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Abstract

We discuss numerical reduction methods for an optimal control prob-
lem of semi-infinite type with finitely many control parameters but in-
finitely many constraints. We invoke known a-priori error estimates to
reduce the number of constraints. In a first strategy, we apply uniformly
refined meshes, whereas in a second more heuristic strategy we use adap-
tive mesh-refinement and provide an a-posteriori error estimate for the
control based on perturbation arguments.

Keywords: Optimal control, elliptic partial differential equation, FEM,
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1 Introduction

In this paper, we discuss numerical reduction methods for the optimal con-
trol problem (2.1a)–(2.1d) that is introduced in the next section. This is a
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control problem of semi-infinite type, where we have finitely many control pa-
rameters but infinitely many constraints. Many papers dealing with aspects of
state-constrained optimal control problems are concerned with control functions
rather than finitely many control parameters, even though the latter setting is
very important for many practical situations. Consider for example the cooling
of steel profiles, where the intensity of finitely many spray nozzles can be con-
trolled or the case of local hyperthermia in cancer treatment, where the intensity
of finitely many microwave antennas is to be controlled. More applications are
summarized for instance in the introductory part of [4].

The presence of pointwise state constraints introduces mathematically chal-
lenging questions with regard to e.g. optimality conditions, see [4], or finite
element error analysis, see [15, 16]. In past years, error estimates for optimal
control problems attracted a lot of interest. Many papers on a-priori error es-
timates were published. For an extensive list of references, we refer the reader
to the survey paper [11]. Although a-priori error estimates are interesting in
their own, the question arises how they can be used in numerical applications.
This is one of our main objectives in this paper. To our best knowledge, a-priori
error estimates where not yet used to improve numerical methods for solving
distributed optimal control problems.

Interestingly, the finite dimensional structure of the control space often leads
to the typical situation of having only finitely many isolated active points, where
the state touches the bound. In this paper, we use this typical structure and
known a-priori error estimates for control problems of semi-infinite type to dras-
tically reduce the number of constraints. Whenever very high precision of the
numerical solution of the optimal control problem is needed, fine discretizations
are necessary, which in turn leads to a large scale mathematical programming
problem. Without special reduction techniques, the storage capacity of the
computer will easily be exceeded. In particular, this might be important for 3D
problems.

We propose two different methods. The main idea of the first one is to use the
a-priori error estimates from our papers [15], [16] to exclude those node points, in
which the state constraints cannot be active for the optimal solution. We solve
a sequence of finite dimensional optimization problems on (uniformly) finer and
finer grids. Nevertheless, although the number of grid points increases rapidly,
the size of the optimization problems remains moderate, because the constraints
have to be considered only in a small number of nodes. This technique is applied
on regular grids that are refined by bisection in each refinement step.

In the second method, we apply an adaptive mesh refinement strategy.
Again, we solve a sequence of finite dimensional optimization problems, but
this time an adaptive grid generator is used. This idea is combined with our
first technique to consider the constraints only in nodes that can be active. For
this ad-hoc method, we do not have a convergence proof. Therefore, we also
discuss an a-posteriori estimate of optimality of the computed solution. This
method partially relies on well-known perturbation arguments due to [5], [14]
that were later used as a theoretical tool for proving a-priori error estimates in
PDE constrained optimization, cf. for instance [1]. Numerically, this technique
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was applied in [25], [24]. To our best knowledge this idea is also new in the case
of semi-infinite problems. Moreover, we apply a theorem by Miranda on the
existence of solutions to nonlinear equations, [18], [23]. Here, we extend this
idea to our case of semi-infinite optimization.

By the proposed methods, the discretized problem can be kept comparably
small, since our estimates allow to neglect the state constraints in many points
where the bound will never be active. In addition to the finite number of
control parameters, which does not increase with the discretization, the resulting
optimization problem only contains a rather small number of constraints.

In principle, such ideas are not new in the numerical treatment of semi-
infinite optimization problems, we refer to the survey in [9] or [21]. However,
in former contributions to the numerical analysis of semi-infinite optimization,
the constraints were given by known analytical expressions. In contrast to this,
our constraints are defined implicitly via solutions of an elliptic PDE. Therefore,
they must be found numerically and the application of the finite element method
leads to new questions of error analysis as in [15],[16]. The use of error estimates
as justification of reduction techniques is a special feature of our paper.

2 The semi-infinite elliptic optimal control prob-
lem

Let Ω ⊂ R2 be a convex bounded polygonal domain with boundary Γ. In Ω, we
consider the following optimal control problem of semi-infinite type

(OCP)



min
(y,u)∈H1

0 (Ω)×Rm
J(y, u) =

1

2
‖y − yd‖2 +

ν

2
|u− ud|2

subject to :

−
2∑

i,j=1

∂i (aij(x)∂jy(x)) + c0y(x) =

m∑
i=1

uiei(x) in Ω

y(x) = 0 on Γ

ua ≤ ui ≤ ub, i = 1, . . . ,m,

y(x) ≤ b ∀x ∈ Ω̄.

(2.1a)

(2.1b)

(2.1c)

(2.1d)

For this problem, the following data are given: ν > 0, b > 0, ua < ub are
real constants. We fix 1 ≤ m ∈ N and functions yd ∈ L2(Ω), ei ∈ C0,β(Ω),
i = 1 . . . ,m, with 0 < β < 1. In addition, the coefficients aij are assumed to
belong to C1+α(Ω), 0 < α < 1, i, j = 1, 2, and to fulfill the uniform ellipticity
condition

2∑
i,j=1

aij(x)ξiξj ≥ σ0 |ξ|2, ∀ξ ∈ R2, ∀x ∈ Ω,

for some constant σ0 > 0. It is well known that, for every function of L2(Ω)
on the right-hand side of (2.1b), there exists a unique weak solution y ∈
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H1
0 (Ω) ∩ H2(Ω). Moreover, thanks to the Hölder regularity assumptions on

ei, standard regularity arguments for elliptic equations imply that y ∈ C2,β(Ω)
[7, Theorem 6.13]. This function y is the state associated with the control vector
u = [u1, . . . , um]> ∈ Rm. The correspondence between u and y is indicated by
an associated subscript; i.e. we denote by yu the solution of the equation (2.1b)
with right-hand side

∑m
i=1 uiei.

Thanks to the linearity of the elliptic equation, we are able to simplify the
control problem by using the superposition principle. Indeed, for all u ∈ Rm it
holds that

yu(x) =

m∑
i=1

uiyi(x),

where the functions yi ∈ H1
0 (Ω)∩H2(Ω)∩C2,β(Ω) are the solutions of the state

equation (2.1b) with corresponding right-hand side ei. In view of this, problem
(OCP) can be rewritten as a semi-infinite programming problem

(P)


min
u∈Uad

f(u) =
1

2
‖
m∑
i=1

uiyi − yd‖2 +
ν

2
|u− ud|2

subject to:

m∑
i=1

uiyi(x) ≤ b, ∀x ∈ Ω̄,

(2.2a)

(2.2b)

where Uad := {u ∈ Rm : ua ≤ ui ≤ ub, i = 1, . . . ,m} denotes the set of
admissible controls.

Here and throughout the paper, we denote by ‖ · ‖ and (·, ·) the standard
norm and the scalar product in L2(Ω), respectively. The Euclidean norm in Rm
is denoted by | · |.

