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1 Introduction

This paper belongs to a series of papers, where the local Lipschitz stability
of solutions to parametric optimal control problems for nonlinear systems is
analyzed. Due to the presence of inequality type constraints, the problems are
non-smooth. The main tool in stability analysis for such problems is Robinson’s
implicit function theorem for generalized equations [11]. Using this theorem it
can be shown that a sufficient condition of Lipschitz stability for nonlinear
system is that the solutions of the linear-quadratic accessory problems are Lip-
schitz continuous with respect to the additive perturbations. Usually, this last
problem is much easier to investigate than the original one. This approach was
applied to parametric mathematical programs in finite and infinite dimensions
as well as to optimal control problems. However, Robinson’s theorem does not
provide information on the gap between the obtained sufficient and necessary
conditions of Lipschitz stability. To get this information, Dontchev’s extention
of the theorem [3] can be used. It allows to get necessary conditions of Lipschitz
stability, provided that the dependence of data on the parameter is sufficiently
strong. Using this approach, a characterization of the Lipschitz stability prop-
erty was recently obtained for mathematical programs [7], as well as for optimal



control problems for systems described by nonlinear ordinary [6] and parabolic
[10] equations, subject to control constraints.

The present paper concerns a nonlinear boundary control problem for the
Laplace equation. We follow the approach of [10] and characterize local Lipschitz
stability with respect to the parameter for the solutions of this problem. The
main technical difference is that we eliminate the state, by introducing the
solution map of the state equation, and we treat the problem as depending on
the control alone. This approach is especially useful in the proof of necessity

*since it allows to weaken the required strong dependence on data. The
approach can be applied, not only to the considered problem, but in general, to
control constrained problems with different dynamics.*

As in [10], the crucial point in the stability analysis is to derive conditions of
L*-Lipschitz stability of the solutions to the accessory linear-quadratic optimal
control problems. Here we use the result obtained in the thesis of A.Unger [12].

The organization of the paper is the following. In Section 2 we introduce the
considered optimal control problem, as well as the basic assumptions and we
recall some regularity results for the solution of the state equation. In Section
3 we recall the abstract implicit function theorems and we use Robinson’s the-
orem to derive sufficient conditions of Lipschitz stability. In Section 4 we use
Dontchev’s theorem to show that these conditions are also necessary, provided
that the dependence of the data on the parameter is sufficiently strong.

2 Preliminaries

Let Q C IR™ denote a bounded domain with boundary I'. As usually, by Ay
and 0,y we denote the Laplace operator and the co-normal derivative of y at T,
respectively. Moreover, let H be a Banach space of parameters and G C H an
open and bounded set of feasible parameters.

For any h € G consider the following elliptic optimal control problem:

(Or)  Find (ya,up) € Z%° := C(Q) x L>(T) such that
F(yp,upn,h) = min{F(y,u,h) :=

= Jye(y(z), s + fy b(y(@), u@), hyds,} >
subject to
—Ay(z)+y(z) =0 in Q
ou@) —du@u@h) o, (22)
u €U = {ve L®T) | ¢g<wv(z) <rae. inT}. (2.3)

In this setting, ¢ < r are fixed real numbers, dS, denotes the surface measure
induced on TI', and the subscript z indicates that the integration is performed
w.r. to . We assume:

(A1) The domain 2 has C''-boundary T.



(A2) For any h € G, the functions ¢(-,h) : R — R, ¥(-,-,h) : R+~ R x IR and
b(-,-,h) : R — IR x IR are of class C2. Moreover, for any fixed u € IR and
h € G, b(-,u,h) : R+~ IR is monotonically decreasing.

There is a bound ¢g > 0 such that
60,0, )| + |D(y,,)(0,0, k)| + |DF, ,,b(0,0,h)| < e Vh € G.
Moreover, for all K > 0 a constant [(K) exists such that
ID?, .y (y1,u1, k) = DF, ) (ya,u2, B)|| < LK) (Jyr — yo| + [ur — ua])

for all y;,u; such that |y;| < K,|u;| < K, and all h € G. The same
conditions above are satisfied by ¢ and ¥ too.

(A3) For all fixed real y and u with |y| < K, |u| < K, there is a constant [z (K)
such that

|b(yau7hl) - b(yau7h2)| S lH(K)th - h2||H Vhl € Ga
i = 1,2. This estimate holds for ¢ and ¥, too.

DEFINITION 2.1 For any u € L*(T) a function y € W'2(Q) is said to be a
weak solution of (2.2), if for all z € W12(Q) the following equation holds:

n Oy 0z .
/Q(Eiﬂa_xia_xi +yz) dm—/rb(y,u)zdSm. (2.4)
<

By the following lemma, proved in the Appendix, problem (Oy,) is well posed.

