0,T"), see [4]. In our example, we shall verify a slightly stronger
condition. We require (2.7) for all (y,u), which satisfy only (2.8-2.9).

3. The test example
We fix here the following quantities in (P):
T=1,1l=m us =0, up, =1, v =0.004

ap ER, te€[0,1/4
(e ={ T teE1/4/,1]],

17 (1 - (2 — t)cosx), t€[0,1/2]

Ya(z,1) = { g,;(l — (2 —t—alz,t)(t — 1/2)?))cosz, t € (1/2,1],

~

o

o

[0, te0,1/2]
ay(t) = {g(t —1/2)*(1 =), t € (1/2,1],

ay(t) =v+1—(1+2v)t,



0, te[0,1/2
eQ(t) = { (t2 +t — 3/4)cosz, t 2 E1/2/ 1]]

0, te|0,1/2
= {12y 1€ (1L

Theorem 1 The quantities

4 = maz{0,2t — 1}
- t€10,1/2]
v= {(t—1/2 2005z, t € (1/2,1]
1_3:( t)cosz

A=1

satisfy the system of first order necessary conditions.

Proof: Insert the definitions above in the state equation and adjoint
equation. Then it is easy to check by elementary calculations that u, y
fulfil (1.2) and that p satisfies the adjoint equation (2.2). Moreover,
the state-inequality constraint (1.4) is fulfilled as an equality, since the
integral of cosz over [0, 7] vanishes. Clearly, 4 is an admissible control.
The variational inequality (2.3) is easy to verify by (2.5): We find

—1/v((m,t) + au(t)) =2t — 1 = {i 8: i 2 E2/12/21%

Therefore,

Mo, {=1/v(p(m, 1) +au(t))} = maz{0,2t — 1} = u(t).
a

Next we consider the second order sufficient condition (SSC) for the
example analytically. What conditions must be checked to verify them?
Thanks to our construction, @ is strongly active on [0,1/2) and @ = 0
holds there. If b < 1/2 is given, then

vi(t) + p(m,t) + ay(t) = p(m,t) + ay(t) = —v(2t — 1) > v(2b — 1)

holds for ¢ € [0,b]. Therefore, t € A~ (7) for 7 = |v(2b — 1)|. To verify
the second order sufficient conditions, it suffices to confirm the coercivity
condition (2.7) for all pairs (y, u) coupled through the linearized equation
(2.8) and satisfying u = 0 on [0,b] (0 < b < 1/2 being arbitrary but
fixed). Assume that

ag, 0<t<b
O‘(x’t):{ U b<t<l. (3.1)
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Theorem 2 Let o have the form (3.1), where b € [0,1/2). Then the

second order sufficient conditions (SSC) are satisfied by (y,u,p, ) for
arbitrary ap € R.

Proof: Let u vanish on [0, b] and let y solve (2.8). Then y(z,t) = 0 on
[0,0]. For L" we get

L"(G, 1, p, N[y, u? =

Oy

b w1 1
Jao-0dzdt + [ [y*dzdt + v [uidt
0 0b 0

2

p(m,t)y?(m,t) dt

O

(3.2)

Y

v [u?dt — 2fl(—(1 —1))y?(m, t) dt
0

u2dt.

v

14

Oy m O

Hence the coercivity condition (2.7) is satisfied. O

Notice that oy was not assumed to be positive. If ag > 0, then £ is
obviously coercive on the whole space W (0,1) x L?(0,1), and (SSC) is
satisfied in a very strong sense. However, we might find negative values
for ag such that £” is partially indefinite.