Assumption 1. (Slater condition) There exist a control vector ũ ∈ Uad and a
constant ε > 0 such that

yũ(x) ≤ b− ε ∀x ∈ Ω̄. (2.3)

Remark 1. By the Slater condition, the feasible set is not empty. Therefore,
existence and uniqueness of an optimal control ū ∈ Uad follow from the classical
Weierstraß theorem. Moreover, since b is positive and y(x) = 0 holds on Γ, for
all feasible u the active set of yu, i.e. the set of all x ∈ Ω̄ with yu(x) = b, is
contained in a compact subset K ⊂ Ω. Notice that yu is continuous, hence the
active set is closed.

To set up the optimality system for the optimal control ū, we introduce the
Lagrangian

L : Rm ×M(Ω̄)→ R : L(u, µ) := f(u) +

∫
Ω̄

( m∑
i=1

uiyi(·)− b
)
dµ(·), (2.4)

where M(Ω̄) is the space of all regular Borel measures defined on Ω̄. Note that
yi ∈ C(Ω̄), i = 1, . . . ,m, so that the integral in (2.4) is well defined.
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Theorem 1. Let ū be the solution for (P ). If the Slater condition (2.3) is
satisfied, then there exists a non-negative Lagrange multiplier µ̄ ∈ M(Ω̄) such
that the conditions

∇uL(ū, µ̄)>(u− ū) ≥ 0, ∀u ∈ Uad,∫
Ω̄

( m∑
i=1

ūiyi(·)− b
)
dµ̄ = 0

(2.5a)

(2.5b)

are satisfied.

This is a standard result of nonlinear optimization in Banach spaces, cf. [13].
In (2.5a), we have

∇uL(ū, µ̄) = ∇f(ū) +

∫
Ω̄

(y1(·), . . . , ym(·))>dµ̄(·).

By convexity of f , the conditions (2.5), complemented by ū ∈ Uad and ȳ ≤ b,
are also sufficient for optimality.

For future reference, note that the variational inequality (2.5a) can be re-
placed in the usual way by the equation

∇uL(ū, µ̄) + η̄b − η̄a = 0 (2.6)

if the componentwise nonnegative Lagrange multipliers η̄a, η̄b ∈ Rm are intro-
duced, that fulfill

η̄Ta (ua − ū) = η̄Tb (ū− ub) = 0.

In view of (2.6), the Lagrange multipliers associated with the control constraints
are given by

(η̄b)i = [
∂L
∂ui

(ū, µ̄)]−, (η̄a)i = [
∂L
∂ui

(ū, µ̄)]+ (2.7)

3 Finite element approximation of (P)

Let Th be a uniform and shape regular triangulation of Ω with mesh size h > 0,
such that

Ω̄ = ∪T∈Th T̄ .

For future reference, we explicitely point out that we consider the triangles T
to be open sets. On Th, we consider the space of standard piecewise linear and
continuous finite element functions,

Yh = {ϕh ∈ C(Ω̄) : ϕh|T ∈ P1(T )∀T ∈ Th, ϕh = 0 on Γ} ⊂ H1
0 (Ω) ∩ C(Ω̄),

where P1(T ) denotes the set of polynomials of degree at most one defined on the
triangle T . We consider the finite element scheme for the unknown functions
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yhi ∈ Yh, i = 1, . . . ,m,

a[yhi , ϕ
h] :=

∫
Ω

2∑
k,l=1

(
akl(x)∂ly

h
i (x)∂kϕ

h(x)
)

+c0y
h
i (x)ϕh(x) dx

=

∫
Ω

ei(x)ϕh(x) dx, ∀ϕh ∈ Yh.

(3.1)

Analogously to yu, we denote by yhu =
∑m
i=1 uiy

h
i the approximated state asso-

ciated with u. Now we consider the following approximated control problem of
(P)

(Ph)


min
u∈Uad

fh(u) =
1

2
‖
m∑
i=1

uiy
h
i − yd‖2 +

ν

2
|u− ud|2

m∑
i=1

uiy
h
i (x) ≤ b ∀x ∈ Ω̄.

(3.2a)

(3.2b)

Thanks to the high regularity of yu in the compact set K, a maximum norm
error estimate for ‖yu − yhu‖C(K) of [20] can be applied:

Theorem 2. (Rannacher & Vexler 2005) Let K be a compact subset of Ω. Then
there exists a constant cK > 0 such that

‖yu − yhu‖C(K) ≤ cK h
2| log(h)|, ∀u ∈ Uad, ∀h > 0. (3.3)

If h > 0 is sufficiently small, the Slater condition (2.3) together with (3.3)
implies that the feasible set of (Ph) is not empty. Therefore, (Ph) has a unique
optimal control vector denoted by ūh.

Under certain assumptions sketched below, the order of the approximation
error from Theorem 2 transfers to the optimal controls. Roughly speaking, these
assumptions are:

• The optimal state ȳ := yū has exactly n pairwise different active points
x̄1, x̄2, . . . , x̄n ∈ Ω, where 1 ≤ n ≤ m. Moreover, m − n components of ū
are strongly active with ūi = ua or ūi = ub, while the other n components
of ū are inactive. W.l.o.g. we assume that the components un+1, . . . , um
are active.

• In x̄1, x̄2, . . . , x̄n, the optimal state ȳ is strongly active.

• The function ȳ is strictly concave in neighborhoods around the active
points x̄j .

• The matrix (yi(x̄j))i,j , i, j = 1, . . . , n, is non-singular.

These assumptions are stated precisely as Assumptions 2 – 4 in the next
section.

Under these assumptions, applying Theorem 3.23 in [16] to our semi-infinite
programming problem yields:
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Theorem 3. Let ū be the optimal solution of Problem (P), let ūh be optimal
for (Ph), and let Assumptions 2–4 to be specified later be satisfied. Then, there
exists h0 > 0 such that the following estimate is true for a constant cu > 0
independent of h:

|ū− ūh| ≤ cuh2| log h| ∀h ≤ h0. (3.4)

By Theorems 2 and 3 combined with the Lipschitz continuity of the control-
to-state operator, there is also a constant cy > 0 such that the optimal error
estimate

‖ȳ − ȳh‖C(Ω̄) ≤ ‖ȳ − yūh‖C(Ω̄) + ‖yūh − ȳh‖C(Ω̄) ≤ cy h
2| log(h)| (3.5)

holds true.
If these assumptions are not met, but the linearized Slater condition is still

satisfied, then the standard error estimate of half the optimal order,

|ū− ūh| ≤ c̃u h
√
| log(h)| (3.6)

can be derived that is not optimal under the assumptions formulated above. In
this case, the main idea of our paper can still be applied.

Note that the number and location of the active points x̄1, . . . , x̄n is not
known in advance. If the location of the active points would be a-priori known,
then we might fix them and consider the inequality constraints only in these
finitely many points. In this case, the Problem (P) would be essentially finite
dimensional cf. [17]. In that case, the order of convergence is the optimal one
expressed by (3.4) without any assumption on the number of active constraints.

4 An adaptive method based on the a-priori
error estimate

Let us now present our first reduction strategy based on the a-priori error esti-
mate (3.4). We fix some sufficiently small initial mesh size h0 > 0 and define a
sequence of decreasing mesh sizes

hk := h0

(
1

2

)k
, k = 1, 2, . . . . (4.1)

Our optimization method of iterative grid refinement is some type of nested
iteration. It starts by solving problem (Ph0). Next, we take ūh0 as initial
vector for the solution of (Ph1). Hereafter, (Ph2) is solved, starting with the
solution ūh1 of (Ph1).