LEMMA 2.2 If (A1) and (A2) hold, then for any u € U_"d and any h € G there
ezists a unique weak solution y(u,h) € W12(Q) N C(Q) of (2.2). Moreover,
there exists ¢ > 0 such that

lly(w', B') — y(u", A ooy < ellu” = u”llpee(ry + 1B = 2" ||m). (2.5)
o

Proof: For all u € U,y and h € G, the existence of a unique solution y of
(2.2) follows from [ ], Thm . In particular, we use that, for fixed h, the function
b = b(y,u,h) is a real function satisfying all assumptions stated in [ ]. There
is a constant K > 0 such that |y(z)| < K on (2, independently of the concrete
choice of u and h. To see this, we write

b(y,u, h) = b(0,u, h) + Dyb(y”,u, h)y,



where y? = 9y,0 < ¥ < 1,9 = ¥(x). Hence
dyy + By = b(0,u, h),

where § € L>®(T"),8 > 0. The right hand side b(0,u, h) is uniformly bounded
by (A2), (A3). Lemma 2.3 applies to obtain a uniform bound K for y.
Let now (u;, h;) € Uaq X G be given, i = 1,2, with associated states y;. Then

b(yr, u1, hi) =b(y2, uz, ha) = Dyb(y?, ut, h1) (y1 —y2) +b(y2, w1, h1) —b(ya, us, ha),

where now y% = y; + 9(y2 — y1). Put 8 = —Dyb(y?,u1,h1) and z = y; — yo.
Then z solves
—Az+4+2=0,0,z = fo,

where

fo = bly2,u1,h1) — b(y2, uz, ha)
= b(y2,u1, h1) — b(ya, uz, h1) + b(y2, u2, h1) — b(y2, u2, ha).

According to (A2) and (A3), |f2(z)| < c(Jui(z) — ua2(z)|+ ||h1 — h2||r). Lemma
2.3 yields |[2|c(q) < e([lur — u2||pe(r) + ||h1 — he||n)- o

We will also need the following standard regularity result for linear elliptic
equations (see, eg., Casas [1]).

LEMMA 2.3 Consider the following linear equation

—Az(z) + z(z) = fi1(z) in Q,
Ov2(z) + B(z)z(z) = f2(z) on T.

If fr € LY(Y), ¢ >n/2, fo € LP(T'), p>n—1, and B € L>®°(T") **is nonnega-
tive**, then (2.6) has a unique weak solution z € W12(Q) N C(Q). There is a
constant ¢ > 0, **independent of 3,** such that

(2.6)

lzllwrze) + llzllo@) < c(lfillza@) + [1f2llzer))- (2.7)
&
Let hg € G be a given reference value of the parameter. We assume:
(A4) There exists a local solution (yg,ug) of (Op,)-

Let us denote by si(-) : L®(T') ~ C(Q) the mapping which, for a fixed
h € G, to a given control u assigns the weak solution of the state equation
(2.2). Then problem (Op) can be reformulated as the following problem of
optimization with respect to the control alone:

(0}) Find uj, € U*? such that
F(up, h) = min,cyyaa F(u, h),



where
‘7:('“7 h) = F(sh(u),u,h)), (28)
F: L*(I') x G —» IR. In the sequel, we will use both equivalent formulations

(Op) and (0O3}) of the problem. A standard first order necessary optimality
condition for (07, ) is given in the form of the following variational inequality:

(DyF(ug, ho),u —ug) >0 for all u € U, (2.9)

where (-, ) denotes the inner product in L?(T).

Denote by Sy := (S5, 85) : L2(T') — L2(Q) x L?(T) the mapping given by
So : v = (20,20|r), where zp = 29(v) is the weak solution of the linearized
boundary value problem:

—Az(x)+2(z) =0 in 0,
Ovz(z) = Dyb(yo,uo, ho)z(x) + Dyb(yo, uo, ho)v(x) onT.
(2.10)

Standard calculations show that the adjoint mapping S§ : L?(Q) x L3(T) —
L*(T) is given by

So < ; ) = (S§)*r + (S5)*s = Dub(yo, uo, ho)p(r, s)|r, (2.11)

where p(r, s) is the weak solution of the adjoint equation

—Ap(z) +p(z) =r(z) in €2,

dyz(z) = Dyb(yo,uo, ho)z(z) + s(z) onT. (2.12)

Let us define the following Hamiltonian: # : IR® x G — IR:
H(y,u,p,h) :== ¢(y,u, h) + pb(y,u, h). (2.13)
Using (2.10)-(2.12) as well as (2.1) and (2.13), we get

Duf(uo, ho) = SSDyF(yo, Ug, ho) + DuF(yo, Uug, ho)

= (S§)* Dy (yo, ho) + (S§)* Dyt (yo, o, ho) + Duth(yo, uo, ho)
= DyH(yo, vo,Po, ho) € L>(T).