Theorem 3 If ag < 0 is sufficiently small, then a pair (y,u) ezists,
such that u > 0, y solves the linearized equation (2.8), and

L" (g, 4,5, N[y, u]*> < 0. (.3)

Proof: We take an arbitrary but fixed b < 1/2 and put

1 on [0,b
ult) = {O on Eb, 1]]

w b
Then [ [y? dzdt is positive. Hence
00

T b

ao//y2dwdt—> —00

00

as ag — —oo. Therefore, the expression (3.2) becomes negative for

sufficiently small g, if 42 is substituted there for 0 in the first integral.
O



For the numerical verification we need a rough estimate on how small
o should be chosen. To get a negative value of L" (¥, 4, D, N[y, u]?, we
must have

T b T 1 1 L
ao//y2 da:dt—i—//y? dmdt—l—/2(1 — t)y?(m, 1) dt+V/u2dt <0,
00 0 b 0 0

w1 1 1
2dxdt + [2(1 — t)y?(m,t) dt + v [u’dt
bf{y E{ ( v (m?) { _hL+hL+1

Iy

b
[ y? dzdt
0

Oy

(3.4)
must hold. Here, b € [0,1/2) can be chosen arbitrarily. We take the
value b = 1/4. Thus we evaluate the integrals I; for

1 on[0,1/4
u(t) = {0 on El/él/, 1]]

and the associated state y. The state y solves the homogeneous heat
equation subject to homogeneous initial condition, homogeneous bound-
ary condition at £ = 0 and

1 on [0,1/4
yx(ﬂ,t) = {_2y(7r,t) on E1/4/71]]'

To avoid tedious estimates, which might be performed by means of a
Fourier series representation of y, we have evaluated the integrals I;,
7 =0,..,3 numerically. The result is

Io = .0103271, I, =.0401844, I, =.0708107, I3 =.001

L+1L+1;

= 10.845. .
T 0.845 (3.5)

4. Numerical Verification

In this section it is our goal to first demonstrate that problem (P) can
be solved to good accuracy using a finite difference method. Next, as was
done in [7; 8] we will, through an eigenvalue computation, verify that
the computed solution satisfies the SSC and is thus a local minimizer.
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Then, in order to check the properties of the specific example shown an-
alytically above, we will compute an additional eigenvalue. We start by
presenting the finite-dimensional analogue of (P) and then outline how
the algebraic problems are solved. We define the following discretization
of problem (P).
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minimize f(yp, up) =
d.’I)dt m n I/dt Ui
2 D @By — valz) t)?) + OB ( 2 Wﬁ)
=5 i=0
m

+% ( ; Yi(ay(ti)yn,i + au(ti)Ui))

subject to (Py)

Yjit1 = Yji _ 1(
dt 2

Fyj-Lit1 = 205001 + Y1) /de” + eq(ajit, 1)
i=0,...,m—1, j=1,...,n—1

Yi—14 — 2Yji T Yt

Y,0=0, 7=0,...,n
Yo —4y1i +3y0; =0, i=1,...,m
(Yn—2i — 41+ 3yn.)/ (2dz) + Y5 ;

:ui—l—eg(ti), 1=1,...,m
Ug KU < Up, 1=0,...,m
m n
dzdty Y Biviysi < 0.
i=0 j=0

Here z; = jdz, dz = w/n, t; = idt, dt = T/m,y = B, = 3,8; = 1
otherwise; analogously for 7.

The discrete control problem (Pj) is essentially a generic nonlinear
optimization problem of the form

min F*(z) subject to G"(z) =0, H"(z) <0 (4.1)

where z comprises the discretized control and state variables. G(z) sym-
bolizes the state equation and boundary conditions while H"(z) stands
for both pointwise control bounds and the integral state constraint, the
only constraints of inequality type prescribed above. We state the well-
known SSC for (4.1), assuming z € R, G* : R"» — RM»r M), < N,
Let z* be an admissible point satisfying the first-order necessary opti-
mality conditions with associated Lagrange multipliers p* and A*. Let
further
N(z*) = (VG"(2"), VHa(2"))

be a column-regular Ny x (M}, + Pp,) matrix where M} + Py, < Nj, and
VH,(z*) denotes the gradients of the P, active inequality constraints
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with positive Lagrange multipliers. For (4.2) we have N}, = (m+1)(n+2)
and My = (m + 1)(n + 1) resulting in m + 1 degrees of freedom which
are further reduced by one through the active integral nonnegativity
constraint on y and by any active bounds on u. Let finally N = QR be
a QR decomposition and @ = (Q1,Q2) a splitting into the first My + P,
and the remaining columns. The point z* is a strict local minimizer if a
v > 0 exists such that, see, for example, [13]

Amin(L2(2%)) = v > 0. (4.2)
Here Lo(z*) is the projected Hessian of the Lagrangian

Ly(z") = Q3 (VF"(2*) — u* V2G*(2")) Q.