We need these initialization steps to compute an approximation of the un-
known constant cy that appears in the estimate (3.5). Next, we apply this error
estimate for determining points of the current grid where the exact optimal state
ȳ cannot be active.
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Thanks to our regularity assumptions, there exists a constant cy′′ > 0 such
that it holds

‖∇2yu(x)‖R2×2 ≤ cy′′ ∀x ∈ K, ∀u ∈ Uad. (4.2)

Here, ∇2yu(x) denotes the Hessian matrix of yu at x.

Assumption 2. The optimal state ȳ is (strongly) active in exactly n points
x̄1, x̄2, . . . , x̄n, where 1 ≤ n ≤ m. In addition, there are m−n components ūi of
ū which are strongly active with ūi = ua or ūi = ub. Strong activity means here
that all Lagrange multipliers (ηb)i or (ηa)i associated with these active control
constraints are positive. The other components of u are inactive. W.l.o.g. let
u1, . . . , un be inactive.

Assumption 3. There is a constant σ > 0 such that

ξ>∇2ȳ(x̄j)ξ ≤ −σ|ξ|2 ∀ξ ∈ R2, ∀j = 1, . . . , n. (4.3)

Remark 2. The fact that the state constraint is strongly active in the points
x̄1, . . . , x̄n guarantees the existence of associated active points x̄h1 , . . . x̄

h
n of the

discretized problem in the neighborhood of the continuous active points, cf. [15,
16].

For the optimal error estimate, we finally require the following

Assumption 4. The matrix(
yi(x̄j)

)
, i, j = 1, . . . , n, (4.4)

is non-singular.

Theorem 4. (Inactivity Criterion) Assume that the a-priori estimate (3.5) and
Assumption 3 are met and define ȳhk := yhk

ūhk
. Let T ∈ Thk

be a triangle, where
in each of the corners xj, j = 1, 2, 3, the inequality

ȳhk(xj) < b− cy′′h2
k − cyh2

k| log(hk)| (4.5)

is fulfilled. Then ȳ(x) < b holds for all x ∈ T , i.e. the optimal state ȳ cannot
be active in T .

Proof. Let x̄ ∈ arg max{ȳ(x) : x ∈ T}. Assume first that x̄ is not a corner of
T . Then either x̄ ∈ int T or x̄ ∈ int [xj , xk], i.e. x̄ is located in the relative
interior of an edge [xj , xk] of T .

In either case, we connect x̄ by a straight line with xj , where xj is an
arbitrary corner of T in the first case and one end of [xj , xk] in the second.
Consider for sufficiently small ε > 0 the function g : (−ε, 1]→ T ,

g(t) = ȳ(x̄+ t(xj − x̄)).

Then g attains its maximum at t = 0, hence by g′(t) = ∇ȳ(x̄+t(xj−x̄))·(xj−x̄)
we observe

0 = g′(0) = ∇y(x̄) · (xj − x̄).
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By a second-order Taylor approximation of g, g(1) = g(0)+g′(0)+ 1
2g
′′(ϑ) holds

with some ϑ ∈ (0, 1), thus

ȳ(xj) = ȳ(x̄) +∇ȳ(x̄) · (xj − x̄) + 1
2 (xj − x̄)>∇2ȳ(ξ)(xj − x̄)

= ȳ(x̄) + 1
2 (xj − x̄)>∇2ȳ(ξ)(xj − x̄)

holds with some vector ξ ∈ (xj , x̄). Re-arranging, we find

ȳ(x̄) = ȳ(xj)− 1
2 (xj − x̄)>∇2ȳ(ξ)(xj − x̄)

= ȳhk(xj)− 1
2 (xj − x̄)>∇2ȳ(ξ)(xj − x̄) + ȳ(xj)− ȳhk(xj).

Using estimate (4.2) for ∇2y and the error estimate (3.5), we obtain

ȳ(x̄) ≤ ȳhk(xj) +
1

2
cy′′ h

2
k + cy h

2
k| log(hk)|.

Clearly, this implies ȳ(x̄) < b, if inequality (4.5) is satisfied. Therefore, ȳ(x) < b
holds also for all x ∈ T .

If the maximum of ȳ is attained in a corner xj , then we can directly compare
ȳ(xj) with ȳhk(xj) and obtain instantly the desired result.

In the numerical implementation of the inactivity criterion (4.5), we are
faced with two obstacles: In general, the constants cy′′ and cy are not known.
For cy′′ , the following observation helps: If h→ 0, then the term | log(h)| tends
to infinity and hence it holds cy| log(h)| ≥ cy′′ for all sufficiently small h. Then,
we observe that

ȳhk(xj) < b− 2cyh
2
k| log hk| ⇒ ȳhk(xj) < b− cy′′h2

k − cyh2
k| log hk|.

In view of this, we apply instead of (4.5) the inequality

ȳhk(xj) < b− 2 cy h
2
k| log(hk)| (4.6)

as criterion of inactivity. The constant cy will be estimated during the algorithm
as explained below.

We will now define the subset of Ω where the state constraints might still
be active. Due to the linear approximation of the state functions we can again
formulate conditions on the nodes, only.

For that reason, we introduce the set Nhk
of nodes of a mesh Thk

with mesh
size hk, i.e.

Nhk
= {x ∈ Ω : ∃T ∈ Thk

such that x is a vertex of T}, k = 1, 2, . . . ,
(4.7)

as well as the sets

T kI := {T ∈ Thk
: all nodes satisfy (4.6)}, (4.8)

Ik :=
⋃

T∈T k
I

T (4.9)

Ak+1 := Ω̄ \ Ik ∩Nhk+1
. (4.10)
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The set Ak+1 contains all nodes of the refined mesh where the constraints still
need to be prescribed in order to exclude only the region T kI . Note that the
above construction may lead to some inactive triangles included in the set Ak+1,
but the constraints need to be prescribed in triangles where not all nodes satisfy
(4.6). Due to the linear approximation of the state and the constant bound, this
is equivalent to prescribing the constraints in the respective nodes, only.

Motivated by the last theorem, we consider the reduced problem

(Pr
hk

)


min
u∈Uad

f(u) =
1

2
‖
m∑
i=1

uiy
hk
i − yd‖

2 +
ν

2
|u− ud|2

subject to:

m∑
i=1

uiy
hk
i (x) ≤ b ∀x ∈ Ak.

(4.11a)

(4.11b)

To apply the error estimate (4.6) that is needed to set up problem (Pr
h), we

have to estimate the constant cy in (3.5), which is not known. For this purpose,
we propose the following method:

We start our adaptive technique by computing the solutions for (Ph0),
(Ph1), (Ph2) Assume now that, for some k ≥ 2, the optimal states ȳhk−2 ,
ȳhk−1 , ȳhk are determined, i.e. (Pr

hk−2
), (Pr

hk−1
), (Pr

hk
) were solved.

By the triangle inequality, we split

‖ȳhk−2 − ȳhk‖∞ ≤ ‖ȳhk−2 − ȳ‖∞ + ‖ȳ − ȳhk‖∞
∼ cy

{
h2
k−2| log hk−2|+ h2

k| log hk|
}
.