(2.14)
where pg is the solution of the following adjoint equation
—Apo(x) +po(x) = Dyp(yo, ho) in €,
Oupo(z) = Dyb(yo,uo, ho)po + Dyt (yo, vo, ho) onI'.
(2.15)
Hence we have
(Du]:(UO, ho), u) = / DUH(yo, U, Po, ho)u dSz (216)
r



Here, we have applied Lemma 2.3 to (2.15) to obtain the regularity po € C(Q2).
By (2.16), optimality condition (2.9) takes the form

/ D H(yo,uo, po, ho)(u — up)dS, >0 for all u € Y. (2.17)
r

On the hand, since D,H(yo,uo,Po, ho) € L>(T), then by (2.16) we can treat
D, F(ug, ho) as an element of L™ (T") and rewrite condition (2.9) in the form of
the following generalized equation:

0 € DuF(uo, ho) + N (ug), (2.18)

where

e {I®M) | foAv—u)dS, <0Vv €U} if u e Y,
N(u)—{@ r ifuguad

is a multivalued mapping with closed graph.

3 Application of an abstract implicit function
theorem

We are interested in the following problem:

Find conditions under which a neighborhood Gy C H of hy exists such
that for all h € Go there exists a locally unique solution (yp,up) of (Or),
which is a Lipschitz continuous function of h.

First, we will find conditions of existence, local uniqueness and Lipschitz con-
tinuity of stationary points of (O}), i.e., of the solutions to the generalized
equation

0 € Dy F(up, h) + N (up) (3.19)

analogous to (2.18). Afterwards we will show that these stationary points cor-
respond to the solutions of (O},). In a standard way (see, e.g., [4, 5, 9, 10]) we
apply to (3.19) the implicit function theorem for generalized equations. To this
end, along with (3.19) we consider the following generalized equation obtained
by linearization and perturbation of (3.19) at the reference point:

8 € DyF(uo, ho) + D2, F(ug, ho) (v — ug) + N (v), (3.20)

where § € L>°(T") is a perturbation.
We shall explain later that D2, F(ug,ho)(v — ug) can be identified with a
measurable and essentially bounded function. In the sequel by

By (w0) = {z € X | ||lz — zo|x < p}



we will denote the closed ball of radius p around zy € X. Moreover, to simplify
the notation, we will write U = L>°(T").

Our sufficiency analysis is based on the following Robinson’s abstract implicit
function theorem (see [11]: Theorem 2.1 and Corollary 2.2).

THEOREM 3.1 Suppose that D,F(u,-) is Lipschitz continuous in h, uniformly
with respect to u in a neighborhood of ug. If there is a constant £ such that

(i) there exist p1 > 0 and p > 0 such that, for each 0 € 13/[,]1 (0) there is a
unique in BY,(vo) solution to the linearized generalized equation (3.20),

which is Lipschitz continuous in § with any constant £ < Z,
then

(ii) there exist o1 > 0 and o2 > 0 such that, for each h € Bg (ho) there is
a unique in BY, (ug) solution to the nonlinear generalized equation (2.18),

which is Lipschitz continuous in h with any constant £ < 7.
<

In verifying the necessity of the derived sufficient conditions of Lipschitz stabil-
ity, we will consider a special situation, where the dependence of data upon the
parameter is strong in the following sense:

H = H° x L*®(T), where H? is an arbitrary Banach space, and

3.21
Dy F(u,h) = D, F°(u,h®) + h', where h® € H° and h' € L>(T). (3:21)

*Condition (3.21) requires that D, F(u,y) is an additive function of the com-
ponent ht € L>®(T) of h = (h° h'). In addition to that, D,F(u,y) can be
a function of another component h°, of the funtional parameter h, which may
belong to an arbitrary Banach space HC.*

The next theorem follows from Theorem 3 in [3].

THEOREM 3.2 If (8.21) holds, then (ii) implies (i). <&

Theorem 3.1 allows to deduce existence, local uniqueness and Lipschitz con-
tinuity of solutions to (2.18) from the same properties of the solutions to the
linear generalized equation (3.20). Usually, this last problem is much easier than
the original one.