No Hessian of H" appears on the right due to its linearity. To clarify
the relationship between the way we proceed here and which is standard
in optimization and the analysis of the previous section we add the
following explanations. In order to verify the SSC in the discrete case we
have to determine the smallest eigenvalue of the Hessian on the tangent
space of the active constraints. We do this by explicitly computing the
orthogonal projection matrix ()2 onto the tangent space and forming
Ly(z*). Due to the verified regularity of the computed solution or the
nondegeneracy of the active constraints the tangent space is equal to
the nullspace of the active constraint gradients and thus the smallest
eigenvalue of Lo(z*) corresponds to the minimal value of its quadratic
form on the space of all (y,u) satisfying the linearized equation as well
as having vanishing v components corresponding to indices 4 for which
the solution is at the bound which coincidentally also is zero. These
components do include the ones corresponding to the interval [0,1/4].
Next, we will detail how condition (4.2) will be checked.

As was already done in [7; 8] the control problems are written in the
form of AMPL [6] scripts. This way, a number of nonlinear optimization
codes can be utilized for their solution. It had been an observation
in our previous work that from the then available codes only LOQO
[14] was able to solve all the problems effectively and for sufficiently
fine discretizations. This has changed. As recent comparisons [9] have
shown, the trust region interior point method KNITRO [2] which became
available only recently, may outperform LOQO on such problems. It was
used for the computations reported below. The following procedure is
independent of the solver used.

After computing a solution an AMPL stub (or *.nl) file is written as
well as a file with the computed Lagrange multipliers. This allows to
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Vde 1/dt |lu—ullc flu—ullz fly—9llc lly —9ll2
127 41  3.73%e2 4.590e-5  6.096e-3 2.730e-7
192 61  1.331e-2 1.152e-5  1.770e-3 1.850e-7

Table 1. Solution errors for problem 4.2

check the SSC (4.2) with the help of a Fortran, alternatively, a C or
Matlab, program. This program reads the files and verifies first the nec-
essary first-order optimality conditions, the column regularity of N(z*)
and the strict complementarity. For this, it utilizes routines provided
by AMPL which permit evaluation of the objective and constraint gra-
dients. Next, the the QR decomposition of N(z*) is computed by one
of the methods exploiting sparsity. We have utilized the algorithm de-
scribed in [12]. AMPL also provides a routine to multiply the Hessian
of the Lagrangian times a vector. This is called with the columns of
Q2 and thus Lo(z*) can be formed. Its eigenvalues are computed with
LAPACK routine DSYEV and the smallest eigenvalue v = 7, is deter-
mined. The use of this eigenvalue routine is possible since the order of
the matrices corresponding to the "free” control variables is moderate.
In case of distributed control problems when this number may be on the
order of the state variables, a sparse solver, preferably just for finding
the minimal eigenvalue, will have to be used.

With the procedure described above the SSC for problem (Pj) can
be checked for constant or variable op. In the nonconstant case and
for ap below the bound given above an additional eigenvalue problem
is solved. Let @ in the previous section be split into Q@ = (Q1,Q2)
where now (@)1 corresponds to the equality constraints only and thus
has M}, columns. Then, in analogy to (4.2) we define Ly(2z*) and call
its smallest (leftmost on the real line) eigenvalue d,. We will have to
obtain a negative §, for sufficiently negative ap. As described above,
this (2 projects onto the nullspace of the equality constraints only and
thus Ly(z*) is the projection of the Hessian onto the larger subspace of
pairs (y,u) satisfying the linearized equation only and for which u may
be nonzero everywhere on [0, T'.

Problem (4.2) was solved as described above for two discretizations
which were chosen to be about equidistant in both coordinates. In Ta-
ble 1 are the errors of both state and control listed in two different norms.
In Table 2 we list the eigenvalues for both discretizations and various
values of ay. As can be seen the sign change for §; occurs in both cases
between —10.5 and —11 while the estimate (3.5) above yielded a bound
of —10.845. The computed state is shown in the same figure.