Note that here and for the remainder of this paper we abbreviate ‖ · ‖C(Ω̄) by
‖ · ‖∞. Resolving for cy, we find the following empirical approximation of cy to
be used in the next iteration:

cy,k+1 :=
‖ȳhk−2 − ȳhk‖∞

h2
k−2| log hk−2|+ h2

k| log hk|
. (4.12)

Note that the constant cy is approximated using the information from two
different refinement levels rather than only the last. One might compare the
solutions of more than two subsequent optimization problems. In our examples,
this was not necessary. We point out that an inacceptable approximation of
the constant cy could be detected by checking whether yhk+1 admits unfeasible
values.

Summarizing, we implemented the following algorithm that depends on the
choice of the constants cy,k:

Algorithm 1

Initialization

1. Define initial grids with mesh sizes hk = (1/2)k h0, k = 0, 1, 2.
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2. Compute the functions yhk
i , k = 0, 1, 2, i = 1, . . . ,m, by solving equation

(3.1).

3. Solve the problems (Phk
), k = 0, 1, 2.

4. Fix a maximal number of iterations N ∈ N ∪ {∞}.

Iterative steps

5. For k = 3, 4, . . . , N :

(i) Compute cy,k according to formula (4.12)

(ii) Determine the sets T k−1
I and Ik−1 by (4.8) and (4.9)

(iii) Set up the regular grid Thk

(iv) Determine the set Ak by (4.10)

(v) Solve the reduced problem (Pr
hk

).

Remark 3. Note that the main tool of the algorithm above is the a-priori error
estimate (3.5). We just assume that the underlying assumptions are satisfied
so that the estimate holds true. In particular, we need that the number m of
active points in the state constraints is equal to k−mc, where mc is the number
of active control variables. If these assumptions are not met, then we can still
use our algorithm based on the standard (non-optimal) estimate ‖ȳ − ȳh‖∞ ≤
cy h

√
| log(h)| to define the sets Ak and apply similar ideas.

Theorem 5. (Convergence) Let the Assumptions 1 – 4 be satisfied and assume
that there is a positive constant α > 0 such that αcy ≤ cy,k ≤ cmax holds
in all steps of Algorithm 1. Let ūhk be the optimal control vectors of (Pr

hk
),

k = 1, 2, . . ..
If N = ∞, i.e. if the algorithm is not terminated after a finite number of

steps, then ūhk → ū, k →∞, where ū is the optimal control of (P). Moreover,
the vectors of active points (x̄k1 , . . . , x̄

k
n) of ȳhk converge to (x̄1, . . . , x̄n), the

vector of active points of ȳ.

Proof. In view of the known a-priori error estimate and thanks to the assump-
tion on cy,k, we have

|ūhk − ū| ≤ cy h2
k| log hk| ≤ α−1cy,k h

2
k| log hk| ≤ cmax h2

k| log hk|.

This implies the statement of the theorem, because hk → 0 as k → ∞ follows
from the definition of the hk. The convergence of the active points was shown
in [16], Lemma 3.19.

Let us confirm the efficiency of the method using uniform mesh refinement
by some computational examples. We start our numerical experiments with an
example with known analytic solution.
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h |ū− ūh| ‖ȳ − ȳh‖∞ cy,k ] nodes ] constraints

0.7071 2.24E-000 3.42E-062 - 9 9
0.3536 1.30E-000 8.88E-001 - 25 25
0.1768 2.40E-001 4.36E-001 - 81 81
0.0884 1.21E-001 1.45E-001 3.93 289 29
0.0442 3.32E-002 3.89E-002 3.48 1089 74
0.0221 8.48E-003 9.90E-003 6.06 4225 90
0.0110 2.13E-003 2.49E-003 5.61 16641 90
0.0055 5.33E-004 6.13E-004 4.78 66049 102
0.0028 1.33E-004 1.56E-004 3.99 263169 102

Table 1: Example 1, Algorithm 1

Example 1. Let the following data in (2.1) be given: Uad = R2, c = 0, ν = 1,
b = 1, ud = [0 0]>, yd = y1 + 2y2 + 100, where y1 = sin(2πx1) sin(2πx2) and

y2 =


− sin(2πx1)3 sin(2πx2)3 in [ 1

2 , 1]× [0, 1
2 ],

− 1
4 sin(2πx1)3 sin(2πx2)3 in [ 1

2 , 1]× [ 1
2 , 1],

0 otherwise.

Moreover, we define e1(x) = −∆y1(x) and e2(x) = −∆y2(x). The optimal
solution is then given by ū = [1 2]> and its optimal state is ȳ = y1 + 2y2.

Note that the graph of ȳ, respectively its numerical approximation is pre-
sented in Figure 3. Table 4 shows the efficiency of the reduction method for this
problem. For each h, we state the L∞-error for the state as well as the error
for the control that both tend to zero, the approximated constant cy, as well as
the number of nodes and the number of constraints prescribed on each level of
refinement.

Note that the number of constraints is considerably smaller than the number
of nodes. To illustrate this reduction graphically, Figure 1 depicts the potentially
active region on two different grids.

We repeat these experiments for a problem without explicitely known solu-
tion.

Example 2. We consider the following data in (2.1): Uad = R2, c = 0, ν = 1,
b = 0.01, ud = [2 2]>, yd ≡ 2000.

e1(x) = e−100|x−x̃1|2 + 1
5e
−200|x1−0.8|2

e2(x) = e−100|x−x̃2|2

with x̃1 = [0.25 0.25], x̃2 = [0.75 0.75] .

As a substitute for ū and ȳ we compute a reference solution ũh with associ-
ated state ỹh on a fine grid for h ≈ 6.9e − 04. Table 4 summarizes the results
analogously to the first example. Figure 2 shows the sets Ak of node points for
two different values of h.
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(a) ȳh at h ≈ 0.044 (b) ȳh at h ≈ 0.022

Figure 1: Example 1, sets Ak of potentially active points for two levels of
refinement of Algorithm 1.

h |ũ− ūh| ‖ỹh − ȳh‖∞ cy,k ] nodes ] constraints

0.7071 1,40E+000 6.07E-003 - 9 9
0.3536 4,05E-001 3.43E-003 - 25 25
0.1768 2,02E-001 1.12E-003 - 81 81
0.0884 8,38E-002 4.99E-004 0.0418 289 121
0.0442 2,59E-002 1.68E-004 0.0163 1089 31
0.0221 4,77E-003 3.00E-005 0.0106 4225 38
0.0110 1,30E-003 8.19E-006 0.0168 16641 41
0.0055 2,98E-004 1.86E-006 0.0215 66049 24

Table 2: Example 2, Algorithm 1

(a) ȳh at h ≈ 0.044 (b) ȳh at h ≈ 0.022

Figure 2: Example 2, sets Ak of potentially active points for two levels of
refinement of Algorithm 1.
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5 Adaptive mesh refinement and a-posteriori es-
timation

5.1 The method of adaptive mesh refinement

In the former section, our numerical method was based on a uniform triangu-
lation with mesh size h > 0. The state functions yi where pre-computed on
a sequence of successively refined triangulations. We bounded the size of the
finite dimensional approximating problems by selecting only those nodes for the
constraints, where the optimal state function ȳ has still a chance to be active.
In contrast to this, we now allow for a non-uniform triangulation of yu. Instead
of pre-computing the functions yi, the non-uniform grids are defined by a PDE-
related a-posteriori error estimator for certain suboptimal states yu generated
by our optimization method.