In order to apply Theorem 3.1 we have to find the concrete expressions of
the derivatives in the linear generalized equation (3.20). Using (2.14) together
with (2.15) and (2.10), we find the following form of (3.20).

de D121u‘7:(u07 h‘O)U + 60 + N(U), (322)

where
D:‘iu}'(uo, ho) v = K:(U(), h()) v+ DiuH(yo, Uuo, Po, ho) v, (323)



with
K(uo,ho) = (S§)*D2,¢(yo, ho)S§ + (S§)* D2, H (yo, 1o, po, ho)S§ + (3.24)
+(S5)* D3, H(yo, w0, po, ho) + D2, H (o, w0, Pos ho)Sp '

and
50 = Du]:(’LLo, ho) - Dfm]—"(uo, ]’L(])’U,(). (325)

** By Lemma 2.3 we find that, for fixed v € L>°(T), D2  F(uo, ho) v € L>°(T).**
Certainly, vo = uy is a solution of (3.22) for § = 0.

The generalized equation (3.22) constitutes the first order optimality condi-
tion for the following linear-quadratic problem.

(LOY%) Find vs € U such that
1 (vs, D2, F(uo, ho)vs) + (8o — 6, vs) =
= min,yea {3 (v, D2, F(ug, ho)v) + (8o — 6,v) } .

In view of (3.23) and (3.24), problem (LOj) is equivalent to the following linear-
quadratic optimal control problem.

(LOs) Find (z5,vs5) € Z* such that
Z(zs,v5,0) = minZ(z,v,d)
subject to
—Az(x)+2(x) =0 in Q
Ovz(x) = Dyb(yo(x), uo(x), ho)z(z)+ (3.26)
+Dyb(yo(x),uo(x), ho)v(x) on T,
veUr,
where )
1(z,0,0) := 5 ((2,0), Jo(2,v)) + /(50(96) = 6(z))v(z)dS,
r
with the quadratic form
((Z, ’U), Jo (Zﬂ))) = fQ DZy(p(yOJ ho)Z2d$+
D7, H(yo, w0, o, ho) Dy, H(yo, w0, o, ho) ] [ z ]
y ) ) ) u ) ) ) dSm
+fr[zjv] D%yH(yOaUOJI)O; hO) DuuH(ymuO:pO: hO) v
(3.27)

To verify assumption (i) of Theorem 3.1, we have to show that, for all
sufficiently small perturbations d, problem (LO;s) (or equivalently (LOj)) has
a locally unique stationary point, which is Lipschitz continuous in §. For this
purpose, we will need a coercivity assumption. To introduce it, for any a > 0
define the sets

I* = {z € T | D,H(yo,uo0,po, ho)(z) > a},

(3.28)
J* ={z €T | — DuH(yo, uo,Po, ho)(z) > a}.



‘We assume:

(AC) (coercivity) There exist & > 0 and v > 0 such that
((z,0), Jo(2,v)) > YlvllZar) (3.29)
for all pairs (z,v) satisfying (3.26) and such that v € V.2, where
Vi:={velil) |v(x) =0for aa. z € I*UJ*}, qe€][2,00]. (3.30)
In view of definitions (3.23) and (3.27), condition (3.29) is equivalent to
(v, D2, F(ug, ho)v) > ’Y”'I}“%z(r) for all v € V2. (3.31)
By Satz 18 in [12] we have

LeEMMA 3.3 If (AC) holds, then there exist constants p1 > 0 and pa > 0 such
that, for all § € Bgl (0) there is a unique solution (zs,vs) of (LOgs) such that
vs € B/[,]2 (0). Moreover, there exists a constant £ > 0 such that

llzs — 267 [l c@ys lve — vorlloe(ry < L16" = 8"||Loo(ry for all 8',6" € BY(0).
(o2

Theorem 3.1 and Lemma 3.3 imply

PROPOSITION 3.4 If conditions (A1)-(A4) and (AC) hold, then there exist
constants o1 > 0, g2 > 0 and £ > 0 such that, for each h € Bfl (ho) there exists
a unique in BY, (uo) solution uy of (2.18) and

lun — uprl|poo(ry < LW — W' ||g  for all ', h" € B (ko). (3.32)

&

It follows from (2.5) and (3.32) that there exists a constant £ > 0 such that
lyn — ynello@ < EIIB = h"|lg for all B',h" € By (ho), (3.33)

where y;, is the solution to the state equation (2.2) corresponding to the control
up. A similar estimate follows in turn for p,

low = prrllogey < CIIA = W"lle  for all W, K" € B (ho), (3.34)

**In view of Proposition 3.4, for h € Bfl (ho), we can define the maps Si:
v = 2zp(v), Sk v = 2,(v)|r, where 2;(v) is the solution of the linearized
equation (2.10), with Dyb and D,b evaluated at (yp, un, k). Analogously to the
definition of Sp, we put S, = (S5, S}) and view S, as an operator from L?(T)
to L*(Q) x L*(T). Its adjoint operator S : L*(Q) x L*(T') — L*(T) is given
by (2.11), (2.12), with the subscript h substituted for 0. The following lemma
summarizes regularity properties of the mappings Sy, and S;;, which will be used
in the sequel.**