The main idea is the following: Having solved the approximated optimal
control problem on a uniform initial grid of moderate size, a first approximation
for the optimal control is obtained. Next, to avoid too fine uniform grids in the
following steps, a technique of a-posteriori error estimation is applied for the
next mesh refinement.

A posteriori error estimators are already well investigated in the numerical
analysis of partial differential equations. We refer exemplarily to Nochetto et
al. [19] and the references therein, where a maximum-norm error estimator is
suggested, as well as [2] and [6]. The application of a-posteriori error estimations
to optimal control problems is a new field of research since the recent past.

In particular, a-posteriori error estimators are fairly well understood for ellip-
tic control problems. We mention the papers [12] or [10] for problems including
control constraints. For state-constrained problems we point out [8] and [3] for
error estimates with respect to the objective function.

In contrast to these papers, our a-posteriori estimation technique is not
related to first order optimality conditions. This analysis would go beyond the
scope of this paper. We consider a simplified approach. For a given control
u that was generated during the optimization process, the mesh refinement is
defined upon the associated state yu. Since the mesh is related to a single u,
we need to be aware of the fact that the estimator might not be valid for states
associated with other controls.

We proceed as follows: For the numerical solution of the elliptic PDE, we
use a maximum norm error estimator for elliptic partial differential equations
suggested by Nochetto et al. in [19]. We need an estimator in the maximum
norm, since the pointwise state constraints have to be considered in C(Ω̄) to
guarantee the existence of Lagrange multipliers. In an initial step, we solve the
approximated problem (Ph0) on a uniform and regular grid of moderate mesh
size h0 and obtain a first estimate ū0 for the optimal control vector.

Then, we use the a-posteriori error estimator of [19]. This estimator is of the
form ‖y − yh‖∞ ≤ C(η∞ + ηd), where the quantity η∞ estimates the residual
in an appropriate dual norm, ηd measures the contribution of the integration
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error, and C is a positive constant. We are not considering the contribution of
integration errors here. The estimator evaluates each triangle with respect to
its contribution to the maximum norm error. It then successively refines those
triangles with the largest local error until approximately twice the number of
elements of the previous grid or a certain tolerance is reached. Note that the
estimator tends to refine the mesh close to points where the state has large
curvature. Since this is to be expected for single active points, the mesh will
most likely be refined close to the active points.

Let us denote the state obtained by means of the error estimator of Nochetto
et al. by yh,u, where u stands for the underlying control vector. Notice that
here we do not have a representative mesh size h, but we continue to denote the
discretized states this way for convenience.

Thanks to the a-posteriori error estimator, for yh,u0 we obtain some estimate

‖yu0 − yh,u0‖∞ ≤ δ0.

Now we tacitly assume that this value δ0 is useful for estimating the distance
to the unknown exactly optimal state ȳ, i.e. we assume

‖ȳ − yh,u0‖∞ ≤ δ0.

Hereafter, analogously to the activity indicator of Theorem 4, we do not consider
the state constraints in all nodes of the grid, where the inequality

‖yh,u0‖∞ < b− δ0. (5.1)

is satisfied.
We do not have a guarantee that this inequality is sufficient for non-activity

of these nodes at the optimal state ȳ. However, if the initial uniform grid of
mesh size h0 was not too coarse, then we can expect to have sufficiently precise
information on the location of active points and the optimal control. Therefore,
the further adaptive mesh refinement should not lead to wrong solutions.

Nevertheless, these arguments would need a justification by an a-posteriori
error estimator for elliptic control problems of semi-infinite type. To our knowl-
edge, this problem that is out of the scope of this paper, was not yet considered
in literature.

Next, we solve the resulting smaller finite dimensional optimization problem
to obtain the new suboptimal control ū1. Once again, we apply the a-posteriori
error estimation technique to define a new nonuniform grid with approximately
twice the number of elements according to the error estimator of [19]. The new
error estimate is

‖yh,u1 − yu1‖∞ ≤ δ1.

We repeat our procedure in the further steps. In summary, we use the following
algorithm:
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Algorithm 2

Initialization

1. Define an initial uniform grid T0 with mesh size h0 and solve the problem
(Ph0) to obtain initial approximations uk = u0 and yk = y0

2. Fix a maximal number of new elements N ∈ N ∪ {∞} for the adapted
mesh.

Iterative steps

3. For k = 1, . . . , N :

(i) Evaluate the a-posteriori error estimator from [19],

‖ȳ − yh,uk−1‖∞ ≤ δk−1

(ii) Determine the sets

T k−1
I := {T ∈ Tk−1 : all nodes satisfy yh,uk−1(x) < b− δk−1}

Ik−1 :=
⋃

T∈T k−1
I

T

(iii) Set up the adapted mesh Tk according to the a posteriori estimator

(iv) Determine the set

Ak := Ω̄ \ Ik−1 ∩Nk

(v) Solve the discrete optimization problem

(Pr
k)

{
minu∈Uad

f(u) = 1
2‖yh,u − yd‖

2 + ν
2 |u− ud|

2

subject to: yh,u(x) ≤ b ∀x ∈ Ak.

in the new adapted grid Tk to obtain a new suboptimal solution (uk, yk).

Note that analogously to Algorithm 1, Nk denotes the set of nodes in the
(nonuniform) mesh Tk. Since we do not have a representative mesh size hk, we
refer to the mesh on each refinement level as Tk instead of Thk

.
This method turned out to be very efficient in our numerical tests. However,

we do not have a convergence analysis. The mesh refinement is only related to
the residual of the state equation for the sequence of computed suboptimal
controls. Residuals of the whole optimality system are not taken into account.
Therefore, the method might end up in a non-optimal point, provided that it
converges at all.

In view of that, after numerical convergence to a limit control, an a-posteriori
optimality estimator should be invoked that evaluates the distance to the un-
known optimal control ū. We discuss this issue in the next section as a first
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] nodes ] constraints |ū− ūh| ‖ȳ − ȳh‖
25 25 1.30E+000 8.88E-001
57 57 1.09E+000 9.04E-001

137 112 1.28E-002 3.15E-001
429 97 1.43E-002 8.73E-002

1099 82 3.33E-003 3.88E-002
2956 130 1.95E-003 1.76E-002
7847 98 9.20E-004 5.58E-003

18693 118 4.40E-004 2.34E-003
46022 106 1.55E-004 1.04E-003
96539 86 7.75E-005 5.08E-004

Table 3: Example 1, Algorithm 2

step towards a complete a-posteriori error analysis for optimal control problems
with finite-dimensional control space.

Let us first demonstrate the performance of this adaptive method by numer-
ical examples. We apply the adaptive mesh refinement to Examples 1 and 2.
Analogously to Tables 4 and 4, we sum up the results obtained with the adaptive
strategy for different levels of refinement in Tables 5.1 and 5.1. Since there is no
representative mesh size h for the adaptive method, we only show the number of
nodes of the grid, which is also an indicator for the size of the problem. For each
refinement level, the L∞-error for the optimal control vector are reported, as
well as the number of constraints after identifying inactive regions according to
formula (5.1). For Example 1 with known solution we also include the L∞-error
for the state in Table 5.1. We observe that this leads to better precision of the
optimal solution than that achieved by the first method. For instance, Table
4 shows a control error of 5.33 · 10−4 obtained on a mesh with roughly 66000
nodes, whereas the adaptive method needs only roughly 18000 nodes to obtain
a similar control error of 4.4 · 10−4, cf. Table 5.1. Similar behavior is observed
by comparing Tables 4 and 5.1. Note that for the second example we use again
a reference solution obtained on a very fine grid. Figures 3 and 4 show the mesh
and state, respectively, obtained by the adaptive procedure for both Examples
1 and 2.