LEMMA 3.5 The operators Sy and S; are compact in the L?>—spaces defined
above. Moreover, there is a constant T > 0 such that they are continuous between
the following spaces: For all p > 2 and all s < o0,

s v f Y e InIy 6w
Sp: LT(Q) x L(T) - { ﬁ(ﬁ)(r) ZZ i ; (3.36)
o

Proof Define Ap, by Ap: (u,v) — (2, z|r), where

—Az+2z = wu
Ovz = Dyb(yn,un,h)z + Dyb(yn, un, h)v.

Write for short LP = LP(Q) x LP(T'). We show that Ay, is continuous from L”
to L™*7 (resp. L" to L? for all s). This includes the statement of the theorem.
Let us discuss the case n > 2, since the simpler case n = 2 follows by an obvious
modification. It is known that A, : L? — H'(Q) x H'/?(T), continuously.
The embeddings H'(Q) C L*(Q) and H'/?(T) ¢ LP(T') are compact for all
a<2n/(n—2)and all 8 < 2(n—1)/(n —2). Therefore,
2(n—1) 2

Ay : L? - LP is compact for § < ——= =2+

In particular, Ay is compact in L?, which implies in turn the compactness of
S and S; stated in the Lemma. On the other hand, Lemma 2.3 shows that
Ap : L9(Q2) x LP(T) —» L™=, if ¢ > n/2 and p >n — 1. Since n —1 > n/2 for
n>2,

Ap: LP — L™, (3.38)

continuously. We fix p > n — 1. By interpolation,
Ap: L™ — L%, (3.39)
continuously, where 0 < 8§ < 1, and ry, sg are defined by

1 1-6 6 1 1-0 6 1-86
= — — = + =

2 ' p s B oo B
If 6 runs from 0 to 1, then r = ry varies from 2 to p. We shall estimate below
that sy —rg > 2/(n — 2) — € for all € > 0. Therefore, our statement is true for
arbitrary 0 < 7 < 2/(n — 2) and all 2 <7 < p. For r > p, the statement holds
true by (3.38). Let us finally estimate sy — r9: We obtain

n—1 p
NTom-2 r--20

_5,

S9g —Tg =

10



where § > 0 can be taken arbitarily small. It is easy to verify that 2{...} >
2/(n — 2) (multiply by (1 — 8)(n — 2)/2 to see the equivalence to n — 1 >
(1-6)(p(n —2)/(p— (p—2)0) + 1). Therefore, sy —rg > 7 holds for arbitrary
0<7<2/(n-2). &
The following theorem is our principal sufficiency result.

THEOREM 3.6 If conditions (A1)-(A4) and (AC) hold, then there exist con-
stants o1 > 0, oo > 0 and A > 0 such that, for each h € Bg (ho) there exists a
unique in BZ (yo,uo) solution (yn,un) of (On) and

lyn: = ynr oy, 1P = P lle@y, llun — wnr llee @y < AllR" =R ||

for all W', K" € BE (hy). &

Proof In view of (3.32) and (3.33), to prove the theorem, it is enough to show
that u, satisfying (2.18) is a locally unique solution to (O},). **We have already
pointed out that by regularity of uy, for h € BH (ho), the derivatives D, F(up, h)
and D2 F(up,h) can be represented as in (2.14) and (3.23), with all terms
evaluated at h, rather than at hg. Thus D,F(up,h) can be treated as an
element of L>°(T'). In view of Theorem 3.6 we find that the mapping

h + Dy F(up, h) : BE (ho) — L®(T) (3.40)

is continuous. Moreover, the quadratic form D? F(uy,h) depends continuously
h, since uy yp, and py depend continuously on h and therefore the estimate

(w1, [D Fups s B') — D5 Fupe, b)) u) < e |B' = h"||ar [|ual g2y lluzll p2r)
(3.41)
can be derived with some effort. From the continuity of D, F (upn, h) = Dy H(yn,
U, Ph, h) and from (3.28) it follows that, for oy > 0 sufficiently small, we have

| DuF (un, h)(x)| >

e

for a.a. z € I*UJ* and all h € BX (ho).  (3.42)

On the other hand, using the continuity of the mapping h — D? F(up,h)
expressed by (3.41), and shrinking o7 > 0 if necessary, we obtain from (3.31)
that

(v, D2, F(up, h)v) > %nvuizm for all v € V2 and all h € BE (hg).  (3.43)