6 A-posteriori error estimation of optimality

6.1 Introduction

Let us assume that we have determined a numerical approximation of the opti-
mal control ū, which we will refer to as us for the remainder of this section. The
index s stands for suboptimality, since the numerical approximation will not in
general be optimal for the original problem (P). We assume that this numerical
approximation was obtained on the basis of a finite element approximation of

17



Figure 3: Example 1, adaptive mesh and approximated state after 5 steps of
Algorithm 2.

] nodes ] constraints |ũ− ūh|
25 25 4.05E-001
45 45 5.58E-002

148 91 2.43E-002
357 93 1.32E-002
832 88 1.34E-003

1915 98 9.76E-004
4213 114 3.56E-004

10835 96 8.66E-005
23556 94 7.24E-005
50923 126 4.10E-005

123003 146 1.63E-005

Table 4: Example 2, Algorithm 2

Figure 4: Example 2, adaptive mesh and approximated state after 5 steps of
Algorithm 2.
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the equation as in the former sections. Let ys denote the finite element solu-
tion associated with us. We rely on the same assumptions as before. Thanks
to Assumption 2 on activity, we assume that this is reflected by the result of
the numerical computation: We assume to have activity exactly in some points
xs1, . . . , x

s
n, i.e.

ys(xsj) = b ∀j ∈ 1, . . . , n

and that ys(xj) < b holds in all other points xj of the underlying grid. In
particular, we point out that the number of active points of ys is assumed to be
the same as the number of active points of ȳ. Because the approximated state
ys is piecewise linear, it fulfills the state constraints in all points of Ω. However,
us is most likely not feasible for the original optimal control problem. For this,
the exact state yus associated with us would have to be feasible.

In general, we do not know exact states and we will not be able to compute
them. However, it is common practice to solve the FE state yhus on a very fine
uniform grid and to consider this as ”exact state” yus . We follow this approach
and assume to know the exact state yu for a given u, and in particular the state
yus associated with us, in this way.

Our further analysis is based on the following structural assumptions in
addition to the ones introduced so far for the analysis of optimality conditions.

Assumption 5.

• The computed number n of active points {x1, . . . , xn} is correct.

• The exact optimal control is active in exactly the same n−m components as
us and equals the same bounds as us in these components. Consequently,
the other n (optimal) control components are inactive as the ones of us.

• Assumption 6 below is satisfied.

We want to check whether the control us is optimal or not. Moreover, if
not, we are interested in an estimate of the distance of us to the unknown exact
optimal control. If us, together with ys and the Lagrange multiplier µs obtained
from (6.7), satisfies the necessary optimality conditions, and ys is also feasible,
then us is optimal.

In view of this, we distinguish between two cases of non-optimality.

Case a) The state yus is is feasible, i.e. yus(x) ≤ b holds for all x ∈ Ω.

Then, in view of Assumption 5, the necessary optimality conditions are not
satisfied. This means that at least one component of the Lagrange multiplier
µs is negative or the sign conditions (6.5) are not satisfied. The latter means
that at least one of the Lagrange multipliers (2.7) associated with the control
constraints does not have a sign that complies with both the nonnegativity
property and the activity of the control component.

Remark 4. Having us and ys, the vector µs is determined as unique solution
to the system (6.7) below. The Lagrange multipliers associated with the control
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constraints are given by [
∂f

∂ui
(us) +

∫
Ω

yi(x) dµ

]
i

(6.1)

for the i-th control constraint. They must be nonnegative, if usi = ua, nonposi-
tive, if usi = ub and zero, if usi is inactive.

Case b) The Lagrange multiplier µs is nonnegative and the sign conditions
(6.5) are satisfied, i.e. the Lagrange multipliers (6.1) associated with the control
constraints have the correct sign.

In this case, non-optimality can only be due to infeasibility of yus . The state
exceeds b in some points x of Ω. If we can trust in our numerical method, then
these infeasible points should be close to the active grid points xs1, . . . x

s
n of ys,

say in the interior of some of the neighboring triangles. For this case, we discuss
the application of a generalized intermediate value theorem by Miranda [18] to
deduce that the exact vector of active points (x̄1, . . . , x̄n) exists in a certain
small region.

6.2 Optimality conditions and Case a)

In this case, the state yus satisfies the state constraints and is active in exactly
n points xs1, . . . , x

s
n, i.e.

m∑
i=1

usiyi(x) < b, for all x ∈ Ω, x 6= xsj , j = 1, . . . , n,

m∑
i=1

usiyi(x
s
j) = b, j = 1, . . . , n.

(6.2a)

(6.2b)

Moreover, we have assumed that m− n components of us are active, i.e. equal
to ua or ub. We may assume after a re-numbering, if necessary, that these are
the components usn+1, . . . , u

s
m.

If us were optimal, it would satisfy the variational inequality〈
∇f(us) +

∫
Ω

(y1, . . . , ym)> dµs , u− us
〉
≥ 0 ∀u ∈ Uad, (6.3)

where the nonnegative regular Borel measure µs is the Lagrange multiplier as-
sociated with the state constraints. It is obtained via (6.7) below.

This is equivalent to the sign conditions

∂f

∂ui
(us) +

∫
Ω

yi(x) dµs

 = 0 if ua < usi < ub,
≥ 0 if usi = ua,
≤ 0 if usi = ub.

(6.4)

Moreover, the complementary slackness condition∫
Ω̄

(yus(·)− b) dµs = 0
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must be satisfied.
Then (6.4) implies in particular

∂f

∂ui
(us) +

∫
Ω

yi(x) dµs

 = 0 if i ∈ {1, . . . , n},
≥ 0 if i ∈ {n+ 1, . . . ,m} and usi = ua,
≤ 0 if i ∈ {n+ 1, . . . ,m} and usi = ub.

(6.5)

In view of the complementarity conditions (6.2), µs is of the form

µs =

n∑
j=1

µsjδxs
j
, µsj ≥ 0, j = 1, . . . , n, (6.6)

with Dirac’s measures δxs
j

concentrated at the active points xsj , for j = 1, . . . , n,

and real numbers µsj . Therefore, (6.5) yields in particular

∂f

∂ui
(us) +

n∑
j=1

µsjyi(x
s
j) = 0, i = 1, . . . , n. (6.7)

For our a-posteriori estimation, we assume:

Assumption 6. The matrix(
yi(x

s
j)
)
, i, j = 1, . . . , n, (6.8)

is non-singular.

Then the linear system (6.7) has a unique solution µs = (µs1, . . . , µ
s
n).

This assumption is fulfilled in particular, if the points xsj are close enough
to the unknown active points x̄j and Assumption 2 is satisfied.

If µs ≥ 0 and the sign conditions (6.5) are fulfilled, then us satisfies the first
order necessary optimality conditions of the problem (P). By convexity of the
problem, they are also sufficient and hence us would be the optimal control.

In the opposite case, at least one component µsj of µs is negative or the sign
conditions (6.5) do not hold true. Then we proceed as follows:

First, we split the sum in (6.7)

∂f

∂ui
(us) +

∑
µs
j≥0

µsjyi(x
s
j) +

∑
µs
j<0

µsjyi(x
s
j) = 0, i = 1, . . . , n, (6.9)

and define the first n components of a perturbation vector ζ ∈ Rm by the sum
associated with the negative components of µs,

ζi =
∑
µs
j<0

µsjyi(x
s
j), i = 1, . . . , n.