The estimates (3.42) and (3.43) constitute sufficient optimality conditions
for (Op). Indeed, expanding F(u, h) into Taylor series at up we get

]:(u’h) _‘T(uhah) = (Du]:(Uh,h),’U/—Uh)'{'

+3((w—up), D2, F (up, h) (u — up)) + r(u —up), (3.44)

11



where
|r(v)]

— 0 as ||v||pe(r) — 0. (3.45)
llvllz2gry ™

In view of (2.16), the optimality condition (2.9) evaluated at h yields
D F(up, h)(x)(u(z) —up(z)) >0 for a.a. z € T and all uw € Y. (3.46)
On the other hand, in view of (3.41), there exists a constant ¢ > 0 such that
(v, D3 F (un, h)v) < cljol|7ar).- (3.47)

For any u € L?(T'), let us denote by u! and u? the projections onto V? and
onto its orthogonal complement, respectively, i.e.,

ul = 0 on I*U J?, W2 = u(x) on I*U J%,
u(x) onI'\ I*uUJe, 0 onI'\ I*U J*.
Using (3.43), (3.47) and Young’s inequality we obtain

((u = un), Dy, F(un, h)(u = up)) =

((u' = uh), D5y F (un, h)(uh = up)) + 2((u! = u), D5y F (un, b) (u? — uj))+
(u® = uj), D3 F(un, h) (w? —uj)) >

St = upllFap) = 2ellut = upllrz(r llu? — ujllrer) — cllu? = ujl[Z2p) >
Hlu! = uh 172y = e+ 2)|Ju? = uj |72y =

=T Jo\graugey @ (@) = u}(2))%dSe = 1 [(1ay gy (WP (@) — uj(2))?dS, * +

for all h € BE (ho),

+(

v v

(3.48)
where ¢; = ¢(1+ %) Combining (3.46) through (3.48) and using (3.42) together
with (3.44) we obtain

Fu,h) = Flun, h) 2 [raiga (§lu(@) —un(@)] = §|u(@) — un(2)]?) dSo+

+3 fr\(IQUJQ) |u(z) — up(x)|>dSy + r(u —up) for all u € U

(3.49)
4o
Y+4cy

Choosing o = we get

F(u,h) — F(up,h) > %||u - “h”i2(1‘) +r(u—up) forall u € U N BY (uy).

y (3.45), for o > 0 sufficiently small, we obtain

F(u,h) — F(up, h) > ||u uh||L2(F) for all u € U N BY (up,),

- 32

i.e., up is a solution of (Op) unique in BY (us). Choosing o2 =  and o1 =
we complete the proof of the theorem.

OXls
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4 Lipschitz stability: necessity

In this section we are going to show that (AC) is not only a sufficient, but also a
necessary condition of local Lipschitz stability of the solutions to (Oy), provided
that the dependence of data upon the parameter h is sufficiently strong in the
sense that (3.21) holds. In view of definition (2.8), condition(3.21) is satisfied if

(SD) (strong dependence)

F(y,u,h) = [ooy(x), h)dz + [L[¢°(y(2),u(z), h°) + b (z)u(z)]dS,,
b(y,u, h) = b(y,u, h°),

(4.50)
where h% € H® and ht € L*°(T).
Note that if (SD) holds, then the Hamiltonian (2.18) takes the form
H(y,u,p,h) = H (y,u,p, h%) + h'u, (4.51)

where 17H (y, u, h°) = ¢ (y, u, h°) + p b(y,u, h°).1?

We assume that condition (ii) in Theorem 3.1 is satisfied and we will show
that, if (4.50) holds, then (AC) is satisfied with some o > 0 and v > 0.
The proof is based on the same idea as in [6] and in [10], but technically it

~

is simplified. Namely, we introduce small variations (h,u;l\) of the reference

values, such that in a neighborhood of (E,u/ﬁ), problems (0O3}) with inequality
constraints can be locally treated as problems with equality constraints, which
are much easier to analyze. First, we derive necessary coercivity conditions for
(Olﬁ) and then deduce similar conditions for the original problem (O} ). To

this end, let us choose any @ < 4 and € < min{o, 3(r — ¢)}, where ¢ and r

are the bounds in the inequality constraints (2.3), while o; and oy are given in
Theorem 3.1/(ii).
Define the set

K:{xeFluO(x)S%(q-H‘)}

and introduce the following increment Awu of the reference values ug:

0 on I U Je,
Au(z) = ¢ +e on K\ I%, (4.52)
—€ on [['\ K]\ Je.

Define up = ug + Aw. It follows from (4.52) that , for u, the control constraints
(2.3) are active on the set I* U J* and non-active with the margin € > 0 on the
complement of this set:

=q on I¢,
up(z) 4 =r on J% (4.53)
€Elg+er—e on T\ [I*U JY

13



(see, Fig.1). Let y,- denote the solution of the state equartion (2.2) for h = hyo
and u = up. Similarly, let p, be the solution of the adjoint equation (2.15)

corresponding to h = ho,u = uy and y = y;. Note that in view of (4.50) and
(4.51), y; and p; do not depend on the component hg of hg = (hg, hg). Using
this fact we introduce such a variation ! of hy, that (yﬁ, up, pg) is a stationary

point of (O;), where 7 = (hY,h!). Namely, we put h! = h} + Ah!, where

1 _ 0 on IDt U Ja,
Ah'(z) = { — D HO (o, e, W) () — B () on T\ (1 U )45
(4.55)

Note that 17 by (ii)!?,

||DuH0(y;l‘7 u;l\,p;;, hg) — DuHO(yo,UO,po, hg)”Loo(F) —0 as ||Au||Loo(F) — 0.

(4.56)
Using (3.28), (4.52) and (4.56), we find that, for ¢ > 0 sufficiently small
N >0 on I¢,
D H(yp,up,pph)(z) ¢ <0 on J?%, (4.57)
—0  onD\[I*UJ,

which, together with (4.53), shows that the variational inequality (2.17) is sat-

~

isfied at (y3,up, Py, h). On the other hand, for z € T'\ (I* U J*) we have

IDUHO (o e,y 1) () + B ()] < |DuHO (o, 0, po, h) () 1+
DL HO (g, 1z, s 1) () — D HO (o, 0, o, h) (0)] < (4.58)
S a+ |Du7{0(y’,;;U/,;,Pg;h8)($) - DuHO(yOaUOJPOJhg)(x)|'

In view of (4.52), (4.54), (4.56) and (4.58), for a > 0 and € > 0 small enough,
we obtain [[AhY|pe(ry < 01, i-e., b € BE (hg). Hence, by our assumption, us is
a unique in BY, (uo) solution to (2.9).

LEMMA 4.1 For a > 0 and € > 0 sufficiently small
(u,DZuf(u/h\,lAz)u) >0 forallveVZ. (4.59)
o

Proof In view of (4.53) and (4.57), locally around u., the inequality constraints
(2.3) can be treated as equalities:

=q on I¢,
up(z) 4 =r on J* (4.60)
free onT'\ [I*U J9]
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Indeed, for any feasible variation up + Au satisfying the first order optimality

condition at %, we must have Au = 0 on I® U J®. On the other hand, any
variation u + Au such that

=0 on I*U J?,
|Au(z)] { <e on T\ (I*U J?),

is feasible for (Oy). Hence, the first order optimality condition (2.18) at (h, )
reduces to the equation

(DuF(uz,h),u) =0 for all u € V2. (4.61)
Expanding F (-, h) into a Taylor series at u; and using (4.61), we obtain

0 < F(u, h) = Flug, h) = 3((u — uz), D2, F (ug, h)(u — ug)) +7(u — ug)

for all u € V2°.

Dividing by [|lu —uz[|7ry and passing to the limit with [lu — ug||pe(r) — 0 and
using (3.45) we obtain
(u,Diu}'(u;;,/i\L)u) >0 forallueVye.

In view of the linearity of V.2° as well as of the continuity and density of the
embedding V.>° C V2, we arrive at (4.59). ]

We are going to show now that the quadratic form (4.59) is actually coercive,
with a constant independent of h. To this end we will use Theorem 3.2.

LEMMA 4.2 If (i) holds, then
D2, F (u, BYul oo ry > £ ull ooy for all u € V° (4.62)
<o

Proof Let us introduce the linear generalized equation analogous to (3.20) but
evaluated at (ug, h):

§ € DyF (uz, h) + D2, F(uz, B) (u — uz) + N (u). (4.63)

By Theorem 3.2, for § sufficiently small, (4.63) has a locally unique solution vy,
which is locally Lipschitz in ¢, with the Lipschitz constant £ > 0 independent
of the choice of h € B (hg). Note that vy = us is the solution of (4.63) for
0 = 0. Hence, in the same way as in (4.61), we deduce from the construction of
h and us, that for all §, in a small neighborhood of zero, (4.63) reduces to the
equation

(D2, F(uz, Byvs + (DyuF (uz, h) — D2, F(uz, h)uz) — 6,u) =0 for all u € Ve°.
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In view of (4.61), choosing § € V.2° we obtain from the above equation
D2, F(uz, h)(vs —v0) + 6 = 0.