Then we have

∂f

∂ui
(us) + ζi +

n∑
j=1

µ̃jyi(x
s
j) = 0, i = 1, . . . , n, (6.10)
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where µ̃ is the vector defined as the nonnegative part of µs by µ̃j = (|µsj |+µsj)/2
for j = 1, . . . , n.

Now the Lagrange multiplier µ is updated to obey nonnegativity conditions,
but the sign conditions of (6.5) must be checked as well. Following [1] we define
the remaining components ζn+1, . . . , ζm of ζ by

ζi =


[ ∂f
∂ui

(us) +

n∑
j=1

µ̃jyi(x
s
j)
]
−

if i ∈ {n+ 1, . . . ,m} and usi = ua,[ ∂f
∂ui

(us) +

n∑
j=1

µ̃jyi(x
s
j)
]

+
if i ∈ {n+ 1, . . . ,m} and usi = ub.

(6.11)
Then it holds

∂f

∂ui
(us) + ζi +

n∑
j=1

µ̃jyi(x
s
j) =

 = 0 if i ∈ {1, . . . , n},
≥ 0 if i ∈ {n+ 1, . . . ,m} and usi = ua,
≤ 0 if i ∈ {n+ 1, . . . ,m} and usi = ub,

i.e. the sign conditions (6.5) are satisfied after adding the perturbation vector
ζ.

Therefore, us fulfills the optimality conditions for the following perturbed
problem:

(Pζ)


minu∈Uad

f(u) + ζ>u
m∑
i=1

uiyi(x) ≤ b.

Now it is easy to estimate the distance to the unknown exact optimal control
ū. This is explained in the next section.

6.3 A-posteriori error estimation in Case a)

Define the feasible set M of (P) by

M = {u ∈ Uad :
m∑
i=1

uiyi(x) ≤ b ∀x ∈ Ω}.

Then ū solves minu∈M f(u), while us solves minu∈M f(u)+ζ>u. Both vectors
have to satisfy their associated variational inequalities, hence

∇f(ū)>(us − ū) ≥ 0,

(∇f(us) + ζ)
>

(ū− us) ≥ 0.

(6.12a)

(6.12b)

To evaluate the variational inequalities (6.12), we have to expand f(u):

f(u) =
1

2
‖
m∑
i=1

uiyi − yd‖2 +
ν

2
|u|2

=
1

2
u>Cu− a>u+ ‖yd‖2 +

ν

2
|u|2, (6.13)
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where C ∈ Rm×m is the matrix with entries

cij =

∫
Ω

yi(x)yj(x) dx

for i, j = 1, . . . ,m, and a ∈ Rm is the vector with the components

ai =

∫
Ω

yi(x)yd(x) dx.

We now formulate our main result on a-posteriori error estimation.

Theorem 6. Let λmin ≥ 0 be the smallest eigenvalue of C. If ū is optimal for
(P) and us is optimal for (Pζ), then

|us − ū| ≤ |ζ|
ν + λmin

. (6.14)

Proof. From (6.13) we have that ∇f(u) = Cu−a+νu. Adding both inequalities
of (6.12), we find

(C (us − ū) + ν(us − ū) + ζ)
>

(ū− us) ≥ 0,

and hence

ζ>(ū− us) ≥ (ū− us)>C(ū− us) + ν|us − ū|2.

Since v>Cv ≥ λmin|v|2 holds for all v ∈ Rm, we deduce

λmin|us − ū|2 + ν|us − ū|2 ≤ ζ>(ū− us),

which implies that

|us − ū| ≤ |ζ|
ν + λmin

. (6.15)

6.4 Verification of a feasible control with n active points
in Case b)

As we pointed out in the last section, in Case b) we want to verify the existence
of a feasible control that has exactly n active points close to the ones obtained
from a numerically computed control us. Thanks to our assumptions, there
exists at least one control of this type, namely the unknown optimal control ū.
To study this question, we consider first the mapping defined in a neighborhood
of ū that assigns to a vector u the local maxima of the function yu located in a
neighborhood of the optimal active points x̄1, . . . , x̄n.

Let us assume in this section that the number of active points is equal to
m, the number of all (unknown) controls. This is a natural assumption for the
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following reason: If n < m, then the remaining m− n control components were
assumed to be strictly active equal to ua or ub. If the precision is sufficiently
high, then we can assume to know these components. Then only the remaining n
control components must be determined. We need this reasonable simplification
for the application of Miranda’s theorem.

Lemma 1. Under the Assumptions 1–4, there are constants ru > 0 and rx > 0
with the following properties: For all u ∈ B(ū, ru) and all j ∈ {1, . . . ,m} there
exists a unique point xj ∈ B(x̄j , rx) such that ∇yu(xj) = 0. Moreover, yu
is strictly concave on B(x̄j , rx) for j = 1, . . . ,m, and hence x1, . . . , xm are
strict maxima of yu in B(x̄1, rx), . . . , B(x̄m, rx), respectively. The mapping u 7→
(x1, . . . , xm) is of class C2 from B(ū, ru) to Rm.

Proof. Under our assumptions, we have that yi ∈ C2(Ω) for all i = 1, . . . ,m.
Let us define the mapping F : Rm × Ω→ Rm by

F (u, x) = ∇yu(x) =

m∑
i=1

ui∇yi(x).

Next, we select a fixed j ∈ {1, . . . ,m}; we know that F (ū, x̄j) = 0. Moreover,
the partial Jacobian of F with respect to x is

∂F

∂x
(u, x) = y′′u(x),

i.e. the Hessian of yu with respect to x. Thanks to our assumptions, the matrix
y′′u(x̄j) is non-singular. Now the implicit function theorem ensures the existence
of open neighborhoods B(ū, ru), B(x̄j , rx) and the existence of a mapping ϕj :
B(ū, ru) → B(x̄j , rx) such that ϕj(ū) = x̄j and F (u, ϕj(u)) = 0 for all u ∈
B(ū, ru). Therefore, it holds

∇yu(ϕj(u)) = 0, ∀u ∈ B(ū, ru). (6.16)

The mapping ϕj is of class C2. If ru is taken sufficiently small, then y′′u(ϕj(u))
is uniformly negative definite in B(x̄j , rx), i.e. there exists δ > 0 such that for
all x ∈ B(x̄j , rx) it holds

−ξ>y′′u(x)ξ ≥ δ|ξ|2 ∀ξ ∈ Rm. (6.17)

This follows from Assumption 3 and the fact that the function yu is of class
C2 for all u ∈ Rm. Therefore, the function yu attains its strict maximum
in B(x̄j , rx) in the point xj = ϕj(u). Locally, there cannot be any other local
extremum of yu. The same arguments apply to all j ∈ {1, . . . ,m}. The mapping
u 7→ (ϕ1(u), . . . , ϕm(u)) is of class C2 on B(ū, ru).

Lemma 2. There exist positive constants ρu, ρx, and δ > 0 with the following
property: If u ∈ B(ū, ρu) and j∈ {1, . . . ,m}, then there holds

yu(x) ≤ b− δ ∀x ∈ Ω \B(x̄j , ρx). (6.18)

24



This result follows from Assumption 3, and can be shown in the same way as
Lemma 3.15 in [16]: In a ball around x̄j , j ∈ {1, . . . ,m}, yū decays quadratically
, while ȳ(x) ≤ b − 2δ holds for all x outside these balls. By continuity, this
property is stable with respect to small perturbations of ū so that still yu(x) ≤
b− δ holds.

In view of this lemma, sufficiently small changes of u around ū do not destroy
the feasibility of u outside B(x̄j , ρx), if yu(ϕi(u)) ≤ b is satisfied for all i =
1, . . . ,m. We consider now the mapping g : B(ū, ρu)→ Rm defined by

g(u) = (yu(ϕ1(u)), . . . , yu(ϕm(u))) . (6.19)

This is the mapping that assigns to u the values of yu in its m maximum points
x1 = ϕ1(u), . . . , xm = ϕm(u) that were discussed in the preceding lemma.

To apply Miranda’s theorem, we study numerically the following problem:
For varying vectors β ∈ Rm close to (b, . . . , b), we want to compute controls u
in B(ū, ρu) such that

yu(ϕi(u)) = βi, i = 1, . . . ,m. (6.20)

In other words, we want to determine control vectors u such that the values
of yu in its k maximum points are equal to βi. By a suitable variation of the
vectors β, we want to prove the existence of a vector us in a rectangle around
ū such that

yus(ϕi(u
s)) = b, i = 1, . . . ,m. (6.21)

Such a vector us would be active in x̂1 = ϕ1(us), . . . , x̂m = ϕm(us) and would
also be feasible, i.e. yus(x) ≤ b holds for all x ∈ Ω.

To this aim, we use a theorem of [23] that generalizes a theorem by Miranda
[18]. Miranda’s result can be considered as a generalization of the intermediate
value theorem to vector-valued continuous functions. The theorem uses the
m-dimensional cuboid R ⊂ Rm defined by

R = {u ∈ Rm : |ui − u◦i | ≤ Li, i = 1, . . . ,m}

where 2Li > 0, i = 1, . . . , k, are the lengths of the rectangle, and u◦ ∈ Rm is its
center. We define the sets

R+
i = {u ∈ R : ui = u◦i + Li}, and

R−i = {u ∈ R : ui = u◦i − Li}.

Theorem 7. ([18],[23]) Let f : Rm → Rm be a continuous function. Assume
that

fi(u)fi(v) ≤ 0 ∀(u, v) ∈ R+
i ×R

−
i (6.22)

holds for all i ∈ {1, . . . ,m}. Then there exists at least one us ∈ R such that
f(us) = 0.
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We apply this theorem in the following situation: After the numerical so-
lution by the a-posteriori error estimation method, we have a control us that
is suboptimal. In points xsj , the FE approximation ysh of the associated state
satisfies the equations

ysh(xsj) = b, j = 1, . . . ,m

but most likely
yus(xsj) 6= b and yus 6≤ b.

Our aim is to find the location of a point (x1, . . . , xm) and a control u such that

yu(xj) = b, j = 1, . . . ,m, yu(x) < b ∀x 6= xj .

Remark 5. In general, we do not know yu exactly. Therefore, we can only
show a strong indication that the relations above are fulfilled.

We select a cuboid R around us, where us is the suboptimal control with
associated FE-state ysh satisfying ysh(xsj) = b, j = 1, . . . ,m. Then it will most
likely hold

yus(xsj) =

m∑
i=1

usiyi(x
s
j) 6= b.

Now we define 2k control values

ui± := usi ± Li, i = 1, . . . ,m

and select all possible 2m combinations of them that form pairwise different
vectors of Rm. These are the corners of the cuboid R with midpoint us.

We consider the mapping g : u 7→ (ϕ1(u), . . . , ϕm(u)) that assigns to u the
m maximum values of yu according to Lemma 2. The selection of the values Li
should be such that the mapping

f : u 7→ g(u)− (b, . . . , b)

satisfies the assumptions of Theorem 7. We assume that this is possible. A
sufficient condition is

gi(u)

{
≥ b ∀u ∈ R+

i

≤ b ∀u ∈ R−i ,

for all i = 1, . . . ,m. Then there exists a solution us ∈ R with gi(u
s) = b for all

i = 1, . . . ,m.

Remark 6. For large dimension m, the selection of the Li is certainly a te-
dious procedure. Basically, the conditions of Theorem 7 have to be checked for
different combinations of u, v, and Li. It is clear that this can only give an
indication that these conditions are actually fulfilled. However, this issue is
somehow intrinsic to all control problems in function spaces. Compare for in-
stance results related to second order sufficient conditions for optimal control
problems, where a certain positivity condition for the reduced Hessian associated
with the undiscretized problem is assumed. Yet, the only information available
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A B C D
g1 0.01107 0.01099 0.00986 0.00993
g2 0.01086 0.00979 0.00938 0.01045

µ1 36.9424 29.7339 47.8148 29.7334
µ2 137.4811 156.8503 155.2044 156.8502

Table 5: Maximum values of g and their corresponding approximated Lagrange
multipliers

is for discretized versions of the problem. As a rule of thumb, it is fairly impos-
sible to conclude certain properties of the infinite dimensional setting from finite
dimensions, see e.g. [22]. Here, we are faced with a similar problem. We do
not claim that the process described above is a practicable test. Instead, the use
of the Miranda theorem provides at least a theoretical tool that allows to address
this question of predicting a feasible point in the neighborhood of a computed
unfeasible one.

We apply this with m = 2 to the ”maximum point mapping” f := g − b
in our Example 2. There, our optimal result obtained from the a-posteriori
technique was

us = [1.1776870 0.8661457]

We select u◦ = [1.2346 0.8601] as midpoint. Perturbing the components of u◦

by L = ±0.07, we obtain a rectangle with the 4 corners A = [1.3046 0.9301],
B = [1.3046 0.7901], C = [1.1646 0.7901] and D = [1.1646 0.9301].

Next, we approximate yA, . . . , yD by solving the PDE on a very fine uniform
mesh with mesh size h ∼ 0.006 to generate ”exact states”. Finally, we determine
the 2 local maxima g1, g2 for yA, . . . , yD. Recall that b = 0.01.

All associated Lagrange multipliers, which were determined by formula (6.7),
are positive. This indicates that the optimal control ū is included in the rect-
angle with the corners A,B,C,D .
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[17] P. Merino, F. Tröltzsch, and B. Vexler. Error estimates for the finite element
approximation of a semilinear elliptic control problem with state constraints
and finite dimensional control space. ESAIM: Mathematical Modelling and
Numerical Analysis, 44:167 – 188, 2010.

[18] Carlo Miranda. Un’osservazione su un teorema di Brouwer. Boll. Un. Mat.
Ital. (2), 3:5–7, 1940.

[19] Ricardo H. Nochetto, Alfred Schmidt, Kunibert G. Siebert, and Andreas
Veeser. Pointwise a-posteriori error estimates for monotone semi-linear
equations. Numer. Math., 104(4):515–538, 2006.

[20] Rolf Rannacher and Boris Vexler. A priori error estimates for the finite ele-
ment discretization of elliptic parameter identification problems with point-
wise measurements. SIAM Journal on Control and Optimization, 44:1844–
1863, 2005.

[21] Rembert Reemtsen and Stephan Görner. Numerical methods for semi-
infinite programming: a survey. In Semi-infinite programming, volume 25
of Nonconvex Optim. Appl., pages 195–275. Kluwer Acad. Publ., Boston,
MA, 1998.
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