Since, for any sufficiently small § € V°, this equation must have a unique
solution ws := vs — vo € V°, which is Lipschitz in ¢, with Lipschitz constant
£ >0, we arrive at (4.62). m|

To show the coercivity of the quadratic form (4.59), note that, as in (3.23)

Diu}'(wh\,fz) = }C(%ﬁ) +D7 H(ys ’Llrh\,pﬁ,;\l), where K(Urf;,ﬁ) is given in (3.24)
with indices 0 substituted by h. By (3.24) and (3.35), IC(U@,/E) is continuous

from LP(T) into C(T), for p > n — 1. Hence, by a known argument (see, e.g.,
Lemma 6.3 in [10]), (3.23) and (4.62) imply

Diu’}-{(yﬁ(x),uﬁ(m),pg(x),ﬁ) >¢' foraa zeT\(I*UJ%). (4.64)

On the other hand, we obtain from Lemma 3.5 that Sy, : L?>(T') — L?(Q) x L?(T")
is compact. Therefore, it follows from (3.24) that K(up, h) : L*(T') — L*(T') is
compact.

LEMMA 4.3 If (4.62) holds, then
(u, D3, F(up, hyu) > € ul[Zary  for allv € V. (4.65)
o

Proof Denote by P : L2(T') — V2 the orthogonal projection in L?(T") onto the
closed subspace V2. Then we have

(u, D2, F (uz, h)u) = (u, PD2, F(uz, h)u)y for all u € V2.

By a well known property of the spectrum of self-adjoint operators in a Hilbert
space (see, e.g., Theorem 2, p.320 in [13]) we have

min{p e R|p€o} =
— inf{(u, PD2, Fluz, Au)ys | ue€ V2 with [lullyz = 1},

where o is the spectrum of
PD2,F(ur, h) = PK(uz, h) + PD2, My, un, pi, h) - VE = V2
Hence, in view of (4.59), condition (4.65) will be satisfied if the operator

PK(uz, h) + (PD2,H(ye, um, pi h) — )T = VE = V2

(4.66)
is invertible for all u € [0,£71),

where 7 denotes the identity in V2.
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Note that by (4.64) the real function
(PD2,H(ye, um, pr, h)(3) — 1)

is bounded, measurable and positive on '\ (I*UJ%) for any u € [0,£~!). Define
the operator

Re = (PD2, H(y, um, pi, h) + 1) "' P (u, h) : V2 = V2 (4.67)

where u € [0,£71). In view of compactness of K(uﬁ,/ﬁ), the operator R is
compact. To prove (4.66), it is enough to show that the operator R + J is
invertible. It follows from the definition of R and from (3.35), (3.36) that there
exists 7 > 0 such that

RyVy C Vit for all r > 2, (4.68)
and by Lemma 2.3 Ry * V7 C V° forall T >n —1. '
Consider the homogeneous equation
(Rp+T)u=0, uweVy. (4.69)

Let us apply in (4.69) a bootstrapping procedure. Starting with » = 2 and using
(4.68), after a finite number of steps, we find that u = —Rpu € V°, which in
view of (4.62), shows that v = 0 is the only solution to (4.69). By a known
property of compact operators (see, e.g., Theorem 2, Chapter XIII, Sec.1 in [8])
the uniqueness of the solution of the homogeneous equation (4.69) implies that
the operator (R + J) : V2 % % — V2 has a bounded inverse. !? Hence (4.66)
holds and the proof of the lemma is completed. m|

We can formulate now the principal result of this paper, i.e., a characteriza-
tion of the Lipschitz stability property for the solutions to problems (Oy).

THEOREM 4.4 If conditions (A1)-(A4) hold, then (AC) is a sufficient condi-
tion in order that

(LC) There exist constants o1 > 0, o2 > 0 and A > 0 such that for each
h € BE (ho) there exists a unique in BZ (yo,uo) solution (yn,un) of (O)
and

lyns =y oy lun —unrll ey < AW —=h"ler for all I, K" € BE (ho).

(4.70)
If in addition, condition (SD) holds, then (AC) is also necessary for (LC) to
be satisfied. a

Proof Sufficiency is given in Theorem 3.6. To prove necessity, note that, from
(4.65) we have
(u7 Dzu‘?(uf)a ho)u) = (U, Diu]—-(u/h\:ﬁ)u)-*_
+(U, [D?J,u]:(um hO) - Dzzl,u]:(uﬁa h)]u) > €_1||u||2L2(I‘)+ (471)
+(u, [D2,F (uo, ho) — Diu}'(uﬁ, h)Ju) for all u € V2.
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By (3.41) and (4.70), choosing o > 0 and € > 0 sufficiently small, we get

efl
0 [D2, F o, o) = D2, Flug, )] < - ulliagry. (472)
Conditions (4.71) and (4.72) show that (AC) is satisfied with v = £-. m|
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